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The row-column combination RCC maps two (word) languages over the same alphabet onto the 
set of rectangular arrays, i.e., pictures, such that each row/column is a word of the first/second 
language. The resulting array is thus a crossword of the component words. Depending on the 
family of the components, different picture (2D) language families are obtained: e.g., the well-

known tiling-system recognizable languages are the alphabetic projection of the crossword of 
local (regular) languages. We investigate the effect of the RCC operation especially when the 
components are context-free, also with application of an alphabetic projection. The resulting 2D 
families are compared with others defined in the past. The classical characterization of context-

free languages, known as Chomsky-Schützenberger theorem, is extended to the crosswords in this 
way: the projection of a context-free crossword is equivalent to the projection of the intersection 
of a 2D Dyck language and the crossword of strictly locally testable language. The definition of 2D 
Dyck language relies on a new more flexible so-called Cartesian RCC operation on Dyck languages. 
The proof involves the version of the Chomsky-Schützenberger theorem that is non-erasing and 
uses a grammar-independent alphabet.

1. Introduction

Many efforts in the past have been made to extend the formal language theory from words to bidimensional (2D) symbolic arrays 
named pictures. Different approaches have been used including 2D automata, regular expressions, grammars and tiling systems; for a 
historical view, the reader may look at old and recent surveys [1–4]. Our approach is based on the operation of row-column composition

(RCC) that takes two (word) languages on the same alphabet and creates the rectangular arrays such that each row and each column 
is respectively in the first and second component language. Such pictures may be viewed as crosswords [5] of the component words. 
RCC offers a very simple and natural way of mapping word languages on 2D languages, but surprisingly it has received little attention 
in the past, almost exclusively in connection with the characterization of the tiling recognizable languages [6,3] (denoted as REC) as 
the projection of the RCC of the local languages [7]. Here we focus on the combination of context-free (CF) languages, denoted by 
ℂ(𝐶𝐹 ), an idea already suggested in [3] as a natural extension of CF languages in 2D.
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Other researchers have studied the relationship between word and picture languages from a very different viewpoint than ours, 
and we mention a few examples. In a series of studies, the frontier (or row-projection) of a picture is defined as the word in the 
top row, while the frontier of a picture language is the word language containing the frontiers of all pictures. In [8] it is proved 
that the frontiers of REC coincide with the family of context-sensitive languages. Other results for certain subclasses of context-

sensitive languages are in [9], while the recent study [10] examines the frontiers of languages recognized by various two-dimensional 
automaton classes.

Second, we mention the researches concerning the generalization to two dimensions of some important results in combinatorics 
on words as, for instance, the Fine-Wilf Theorem [11] and the Lyndon-Schutzenbeger Theorem [12].

In our opinion, the interest of a 2D language model depends on two aspects: (𝑖) its formal properties, and (𝑖𝑖) its expressiveness in 
the sense of the richness of the pictures generated. For instance, the REC family enjoys many of the properties of the regular language 
family, starting from its very definition as the homomorphic image of a 2D local language [6]; this extends in 2D the well-known 
homomorphic definition of regular languages (also known as Medvedev’s theorem). The existence of equivalent definitions of REC 
in terms of 2D automata [13] and logical predicates [14] adds to the robustness of such a family. Criteria (𝑖) and (𝑖𝑖) should be 
followed, in perspective, also for the new families here investigated.

In this work, we go some way towards the study of two families, first the pure RCC of CF languages, denoted ℂ(𝐶𝐹 ); and 
ultimately the family obtained by its projection, denoted by ℙℂ(𝐶𝐹 ). Of course the latter family strictly includes REC because of 
the strict inclusion of the corresponding word language families. Since little was known about RCC, we had to start from the basic 
properties of this operation by studying the 2D families produced by its application to the simpler families of local (LOC) and regular 
(REG) word languages, before entering the context-free domain. We prove that ℂ(𝐶𝐹 ) is incomparable with REC, whereas ℙℂ(𝐶𝐹 )
strictly includes REC.

Our main objective was to find whether the Chomsky-Schützenberger theorem (C-S Theorem) characterizing the context-free 
languages can be extended in 2D. In the original C-S Theorem [15] for words, stating that every context-free language is the 
homomorphic image of the intersection of a Dyck and local languages, the homomorphism may erase some parentheses of the Dyck 
language and maps the others onto the terminal symbols of 𝐿. Since in a picture it is impossible to erase a cell without creating 
holes, the suitable form of the C-S Theorem is a non-erasing variant in [16,17] and especially in [18].

Whereas the notions of homomorphism and local language have a natural extension in 2D, in order to state a C-S Theorem in 2D, 
a suitable definition of the concept of 2D Dyck language is needed. The first naive idea is to define a 2D Dyck as the RCC of two Dyck 
word languages. One then obtains a very interesting family of 2D languages that has been investigated in the previous study [19], 
but it does not work for a C-S Theorem in 2D.

The actual successful reformulation of the C-S Theorem is built on a new row-column combination operation, to be called 
Cartesian RCC. It takes as arguments two word languages 𝐿1, 𝐿2 over possibly distinct alphabets, and defines the alphabet of the 
symbols (pairs) belonging to their Cartesian product. The result of the Cartesian RCC is the set of pictures such that, for each row, 
the projection of each symbol on the first component is a word in 𝐿1; and similarly for the columns, by taking the projection on the 
second component, and 𝐿2. We name 2D Dyck the language resulting from the Cartesian RCC of Dyck languages.

