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Abstract: - This work deals with the technique for fault detection and classification in three-phase power 
systems based on the elliptical trajectory of the voltage space vector on the complex plane. A new approach is 
presented leading to the derivation of equivalent circuits directly in the Clarke domain where the space vector is 
defined. A specific methodology is introduced to manage the asymmetrical behavior of single-phase and 
double-phase faults. In particular, an in-depth analysis is presented for the single-phase-to-ground fault. The 
proposed equivalent circuits allow straightforward derivation and interpretation of the voltage ellipse for fault 
characterization. The analytical results are validated through the simulation of a three-phase radial system. 
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1   Introduction 
Power quality is a major issue in modern power 
systems. Extensive literature is available about 
disturbance analysis and classification techniques, 
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], 
[12]. In recent years, one of the most interesting and 
promising methodologies for disturbance detection 
and classification is the approach based on the 
analysis of space vector trajectories on the complex 
plane, [13], [14], [15], [16], [17], [18], [19], [20], 
[21], [22], [23]. Although the space vector technique 
has been proposed for several kinds of disturbances, 
the straightforward application of such technique is 
in the detection and classification of voltage sags 
due to fault conditions. Indeed, the basic principle of 
the space vector methodology consists of the 
observation that, under fault conditions, the voltage 
space vector traces an elliptical trajectory on the 
complex plane. The inclination angle of such an 
ellipse allows the classification of the fault. Figure 1 
shows the characteristic inclination angle of the 
space vector ellipse for different kinds of single-
phase (Sa, Sb, Sc) and double-phase (Dab, Dbc, 
Dac) faults, [23].  

In the relevant literature the relationship 
between the faulted three-phase system and the 
inclination of the voltage space-vector ellipse is 
obtained in two steps, [20], [22]. First, a simplified 
three-phase faulted circuit is solved through 
conventional techniques in the original abc domain 

of voltage/current variables. Second, the Clarke 
transformation is used to obtain analytical 
expressions for the voltage space-vector 
components on the complex plane. Such an 
approach leads to correct results, but since the 
circuits are solved in the original abc domain they 
cannot provide direct insight into the space vector 
components because the space vector is defined on 
the Clarke transformed variables α and β. In other 
terms, the conventional approach does not provide 
equivalent circuits in the Clarke transformed 
variables, thus the circuit interpretation of the space 
vector trajectory is prevented. 

In this paper, a circuit methodology directly 
based on the Clarke transformed variables is 
proposed. In particular, the methodology is derived 
in detail for single-phase grounded faults. 
Equivalent circuits are derived directly in the Clarke 
variables αβ0 domain. A specific approach is 
described to manage the asymmetrical behavior of a 
single-phase fault. The proposed approach allows 
the straightforward determination of the voltage 
alpha and beta components leading to the definition 
of the space vector. Thus, a direct link is established 
between equivalent circuits and space vector 
properties. Notice that this paper provides a 
methodological contribution, whereas analytical 
evaluations concerning the single-phase fault can be 
equivalently performed through the conventional 
approach proposed in [16]. 
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The paper is organized as follows. In Section II 
the Clarke transformation and its conventional use 
in the analysis of symmetrical circuits is recalled. In 
Section III the use of the Clarke transformation is 
extended to the case of an asymmetrical component 
such as a single-phase fault. Specific equivalent 
circuits in the Clarke domain are derived to take into 
account such asymmetrical behavior. In Section IV 
the proposed methodology is used to analyze fault 
conditions in a simple radial system, and some 
properties of the space vector ellipses are put in 
relation with the derived equivalent circuits in the 
Clarke domain. Finally, discussion and concluding 
remarks are drawn in Section V. 
 

 
Fig. 1: Inclination angle of the voltage space-vector 
ellipse for different kinds of single-phase (Sa, Sb, Sc) 
and double-phase (Dab, Dbc, Dac) faults 
 

 

2 Topological Properties of Clarke 

Transformed Three-Phase Circuits 
Let us consider a column vector 𝒗 = [𝑣𝑎 𝑣𝑏 𝑣𝑐]𝑇 
of phase voltages across a three-phase component in 
the time domain. The Clarke transformation of 𝒗 is 
defined as, [24]: 
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Notice that the transformation matrix T is 

defined in its rational form, i.e., with the coefficient 
√2 3⁄  which guarantees the orthogonality property 
𝑻−1 = 𝑻𝑇. It can be readily shown that the 
orthogonality property results in conservation of 
power from the abc domain to the transformed 𝛼𝛽0 
domain. This is a crucial point in view of deriving 
coherent equivalent circuits in the 𝛼𝛽0 domain. 