With such a 2D Dyck language, we obtained our main result, the C-S Theorem (Theorem 6), which says that the projec-

tive crosswords of context-free languages ℙℂ(𝐶𝐹 ) coincide with the projection of the intersection of 2D Dyck languages with 
strictly-locally-testable pictures. Notice that the same statement in the case of projection-less RCC holds only in one direction, as a 
representation theorem –not as a characterization.

Of course, other relevant technical devices for obtaining such a result are presented in the main sections, e.g., the technique for 
extending the non-erasing C-S Theorem to languages whose pictures may have an odd number of rows or columns.

We have summarily exposed our main contribution but other results of interest are present in the paper that it would be long to 
describe at this stage. We just mention the comparison of the ℂ(𝐶𝐹 ) family with some known 2D families defined by 2D grammars 
of various types (e.g., Kolam and Tiling grammars), all having been proposed as 2D extensions of context-free grammars. The 
generative capacity of CF crosswords is witnessed by some examples, in particular the suggestive combinatorial structures of HV-

palindromes [20].

Paper organization. Section 2 contains the basic definitions and properties. Section 3 defines RCC and states some general proper-

ties. Section 4 focuses on the RCC of local and regular languages. Section 5 studies the RCC of context-free languages and compares 
with some known families of grammar-based 2D extensions of CF languages. Section 6 introduces the Cartesian RCC operation and 
applies it to the Dyck languages. Section 7 proves the Chomsky-Schützenberger theorem for the projective context-free crosswords. 
Section 8 concludes.

2. Basic definitions and properties

All the alphabets considered are finite.

2.1. Word languages

We use the traditional notation and terminology of formal language theory, e.g., in [21,22]. The empty word is denoted by 𝜀. 
2

The reversal of a word 𝑤 is denoted by 𝑤𝑅. The number of times a letter 𝑎 occurs in a word 𝑤 is denoted by #𝑎(𝑤).
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Definition 1 (strictly locally testable languages). Let 𝑘 ≥ 2. A language 𝐿 over alphabet Σ is 𝑘-strictly locally testable (𝑘-SLT) if there 
exist finite sets 𝑊 ⊆ Σ ∪ Σ2 ∪… ∪ Σ𝑘−1, 𝐼𝑘−1, 𝑇𝑘−1 ⊆ Σ𝑘−1, and 𝐹𝑘 ⊆ Σ𝑘 such that, for every 𝑥 ∈ Σ∗, 𝑥 ∈𝐿 if, and only if:

• if |𝑥| ≤ 𝑘 − 1, then 𝑥 ∈𝑊 .

• If |𝑥| > 𝑘 − 1, then the 𝑘 − 1-prefix and 𝑘 − 1-suffix of 𝑥 are resp. in 𝐼𝑘−1 and in 𝑇𝑘−1, and

• each factor of 𝑥 with length 𝑘 is in 𝐹𝑘.

A language is strictly locally testable (SLT) if it is 𝑘-SLT for some 𝑘; it is local (LOC) if it is 2-SLT.

Dyck languages The definition and properties of Dyck word languages are basic concepts in formal language theory.

An alphabet Δ is Dyck if it is associated with a bijection, defined by a coupling relation Δ̂ ⊆Δ⟨ ×Δ⟩ where Δ⟨, Δ⟩ are two sets of 
the same cardinality forming a partition of Δ. Each element of the coupling relation is called a coupled pair and its elements are also 
called open/closed parentheses.

The Dyck language 𝐷 over Δ is the set of words congruent to 𝜀, via the cancellation rule 𝑎𝑎′ → 𝜀 where (𝑎, 𝑎′) ∈ Δ̂, which erases two 
adjacent letters. Given a word over Δ, two occurrences of the coupled letters 𝑎 and 𝑎′ are matching if they are erased by the same 
cancellation rule application. Notice that in a Dyck word the two letters of a matching pair are separated by an even or null number 
of letters.

Chomsky-Schützenberger theorem In the original form (e.g., [22,15]), this well-known theorem states that a language 𝐿 is context-

free (CF) if, and only if, it is the alphabetic homomorphism of the intersection of a Dyck language 𝐷 and a local language 𝑅, i.e., 
𝐿 = ℎ(𝐷 ∩𝑅). The homomorphism ℎ ∶ Δ∗ → Σ∗ maps each letter of the Dyck alphabet Δ to a letter of the terminal alphabet Σ or to 
the empty word. Since for pictures, the erasure of a letter would create a hole, we have to choose a later formulation of the theorem 
where the homomorphism is non-erasing, i.e., it is a letter-to-letter projection [16,17]. The recent non-erasing variant in [18] is more 
convenient, because the Dyck alphabet size is independent of the language complexity (in terms of grammar size) and depends only 
on the size of the terminal alphabet.

An obvious limitation of any non-erasing version is that it only applies to words of even length. An approach to cope also with 
odd length words, followed in [17], is to allow a homomorphism that may map a Dyck letter to two symbols rather than one, with 
the regular language allowing only at most one occurrence of such a letter in a Dyck word (e.g., at the beginning of a word). The 
other approach also in [17]) slightly generalizes the notion of Dyck language, by extending the Dyck alphabet with a finite set of 
neutral symbols. Following [18], to make a word of odd length, we append one neutral symbol the Dyck words: a Dyck language on 
a Dyck alphabet Δ with neutral symbols is the set of words over Δ of either the form 𝑤𝛿 or 𝑤, where 𝑤 is a Dyck word without 
neutral symbols and 𝛿 ∈Δ is neutral. For instance, let 𝛿0, 𝛿1 be two neutral symbols and let Δ = {𝑎, 𝑎′, 𝑏, 𝑏′ } ∪ {𝛿0, 𝛿1} with coupling 
{(𝑎, 𝑎′), (𝑏, 𝑏′)}. Then, two examples of words of the Dyck language over Δ are 𝑎𝑎𝑏𝑏′𝑎′𝑎′𝛿0 and 𝑎𝑏𝑏′𝑎′𝑎𝑎′𝑏𝑏′𝑎𝑎′𝛿1.