When a basic and symmetrical three-phase 
component is considered, the Clarke transformation 
operates the diagonalization of the matrix 

component. For example, by considering an 
inductive symmetrical component (i.e., a component 
with equal self-inductances 𝐿𝑝ℎ, and equal mutual 
inductances 𝐿𝑚), the Clarke transformation 
provides: 
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Since 𝐿𝛼 = 𝐿𝛽, the two scalar equations in the 𝛼 

and 𝛽 variables can be combined in only one 
equation: 

 
 �̅� = 𝑣𝛼 + 𝑗𝑣𝛽 = 𝐿

𝑑

𝑑𝑡
(𝑖𝛼 + 𝑗𝑖𝛽) = 𝐿

𝑑
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where 𝐿 = 𝐿𝛼 = 𝐿𝛽, and the voltage/current space 
vectors �̅� and 𝑖 ̅ have been defined as complex-
valued time-domain functions. Similar derivations 
can be readily obtained for resistive and capacitive 
components. 

As far as a three-phase sinusoidal voltage source 
is considered, by using the Clarke transformation for 
the source phase voltages 𝒆 = [𝑒𝑎 𝑒𝑏 𝑒𝑐]𝑇 we 
can readily express the corresponding space vector 
as: 

 
 �̅� = 𝑒𝛼 + 𝑗𝑒𝛽 = 𝐸𝑝𝑒𝑗𝜔𝑡 + 𝐸𝑛

∗𝑒−𝑗𝜔𝑡 (4) 
 

where 𝐸𝑝 and 𝐸𝑛 are the phasors of the positive and 
the negative sequence components according to the 
Symmetrical Component Transformation (SCT) 
operating in the phasor domain, [23]: 
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1

√3
[
1 𝑎 𝑎2

1 𝑎2 𝑎
1 1 1

] [

𝐸𝑎

𝐸𝑏

𝐸𝑐

] = 𝑺𝑬 (5) 

 
where 𝑎 = 𝑒𝑥𝑝(𝑗 2𝜋 3⁄ ), the transformation matrix 
S is in its rational form such that 𝑺−1 = 𝑺∗𝑇, and the 
asterisk denotes complex conjugation. 
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In the general case, the space vector �̅� defined in 
(4) has an elliptical trajectory on the complex plane 
characterized by the following semi-major axis 𝑟𝑀, 
semi-minor axis 𝑟𝑚, and inclination angle 𝜑, [23]: 

 
 𝑟𝑀 = |𝐸𝑝| + |𝐸𝑛

∗|         (6) 
 

 𝑟𝑚 = ||𝐸𝑝| − |𝐸𝑛
∗||          (7) 

 
 𝜑 =

1

2
[𝑎𝑟𝑔(𝐸𝑝) + 𝑎𝑟𝑔(𝐸𝑛

∗)]            (8) 
 

In the special case of null negative-sequence 
component, i.e., 𝐸𝑛 = 0, the space vector trajectory 
becomes a circle with radius |𝐸𝑝|.   

In order to obtain a complete circuit 
characterization in the 𝛼𝛽0 domain, the connections 
of the three-phase components terminals must be 
considered. In particular, the star connection (or 
wye connection) must be investigated as the most 
common in three-phase power systems. Two kinds 
of star connections can be recognized. First, a star 
connection with star center not accessible. Second, a 
star connection with accessible star center used to 
interface a single-phase network. 

 
2.1 Star Connection with Non-Accessible  

Center 
This kind of star connection is shown in Figure 2. 
Voltages are defined with respect to the reference 
(possibly fictitious) terminal of the whole three-
phase system characterized by null total current. 
Thus, the star connection in Figure 2 can be treated 
as a three-port network whose independent voltage-
current relationships can be written as: 

 
 𝑣𝑎 = 𝑣𝑏 ,      𝑣𝑏 = 𝑣𝑐 ,      𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0 (9) 

 
From the Clarke transformation (1), when 

voltages are considered we readily obtain: 
 

 𝑣𝛼 = 𝑣𝛽 = 0                        (10) 
 

i.e., the star connection with a non-accessible 
center can be treated as a short circuit in both the 𝛼 
and 𝛽 domains. Moreover, when currents are 
considered, from (1) and (9) we readily obtain  

 
 𝑖0 = 0                            (11) 

 
i.e., the star connection with a non-accessible 

center can be treated as an open circuit in the 0 
domain. 
 