The version of the C-S theorem used in the proof of our main theorem (in Sect. 7) is the following:

Theorem 1 (Theorem 4 of [18]). For every finite alphabet Σ, there exist a number 𝑞 > 0, a Dyck alphabet Δ with 𝑞 pairs of parentheses and |Σ| neutral symbols, a Dyck language 𝐷 over Δ and a projection ℎ ∶ Δ → Σ such that, for every context-free language 𝐿 ⊆ Σ∗, there exists 
an SLT language 𝑅 satisfying 𝐿 = ℎ(𝐷 ∩𝑅).

When all the words in 𝐿 have even length, then in the above theorem we can replace the alphabet Δ with a Dyck alphabet 
without neutral symbols (Theorem 5 of [18]). The inverse of the theorem, i.e., that ℎ(𝐷 ∩ 𝑅) is CF, is not reported here since it 
follows immediately from the closure properties of the CF family.

2.2. Picture languages

The concepts and notations for picture languages follow mostly [3]. We assume some familiarity with the basic theory of the 
family REC of tiling system languages, defined as the projection of a local 2D language; the relevant properties of REC will be 
reminded when needed. A picture is a rectangular array of letters over an alphabet. The set of all non-empty pictures over Σ is 
denoted by Σ++. A letter at a given position in the array is called a pixel. Given a picture 𝑝, the pixel at coordinates (𝑖, 𝑗) is denoted 
as 𝑝𝑖,𝑗 . Given a picture 𝑝, |𝑝|𝑟𝑜𝑤 and |𝑝|𝑐𝑜𝑙 denote the number of rows and columns, respectively.

Let 𝑝, 𝑞 ∈ Σ++. The row concatenation of 𝑝 and 𝑞 is denoted as 𝑝 ⦶ 𝑞 and it is defined when |𝑝|𝑟𝑜𝑤 = |𝑞|𝑟𝑜𝑤. Similarly, the column

concatenation 𝑝 ⊖𝑞 is defined when |𝑝|𝑐𝑜𝑙 = |𝑞|𝑐𝑜𝑙 . We also use the power operations 𝑝⊖𝑘 and 𝑝⦶𝑘, 𝑘 ≥ 1, their closures 𝑝⊖+, 𝑝⦶+ and 
the closure under both concatenations 𝑝⊖+,⦶+; concatenations and closures are extended to languages in the obvious way.

Let 𝑃 ⊆ Σ++ be a picture language. Define the row language of 𝑃 as ROW(𝑃 ) = {𝑤 ∈ Σ+ ∣ there exist 𝑝 ∈ 𝑃 , 𝑝′, 𝑝′′ ∈
Σ++ such that 𝑝 =𝑤 ⊖𝑝′′ or 𝑝 = 𝑝′⊖𝑤 ⊖𝑝′′ or 𝑝 = 𝑝′⊖𝑤}. The column language of 𝑃 , COL(𝑃 ), is defined symmetrically.

We recall the definition of picture homomorphism from [23].

Definition 2 (picture homomorphism). Given two alphabets Γ, Σ, a (picture) homomorphism is a mapping 𝜑 ∶ Σ++ → Γ++ such that, for 
all 𝑝, 𝑞 ∈ Σ++:{

𝑖) 𝜑(𝑝⦶ 𝑞) = 𝜑(𝑝)⦶𝜑(𝑞)
3

𝑖𝑖) 𝜑(𝑝⊖ 𝑞) = 𝜑(𝑝)⊖𝜑(𝑞)
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The definition implies that the images by 𝜑 of the symbols of a picture are isometric, i.e., for any 𝑥, 𝑦 ∈ Σ, |𝜑(𝑥)|𝑟𝑜𝑤 = |𝜑(𝑦)|𝑟𝑜𝑤
and |𝜑(𝑥)|𝑐𝑜𝑙 = |𝜑(𝑦)|𝑐𝑜𝑙 .
3. Row-column combination and its general properties

Following [3,7] we introduce the row-column combination (RCC) operation that takes two word languages over the same alphabet 
Σ and produces a picture language by making a (rectangular) crossword having the rows in the first language and the columns in the 
second. Then, given a projection from Σ to another alphabet, we introduce the RCC with projection.

Definition 3 (row-column combination a.k.a. crossword). Let 𝐿1, 𝐿2 be two word languages over Σ. Their row-column combination

(RCC) or crossword is the picture language over Σ denoted by 𝐿1⊞𝐿2 and defined as

𝐿1⊞𝐿2 =𝐿
⊖∗
1 ∩ 𝐿⦶∗2 .

A picture language that can be defined by a row-column combination is called an RCC. Given a projection ℎ ∶ Σ →Δ over another 
alphabet Δ, the projective RCC of 𝐿1, 𝐿2 with projection ℎ is the picture language ℎ(𝐿1⊞𝐿2) ⊆Δ++.

Let  be a family of word languages. The row-column combination ℂ( ) and the projective row-column combination ℙℂ( ) of 
family  are the families of picture languages of the form 𝐿1⊞𝐿2 and, respectively, of the form ℎ(𝐿1⊞𝐿2), where the languages 
𝐿1 and 𝐿2 of  are over the same alphabet, and ℎ is a projection.