2.2  Star Connection with Accessible Center 
This kind of star connection is depicted in Figure 3. 
It is typically used to interconnect a three-phase 
system (left side) to a single-phase network (right 
side). In this case the number of ports is four, 
therefore four independent voltage-current 
relationships must be written: 

 
 𝑣𝑎 = 𝑣𝑦,    𝑣𝑏 = 𝑣𝑦,    𝑣𝑐 = 𝑣𝑦,    
  𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 𝑖𝑦 (12) 

 
As far as voltages are considered, from (1) and 

(12) we readily obtain the same result as (10), i.e., 
the star connection with an accessible center can be 
treated as a short circuit in both the 𝛼 and 𝛽 
domains. Moreover, for the voltage zero component, 
we obtain: 

 
 𝑣0 = √3𝑣𝑦                 (13) 

 
As far as the currents are considered, from (1) 

and (12) we obtain: 
 

 𝑖0 =
1

√3
𝑖𝑦                (14) 

 

 
Fig. 2: Star connection with non-accessible center 
 

 
Fig. 3: Star connection with accessible center 

 

 
Fig. 4: Zero-component equivalent circuit of a star 
connection with accessible center  
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Therefore, from (13) and (14) we obtain that the 
star connection with accessible center can be 
represented as an ideal transformer (Figure 4) with 
turn ratio √3 between the zero components of the 
three-phase system (primary side) and the single-
phase network (secondary side). This equivalent 
representation is useful in applications since all the 
well-known properties of an ideal transformer can 
be exploited.  
 

 

3 Asymmetrical Faults in the Clarke 

Domain 
An asymmetrical fault in a three-phase system can 
be modeled as a three-phase switch where only one 
or two switches are operated. A simplified scheme 
is represented in Figure 5 where a three-phase 
switch is connected to a generic three-phase system 
(possibly including single-phase networks). 

Since the three-phase switch is operated 
asymmetrically, however, the general methodology 
outlined in Section II cannot be used in a 
straightforward way. A modified methodology can 
be introduced by resorting to the well-known 
Thevenin theorem, [24]. Indeed, when the three-
phase switch is detached, the remaining circuit is a 
conventional symmetrical three-phase system that 
can be treated with the standard technique derived in 
Section II. Thus, three Thevenin equivalents can be 
derived in the 𝛼,𝛽 and 0 domains (Figure 6).  

On the other hand, the three-phase switch 
(Figure 7) can be treated by using the Clarke 
transformation on the switch variables by setting the 
constraints of the specific fault under analysis. For 
example, a faulted phase a (i.e., shorted switch a) 
can be described by the constraints 𝑣𝑎 = 0, 𝑖𝑏 =
𝑖𝑐 = 0. Similarly for the other single-phase or 
double-phase faults. Such constraints will result in 
equivalent constraints in the 𝛼,𝛽,0 variables, leading 
to corresponding interconnections of the 𝛼,𝛽,0 
Thevenin equivalents.  

The proposed modified methodology is detailed 
in the next Subsection for single-phase faults. 

 

 
Fig. 5: Three-phase switch connected to a generic 
three-phase system 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Thevenin equivalents (α, β, and 0) of the 
three-phase system connected to the three-phase 
switch 

 

 
Fig. 7: Three-phase switch and related variables 

 
3.1  Single-phase Faults 
A faulted phase a can be modeled by setting the 
constraints 𝑣𝑎 = 0, 𝑖𝑏 = 𝑖𝑐 = 0 in the three-phase 
switch represented in Figure 7. As far as the 
voltages are considered, by setting 𝑣𝑎 = 0 in the 
Clarke transformation (1) we obtain: 
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                 (15) 

 
From (15) we obtain the following relationship 

between Clarke voltages: 
 