We illustrate with an example.

Example 1 (square with a single 1 in every row/column). Let 𝐿 = 0∗10∗. Then 𝐿 ⊞𝐿 ∈ℂ(𝑅𝐸𝐺) is the set of square pictures such that 
in every row and column exactly one “1” occurs. An example is the picture:

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

Notice that the language 𝐿𝑠𝑞 of square pictures over a unary alphabet is not in ℂ(𝑅𝐸𝐺), but it is well-known to be in ℙℂ(𝑅𝐸𝐺) [3]. 
Intuitively, 𝐿𝑠𝑞 is not ℂ(𝑅𝐸𝐺) since its row and column languages of 𝐿𝑠𝑞 are 0+ and thus they cannot “control” the size of a picture 
(see also Proposition 1 below). To see that 𝐿𝑠𝑞 is in ℙℂ(𝑅𝐸𝐺), consider the crossword 𝐿1⊞𝐿2 of two local languages 𝐿1 = 0∗12∗
and 𝐿2 = 2∗10∗: it defines the language of square pictures over the alphabet {0, 1, 2}; a projection of 𝐿1⊞𝐿2 to a unary alphabet 
defines 𝐿𝑠𝑞 . See also Example 2.

3.1. Basic RCC properties

The RCC operation has not received much attention in the past, and we start from several immediate properties of RCC languages. 
The operator ⊞ distributes over intersection, i.e.,

(𝐿1⊞𝐿2) ∩ (𝐿3⊞𝐿4) = (𝐿1 ∩𝐿3)⊞ (𝐿2 ∩𝐿4). (1)

As a consequence, if a family  is closed under intersection, then also ℂ( ) is closed under intersection. Moreover, if  is closed 
under intersection with another family  ′, then ℂ( ) is closed under intersection with ℂ( ′).

On the other hand, the operator ⊞ may not distribute over projection. Let 𝐿1 and 𝐿2 be word languages over an alphabet Δ and 
let ℎ ∶ Δ → Σ be a projection. Then,

ℎ(𝐿1⊞𝐿2) ⊆ ℎ(𝐿1)⊞ℎ(𝐿2). (2)

The inclusion can be strict, e.g. let 𝐿1 = 𝛼∗, 𝐿2 = 𝛽∗ and let ℎ(𝛼) = ℎ(𝛽) = 𝑎. Then, ℎ(𝐿1⊞𝐿2) = ∅, while ℎ(𝐿1) ⊞ℎ(𝐿2) = 𝑎++.

The next property of the row and column languages will be used later to prove that a language is not an RCC.

Proposition 1. Let 𝑃 be a picture language.

𝑃 = ROW(𝑃 ) ⊞ COL(𝑃 ) if, and only if, 𝑃 is the RCC of two word languages.

Proof. It is obvious that if 𝑃 = ROW(𝑃 ) ⊞COL(𝑃 ) then 𝑃 is an RCC. Assume now that 𝑃 =𝐿1⊞𝐿2 for two word languages 𝐿1, 𝐿2. 
By definition of RCC, ROW(𝑃 ) ⊆ 𝐿1 and COL(𝑃 ) ⊆ 𝐿2. Therefore, ROW(𝑃 ) ⊞COL(𝑃 ) ⊆ 𝐿1⊞𝐿2 = 𝑃 . Since 𝑃 ⊆ ROW(𝑃 ) ⊞COL(𝑃 ), 
4

the statement follows. □
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Notice that when 𝑃 is not an RCC, then 𝑃 ⊊ ROW(𝑃 ) ⊞ COL(𝑃 ). For instance, let 𝑃 =
⎧⎪⎨⎪⎩
𝑎𝑎
𝑎𝑎
,
𝑎𝑏
𝑎𝑏
𝑎𝑏

⎫⎪⎬⎪⎭
: the picture 

𝑎𝑎
𝑎𝑎
𝑎𝑎

is in ROW(𝑃 ) ⊞

COL(𝑃 ) but it is not in 𝑃 .

Notice also that there are crosswords 𝑃 = 𝐿1 ⊞𝐿2 that do not saturate their components, i.e., such that 𝑅𝑂𝑊 (𝑃 ) ⊊ 𝐿1 and/or 
𝐶𝑂𝐿(𝑃 ) ⊊ 𝐿2. As an example, let 𝐿1 = {0, 2}, 𝐿2 = {0, 1}: then, 𝐿1⊞𝐿2 = {0}.

Another useful proposition follows.

Proposition 2. Let  and  be two families of languages over an alphabet Σ, such that  is closed under intersection with languages of the 
form Σ′∗, for every Σ′ ⊆ Σ, and  includes the finite language Σ.

If  is a proper subfamily of  then ℂ( ) is a proper subfamily of ℂ().

Proof. Let 𝐿 ∈  ⧵  , with 𝐿 ⊆ Σ+. To prove that the containment of ℂ( ) ⊆ ℂ() is proper, consider the picture language in 
ℂ(): 𝐿 ⊞ Σ (i.e., a set of pictures with just one row). By contradiction, let 𝐿 ⊞ Σ be in ℂ( ): there exist 𝐿′, 𝐿′′ ∈  such that 
𝐿′⊞𝐿′′ = 𝐿 ⊞ Σ. Since 𝐿′′ ⊆ Σ (to have one-row pictures), then 𝐿′⊞𝐿′′ is the language 𝐿′ ∩ (𝐿′′)∗, which is equal to 𝐿 and thus 
it is in  , a contradiction with the assumption that 𝐿 ∈  ⧵  . □

3.2. Closure properties

In general, the crossword operation, without projection, over a family of word languages does not preserve closure over concate-

nations or union. It is easy to prove, using some elementary examples, the following proposition.

Proposition 3. If a family  of languages includes the finite languages composed by words of length 1 and 2, then ℂ( ) is not closed under 
union and row/column concatenations.

Proof. We first prove the case for union. Let 𝐿1 = {00, 01, 10, 11}, 𝐿2 = {01}, 𝐿3 = {01, 10} be languages in  . Define 𝐿′ =𝐿1⊞𝐿2, 

and 𝐿′′ = 𝐿3 ⊞ 𝐿3. By contradiction, assume that 𝐿′ ∪ 𝐿′′ is in ℂ( ). The picture 𝑝′ = 0 0
1 1 is the only picture in 𝐿′ and the 

picture 𝑝′′ = 1 0
0 1 is one of the two pictures in 𝐿′′, the other one being 0 1

1 0 . Let 𝑅 = ROW(𝑝′) ∪ ROW(𝑝′′) = {00, 11, 10, 01} =

ROW(𝐿′ ∪𝐿′′) and let 𝐶 = COL(𝑝′) ∪ COL(𝑝′′) = {01, 10} = COL(𝐿′ ∪𝐿′′). Consider the picture 𝑝 = 1 1
0 0 , which is neither in 𝐿′ nor 

in 𝐿′′: ROW(𝑝) = {00, 11} ⊆𝑅 and COL(𝑝) = {10} ⊆ 𝐶 . Then, 𝑝 is in every RCC including both 𝑝′ and 𝑝′′, a contradiction.

We now consider row concatenation (the column concatenation case is symmetrical). Let 𝐿1 = {0, 1}, 𝐿2 = {01} and 𝐿3 = {10} be in 

 . Define 𝐿′ =𝐿1⊞𝐿2, and 𝐿′′ =𝐿1⊞𝐿3. By contradiction, assume that 𝐿′
⦶𝐿′′ is a RCC. The picture 01 is in 𝐿′, but not in 𝐿′′, 

while the picture 10 is in 𝐿′′, but not in 𝐿′. Hence, the row concatenation 𝐿′
⦶𝐿′′ contains the picture 𝑝1 =

0 1
1 0 but not 𝑝2 =

1 0
0 1 . 

However, ROW(𝑝1) = ROW(𝑝2) = {01, 10} and COL(𝑝1) = COL(𝑝2) = {01, 10}, therefore the two pictures are indistinguishable by the 
crossword operation, i.e., also 𝑝2 is in the RCC of 𝐿′

⦶𝐿′′, a contradiction. □

On the other hand, the “disjoint” versions of the closures are preserved.

Disjoint closure operations The disjoint union and the disjoint concatenation operators are defined as the union and, respectively, the 
concatenation, of two languages over disjoint alphabets. Given a language 𝐿 ⊆ Δ∗, the disjoint concatenation closure of 𝐿 is the 
language (𝐿 ⋅𝐿′)∗ ⋅𝐿 ∪ (𝐿 ⋅𝐿′)+, where 𝐿′ ⊆Δ′∗, where Δ′ is a disjoint copy of Δ, and 𝐿′ is the language isomorphic to 𝐿. These 
definitions can be immediately extended to 2D languages as well, by distinguishing column and row concatenations and their closure.

Proposition 4. Let  be closed under disjoint union. The following closure properties of ℂ( ) hold:

1. ℂ( ) is closed under disjoint union;

2. if  is closed under disjoint concatenation then ℂ( ) is closed under both row and column disjoint concatenations;

3. if  is closed under disjoint concatenation closure, then ℂ( ) is closed under both column and row disjoint concatenation closures.

Proof. Let 𝐿 ∈ℂ( ) over an alphabet Δ; by definition, there exist two languages 𝐿𝐻, 𝐿𝑉 ⊆Δ+ in  , such that 𝐿 =𝐿𝐻 ⊞𝐿𝑉 .

1. Let 𝐿′ ∈ ℂ( ) be a language over an alphabet Δ′ with Δ ∩ Δ′ = ∅. Then, there exist 𝐿′
𝐻
, 𝐿′
𝑉
⊆ Δ′+ such that 𝐿′ = 𝐿′

𝐻
⊞𝐿′

𝑉
. 
5

Since 𝐿, 𝐿′ are over disjoint alphabets, 𝐿 ∪𝐿′ = (𝐿𝐻 ∪𝐿′
𝐻
) ⊞ (𝐿𝑉 ∪𝐿′

𝑉
).
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2. Let 𝐿′ be defined as in the previous case. Then,

𝐿⦶𝐿′ = (𝐿𝐻 ⦶𝐿′
𝐻 )⊞ (𝐿𝑉 ∪𝐿′

𝑉 ),

since Δ, Δ′ are disjoint. The case ⊖ is symmetrical.

3. Let the languages 𝐻, 𝑉 be the disjoint concatenation closure of 𝐿𝐻, 𝐿𝑉 , respectively. Let the alphabet Δ′ and the languages 
𝐿′
𝐻
⊆Δ′∗, 𝐿′

𝑉
⊆Δ′∗ be as in the definition of disjoint concatenation closure. It is immediate to see that 𝐿⦶+ =𝐻 ⊞ (𝐿𝑉 ∪𝐿′

𝑉
)

and 𝐿⊖+ = (𝐿𝐻 ∪𝐿′
𝐻
) ⊞𝑉 . □

Closure properties of projective RCC The application of projection after the RCC operation, thus going from the family ℂ( ) to the 
family ℙℂ( ), preserves many more closure properties of the family  . For instance, as shown above, if  is closed under disjoint 
union, then ℂ(𝐹 ) is closed under disjoint union (Proposition 4), but ℙℂ( ) is closed also under non-disjoint union.