 𝑣𝛼 = −
1

√2
𝑣0                     (16) 
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As far as the currents are considered, by setting 
𝑖𝑏 = 𝑖𝑐 = 0 in the Clarke transformation we obtain: 

[
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From (17) we obtain the following relationships 

for the Clarke variables: 
 

 𝑖𝛼 = √2𝑖0                (18) 
 

 𝑖𝛽 = 0                            (19) 
 

Thus, from (16) and (18) we obtain that the fault 
constraints can be represented as an ideal 
transformer with turn ratio 1 √2⁄  between the 𝛼 and 
0 circuits. Moreover, from (19) we obtain that the 𝛽 
circuit must be set as an open circuit. Thus, the 
single-phase fault (line a) can be represented and 
analyzed through the equivalent circuits depicted in 
Figure 8. Similar results can be obtained in the cases 
where the faulted phase is b or c instead of a. 
Indeed, a change in the faulted phase results in a 
±120° shift in the phase of the space vectors. 

 

 
(a) 

 
(b) 

Fig. 8: Equivalent circuits in the Clarke domain 
taking into account the single-phase fault on phase a 
 
 
4   Validation for a Radial System 
Let us consider the simplified radial system 
represented in Figure 9. At the Point of Common 
Coupling (PCC) the source is represented by the 
equivalent voltage sources 𝐸𝑎 , 𝐸𝑏 , 𝐸𝑐 and the 
equivalent impedances 𝑍𝑒𝑞. The source is grounded 
through the impedance 𝑍𝑔. The line is characterized 

by the impedance 𝑍𝑙𝑖𝑛𝑒, and the fault location is 
such that the line left side has impedance 𝑥𝑍𝑙𝑖𝑛𝑒 
whereas the right side has the impedance (1 −
𝑥)𝑍𝑙𝑖𝑛𝑒, where 0 < 𝑥 < 1. The load is characterized 
by the impedance 𝑍𝐿. According to the methodology 
conventionally used to study grounded faults, 
however, the load current in the following analysis 
is neglected, i.e., we assume 𝑍𝐿 → ∞. The grounded 
fault is characterized by the fault impedance 𝑍𝑓.  

As far as the single-phase fault (phase a) to 
ground is considered, according to the results 
derived in Section III the equivalent circuits in the 
Clarke domain are shown in Figure 10. In particular, 
Figure 10a shows the 𝛼 and 0 circuits coupled 
through an ideal transformer with turn ratio 1 √2⁄ . 
On the other hand, Figure 10b shows the 𝛽 circuit 
which is uncoupled to the other circuits and 
unloaded (i.e., open circuit). The objective of the 
analysis is the evaluation of the 𝛼 and 𝛽 voltages at 
the PCC. To this aim, the phasor voltages 𝑉𝛼 and 𝑉𝛽 
in Figure 10a and Figure 10b can be readily 
calculated: 

 
 𝑉𝛼 = 𝐸𝛼

𝑍𝑒𝑞 3⁄ +𝑥𝑍𝑙𝑖𝑛𝑒+𝑍𝑓+𝑍𝑔

𝑍𝑒𝑞+𝑥𝑍𝑙𝑖𝑛𝑒+𝑍𝑓+𝑍𝑔
     (20) 

 
 𝑉𝛽 = 𝐸𝛽                (21) 

 
where 𝐸𝛼 = √3𝐸𝑎 √2⁄ , 𝐸𝛽 = −𝑗√3𝐸𝑎 √2⁄ , and 𝐸𝑎 
is the phasor of the phase voltage source a in Figure 
9. It can be readily shown that (20)-(21) are 
equivalent to the analytical results derived in [16] 
through a different methodology based on the circuit 
solution in the natural abc domain.  

The sine waves 𝑣𝛼(𝑡) and 𝑣𝛽(𝑡) corresponding 
to the phasors (20)-(21) allow the definition of the 
voltage space vector 

 
 �̅�(𝑡) = 𝑣𝛼(𝑡) + 𝑗𝑣𝛽(𝑡)               (22) 

 
whose trajectory on the complex plane is an 

ellipse. According to Figure 1, the inclination of the 
ellipse in case of faulted phase a to ground should 
be close to 90°.  