Another disjoint operation that is useful is the disjoint finite substitution. Given two alphabets Δ, Λ, it is a mapping 𝜌 ∶ Δ → 2(Λ+)

such that:

• for every 𝛿 ∈Δ, 𝜌(𝛿) is a finite language, and

• for all 𝛿1, 𝛿2 ∈ Δ, with 𝛿1 ≠ 𝛿2, there exist two subsets Λ1, Λ2 of Λ such that Λ1 ∩ Λ2 = ∅ and 𝜌(𝛿1) ∈ 2(Λ
+
1 ), 𝜌(𝛿2) ∈ 2(Λ

+
2 ).

For instance, strictly locally testable languages are closed under this disjoint operation, although if a language is 𝑘-SLT, the resulting 
language may be 𝑘′-SLT only for 𝑘′ > 𝑘.

Theorem 2 (disjoint operations). Let  be closed under disjoint union. The following closure properties hold:

1. ℙℂ( ) is closed under union;

2. if  is closed under disjoint concatenation then ℙℂ( ) is closed under both row and column concatenations;

3. if  is closed under disjoint concatenation closure, then ℙℂ( ) is closed under both column and row concatenation closures;

4. if  is closed under inverse alphabetic homomorphism and under intersection with local languages, then ℙℂ( ) is closed under intersec-

tion with the 𝑅𝐸𝐶 family;

5. if  is closed under disjoint finite substitution, then ℙℂ( ) is closed under picture homomorphism.

Proof. The items 1, 2 and 3 follow immediately from Proposition 4, by applying suitable projections.

Let 𝐿 ∈ ℙℂ( ) over an alphabet Σ; therefore, there exist an alphabet Δ, two languages 𝐿𝐻, 𝐿𝑉 ⊆Δ+ in  and a projection ℎ ∶ Δ → Σ
such that 𝐿 = ℎ(𝐿𝐻 ⊞𝐿𝑉 ). We now prove separately the remaining items of the statement.

4. Consider 𝐿 ∩𝑅, where 𝑅 is in 𝑅𝐸𝐶 . Therefore, there is an alphabet Θ such that 𝑅 is defined by a projection 𝜋 ∶ Θ → Σ of the 
RCC of two local languages 𝐿𝑂𝐶𝐻, 𝐿𝑂𝐶𝑉 over Θ. Let Γ be the alphabet:

{⟨𝜃, 𝛿⟩ ∣ 𝜃 ∈Θ, 𝛿 ∈Δ, 𝜋(𝜃) = ℎ(𝛿)},

i.e., Γ is the subset of the Cartesian product Θ ×Δ such that the components of each element ⟨𝜃, 𝛿⟩ have the same projection on 
Σ. Define 𝑣Θ ∶ Γ →Θ and 𝑣Δ ∶ Γ →Δ as the projection maps to Θ and Δ respectively.

Let �̃�𝐻 = 𝑣−1Δ (𝐿𝐻 ) ∩ 𝑣−1Θ (𝐿𝑂𝐶𝐻 ) ∩ Γ+ and let �̃�𝑉 = 𝑣−1Δ (𝐿𝑉 ) ∩ 𝑣−1Θ (𝐿𝑂𝐶𝑉 ) ∩ Γ+. The languages �̃�𝐻 and �̃�𝑉 are still in  , since 
both  and the family of local languages are closed under inverse alphabetic homomorphism. Define the projection ℎ̃ ∶ Γ → Σ
as ̃ℎ(⟨𝜃, 𝛿⟩) = ℎ(𝛿). Then, 𝐿 ∩𝑅 = ℎ̃

(
�̃�𝐻 ⊞ �̃�𝑉

)
.

5. Let 𝜑 ∶ Σ++ → Γ++, where Γ is an alphabet, be a picture homomorphism. Let 𝑚, 𝑛 ≥ 1 be such that 𝜑(𝑎) ∈ Γ𝑛,𝑚 for all 𝑎 ∈ Σ: 
as already noticed, by Definition 2 the images by 𝜑 of the symbols of a picture must be isometric. Define Δ′ = Δ × {1, … , 𝑛} ×
{1, … , 𝑚}. For every 1 ≤ 𝑖 ≤ 𝑛, define the word homomorphism:

𝜌𝑖𝐻 ∶ Δ∗ → (Δ × {𝑖} × {1,… ,𝑚})∗ as

𝜌𝑖𝐻 (𝛿) = ⟨𝛿, 𝑖,1⟩⟨𝛿, 𝑖,2⟩… ⟨𝛿, 𝑖,𝑚⟩, for all 𝛿 ∈Δ.

Let 𝜌𝐻 ∶ Δ → 2(Δ′+) be the substitution defined by 𝜌𝐻 (𝛿) =
⋃
1≤𝑖≤𝑛

𝜌𝑖𝐻 (𝛿). It is a disjoint finite substitution, since each 𝜌𝑖
𝐻
(𝛿) returns 

a word over a different subset Δ × {𝑖} × {1, … , 𝑚} ⊂Δ′.
Symmetrically, for every 1 ≤ 𝑗 ≤𝑚 define the word homomorphism 𝜌𝑗

𝑉
∶ Δ∗ → (Δ × {1,… , 𝑛} × {𝑗})∗ as 𝜌𝑗

𝑉
(𝛿) = ⟨𝛿, 1, 𝑗⟩ … ⟨𝛿, 𝑛, 𝑗⟩

and let the disjoint finite substitution 𝜌𝑉 ∶ Δ → 2(Δ′+) be the union of all 𝜌𝑗
𝑉

.

Let 𝐿′
𝐻

= 𝜌𝐻 (𝐿𝐻 ), 𝐿′
𝑉
= 𝜌𝑉 (𝐿𝑉 ) and consider the picture language 𝐿′

𝐻
⊞𝐿′

𝑉
. Given 𝛿 ∈ Δ, the language 𝜌𝐻 (𝛿) ⊞ 𝜌𝑉 (𝛿) thus 
6

includes only the single picture shown below:
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𝜌𝐻 (𝛿)⊞𝜌𝑉 (𝛿) =
⎧⎪⎨⎪⎩
⟨𝛿,1,1⟩ ⟨𝛿,1,2⟩ … ⟨𝛿,1,𝑚⟩
… … … …⟨𝛿, 𝑛,1⟩ ⟨𝛿, 𝑛,2⟩ … ⟨𝛿, 𝑛,𝑚⟩

⎫⎪⎬⎪⎭
. (3)

Therefore, every picture 𝑝′ in 𝐿′
𝐻
⊞𝐿′

𝑉
is obtained from a picture 𝑝 in 𝐿𝐻 ⊞𝐿𝑉 by replacing every pixel 𝛿 ∈ Δ of 𝑝 with the 

subpicture in (3).

Define the projection ℎ′ ∶ Δ′ → Γ, for every ⟨𝛿, 𝑖, 𝑗⟩ ∈Δ′, as

ℎ′(⟨𝛿, 𝑖, 𝑗⟩) = 𝜑(ℎ(𝛿))(𝑖,𝑗),
i.e., ℎ′(⟨𝛿, 𝑖, 𝑗⟩) is the pixel (𝑖, 𝑗) of the picture 𝜑(ℎ(𝛿)). For instance, if ℎ(𝛿) = 𝑎, the above subpicture (3) is projected by ℎ′ to 
the subpicture:

𝜑(𝑎)(1,1) 𝜑(𝑎)(1,2) … 𝜑(𝑎)(1,𝑚)
… … … …

𝜑(𝑎)(𝑛,1) 𝜑(𝑎)(𝑛,2) … 𝜑(𝑎)(𝑛,𝑚)
= 𝜑(𝑎),

where 𝜑(𝑎)(𝑖,𝑗) is pixel (𝑖, 𝑗) of the picture 𝜑(𝑎). Therefore, 𝜑(𝐿) = ℎ′(𝐿′
𝐻
⊞𝐿′

𝑉
). □

4. Row-column combination of local and regular languages

The RCC of regular languages has received attention in the past since its alphabetic projection coincides with the family of 
recognizable languages, 𝑅𝐸𝐶 [3]. Some complexity issues for this case have been recently addressed in [5] where the RCCs of a 
regular language are called “regex crosswords”.

We start from the subfamily of local languages. The RCC of local word languages is defined by 1 × 2 and 2 × 1 tiles, called domino

tiles. It is folklore and easily proved that such a family is strictly included in the family defined by 2 × 2 tiles, a.k.a. local picture 
languages.

It is interesting to remark that even a “weak” class such as ℂ(𝐿𝑂𝐶) is already quite expressive, as shown by the following 
example.

Example 2. Let Σ = {0, 1, 2, 0′, 1′, 2′}, 𝐿1 = 0∗12∗2′∗1′0′∗, 𝐿2 = 2∗10∗ ∪2′∗1′0′∗. It is easy to see that both languages are local. Then, 
the crossword 𝐿 = 𝐿1⊞𝐿2 consists of the row concatenation of two square pictures over Σ, with the left square having the letter 1 
in the main diagonal, all 0’s under the diagonal and all 2’s above the diagonal Each row of the right square is the apostrophed mirror 
image of the same row of the left square, i.e., with 0′, 1′, 2′ replacing 0, 1, 2. Therefore, 𝑅𝑂𝑊 (𝐿) = {0𝑛12𝑚2′𝑚1′0′𝑛 ∣ 𝑛, 𝑚 ≥ 0}, which 
is CF. An example is the picture below, with the square subpictures divided by the dashed line:

1 2 2 2 2′ 2′ 2′ 1′
0 1 2 2 2′ 2′ 1′ 0′
0 0 1 2 2′ 1′ 0′ 0′
0 0 0 1 1′ 0′ 0′ 0′

The example can be generalized to the row concatenation of (any multiple of) four square pictures, by introducing a marked copy 
of Σ, denoted by Σ̂ = {0̂, ̂1, ̂2, ̂0′, ̂1′, ̂2′}, and defining �̂�1, ̂𝐿2 as the -̂image of 𝐿1, 𝐿2. Then, define the picture language 𝐿𝑠𝑞∗ =
(𝐿1 ⋅ �̂�1)+⊞ (𝐿2 ∪ �̂�2). Both (𝐿1 ⋅ �̂�1)+ and 𝐿2 ∪ �̂�2 are local, but

𝑅𝑂𝑊 (𝐿𝑠𝑞∗) = {
(
0𝑛12𝑚2′𝑚1′0′𝑛0̂𝑛1̂2̂𝑚2̂′𝑚1̂′0̂′𝑛

)+
∣ 𝑛,𝑚 ≥ 0}

is a context-sensitive but not CF, language whose Parikh image is non-semilinear.

The following statement appears to be new.

Corollary 1. The family REC is closed under picture homomorphism.

Proof. The thesis follows from Theorem 2, since REC is closed under disjoint finite substitutions. □

The following immediate properties describe the relations of REC with the RCC of well known subclasses of regular languages.