To assess this point, the following data are 
assumed to simulate the radial system in Figure 9: 
√3𝐸𝑎 = 33 kV, 𝑍𝑒𝑞 = 1.23 + 𝑗18.3 Ω, 𝑍𝑙𝑖𝑛𝑒/

length = 1.435 + 𝑗3.102 Ω km⁄ , line length = 5 
km, 𝑍𝑔 = 𝑍𝑓=0. The location x of the faulted phase 
a was treated as a parameter ranging from 0.1 to 1. 
The corresponding elliptical trajectories of the space 
vector (22) are represented in Figure 11. Figure 12 
shows the same space vectors by assuming 15 km 
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instead of 5 km for the line length. In both the 
figures it can be noticed that the ellipse inclination 
is very close to 90°. In Figure 12, however, the 
spread of the elliptical shapes is much larger as a 
consequence of a longer line. Moreover, notice that 
the changes in Figure 11 and Figure 12 are along the 
real axes (i.e., the real part of the space vector), 
whereas along the imaginary axes (i.e., the 
imaginary part of the space vector) the behavior 
appears insensitive to the line impedance changes. 
This is in agreement with (20)-(21) from which it is 
clear that only the 𝛼 component is affected by the 
circuit impedances, whereas the 𝛽 component is not 
affected by the circuit impedances because the 𝛽 
circuit is open. 

 

 
Fig. 9: Radial system used to validate the proposed 
approach 

 

 
(a) 

 
(b) 

Fig. 10: Equivalent circuits in the Clarke domain for 
the radial system in Figure 9 in case of grounded 
fault of phase a 

 
Figure 13 shows the effect of ground and fault 

impedances, i.e., 𝑍𝑔 = 𝑗4 Ω and 𝑍𝑓 = 2 Ω were 
assumed in the case of line length 5 km. By 
comparing Figure 13 and Figure 11 a slight change 
in the ellipse inclination can be noticed as the effect 
of ground and fault impedances.  

Finally, it can be observed that if the faulted 
phase was b instead of a, the related space vector 
was simply obtained by rotating by 120° the space 
vector of the faulted phase a, i.e., �̅�𝑏 = 𝑒𝑗2𝜋 3⁄ �̅�. 
Similarly, if the faulted phase was c, the related 
space vector was obtained by rotating by 120° the 
space vector of the faulted phase a, i.e., �̅�𝑐 =

𝑒−𝑗2𝜋 3⁄ �̅�. As a result, the corresponding ellipse 
inclinations approach 210° and 30°, respectively, 
according to Figure 1. The cases of faulted phase b 
and c are represented in Figure 14 by assuming line 
length 5 km, 𝑍𝑔 = 𝑗4 Ω and 𝑍𝑓 = 2 Ω.  

 

 
Fig. 11: Trajectory of the voltage space vector for 
faulted phase a and different locations of the fault. 
The assumed line length is 5 km. Ground and fault 
impedances are zero 
 

 
Fig. 12: Trajectory of the voltage space vector for 
faulted phase a and different locations of the fault. 
The assumed line length is 15 km 
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Fig. 13: Trajectory of the voltage space vector for 
faulted phase a and different locations of the fault. 
The assumed line length is 5 km. Ground and fault 
impedances are different from zero 
 

 
Fig. 14: Trajectory of the voltage space vectors for 
faulted phases b and c, and different locations of the 
fault. The assumed line length is 5 km 
 
 
5   Conclusion 
The single-phase to ground fault in a three-phase 
system has been investigated by introducing 
equivalent circuits directly in the Clarke domain. 
Since the derived equivalent circuits allow the direct 
evaluation of the α and β components of the space 
vector, the proposed approach allows 
straightforward interpretation of the properties of 
the space vector ellipse used to detect and classify 
the fault. 

In particular, the main findings of the paper can 
be summarized as follows: 
 Equivalent circuits have been derived directly in 

the transformed Clarke variables α, β, 0. 
 As a result of the constraints representing the 

single-phase fault, the α and 0 equivalent 
circuits are coupled through an ideal 
transformer. Notice that such a result was 
obtained thanks to the adopted assumption of 
Clarke transformation in its power invariant 
form. 

 As far as the β circuit is considered, the fault 
constraints result in an open circuit. Thus, the β 
component of the space vector is not involved in 
the fault. 
The proposed methodology has been derived in 

detail for the case of a single-phase-to-ground fault. 
Future work will be devoted to extend the results to 
double-phase faults.   
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