Lemma 1. The picture language 𝐿¬𝑅𝐶𝐶 = (𝑎++ ⦶ 𝑏++) ⊖𝑏++ is in 𝑅𝐸𝐶 , but it is not an RCC.

Proof. 𝐿¬𝑅𝐶𝐶 is obviously in 𝑅𝐸𝐶 . Both the row and column languages of 𝐿¬𝑅𝐶𝐶 are 𝑎∗𝑏+. Therefore, by Proposition 1, if the 
language were an RCC then also a picture of the form 𝑏++ would be in 𝐿¬𝑅𝐶𝐶 , a contradiction. □
7

Proposition 5. ℂ(𝐿𝑂𝐶) ⊊ ℂ(𝑆𝐿𝑇 ) ⊊ℂ(𝑅𝐸𝐺) ⊊𝑅𝐸𝐶 .
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0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1
1 0 1 1 1 1 0 1
1 0 1 1 1 1 0 1
1 0 0 0 0 0 0 1
0 1 1 1 1 1 1 0

Fig. 1. Two pictures for Example 3: left, a HV-palindrome, instance of language 𝑃𝑆𝑃 ; right, a HV-convex polyomino, instance of language 𝑃𝐻𝑉 .

Proof. All inclusions, apart from the rightmost, derive from Proposition 2. The strict inclusion ℂ(𝑅𝐸𝐺) ⊊ 𝑅𝐸𝐶 derives from 
Lemma 1. □

As an example of Proposition 5, consider the RCC 𝐿 = 0∗10∗⊞ (0 ∪ 1)∗, which is in ℂ(𝑅𝐸𝐺): the two (single row) pictures 010
and 01010 have the same domino tiles, but the former is in 𝐿 and the latter is not, therefore 𝐿 is not in ℂ(𝐿𝑂𝐶).

As a last remark on the relationship between families, we notice that the strict inclusions holding for the non-projective crosswords 
of certain families included in 𝑅𝐸𝐺 become now identities because the projection of their RCC families coincides with the 𝑅𝐸𝐶
languages [3,7], in formulae:

ℙℂ(𝐿𝑂𝐶) = ℙℂ(𝑅𝐸𝐺) =𝑅𝐸𝐶.

5. RCC of context-free languages

To our knowledge, the crosswords of CF languages have never been studied after their definition in [3]. We show two suggestive 
examples of CD crosswords and we compare them with other families of picture languages.

Proposition 6. Let 𝐿𝑝𝑎𝑙 =
{
𝑤𝑤𝑅 ∣𝑤 ∈ {0,1}+

}
. The picture language 𝑃 =𝐿𝑝𝑎𝑙 ⊞ {0, 1}∗ is in ℂ(𝐶𝐹 ) but it is not in 𝑅𝐸𝐶 .

Proof. By contradiction, if 𝑃 is in 𝑅𝐸𝐶 , then 𝑃 ′ = 𝑃 ∩
(
(0 ∪ 1)∗⦶

)
is in 𝑅𝐸𝐶 as well, by closure of 𝑅𝐸𝐶 under intersection. 𝑃 ′ is 

just the one-row picture language 𝐿𝑝𝑎𝑙 ⊞ {0, 1}, which cannot be in 𝑅𝐸𝐶 since one-row languages in 𝑅𝐸𝐶 must be regular (they 
are the image under projection of a local language). □

Example 3 (palindromic symmetries). We show that the so-called 2D horizontal-vertical (HV) palindromes studied in [20] are in ℂ(𝐶𝐹 ). 
Let 𝐿𝑝𝑎𝑙 = {𝑤𝑤𝑅 ∣ 𝑤 ∈ {0, 1}+}. We define the language of HV-palindromes as 𝑃𝑆𝑃 = 𝐿𝑝𝑎𝑙 ⊞ 𝐿𝑝𝑎𝑙 . This language is not in 𝑅𝐸𝐶 , 
otherwise also the two-row language 𝑃𝑆𝑃 ∩ ({0,1}⊖ {0,1})∗⦶ would be in REC, contradicting (essentially) Proposition 6.

To illustrate, every picture in 𝑃𝑆𝑃 can be subdivided in four subpictures 𝑃𝑖, 1 ≤ 𝑖 ≤ 4, of the same size. Fig. 1, left, shows an 
example where the four subpictures 𝑃𝑖 are separated by dashed lines. The language 𝑃𝑆𝑃 can also be defined as:

𝑃𝑆𝑃 = (𝑃1 ⦶ 𝑃2)⊖ (𝑃3 ⦶ 𝑃4) such that 𝑅𝑂𝑊 (𝑃1 ⦶ 𝑃2) ∈𝐿𝑝𝑎𝑙
and 𝐶𝑂𝐿(𝑃1 ⊖𝑃3) ∈𝐿𝑝𝑎𝑙 and 𝑅𝑂𝑊 (𝑃3 ⦶ 𝑃4) ∈𝐿𝑝𝑎𝑙.

Notice that necessarily 𝐶𝑂𝐿(𝑃2 ⊖𝑃4) ∈𝐿𝑝𝑎𝑙 .
Another interesting palindromic language consists of the pictures containing a HV-convex polyomino [24], symmetrical both hori-

zontally and vertically, drawn in color black, and exactly centered in a white background. Encoding black or white pixels by 1 or 0, 
respectively, such a language, denoted by 𝑃𝐻𝑉 , is defined as the RCC of the language 𝐿𝐻𝑉 =

{
0𝑛1+0𝑛 ∣ 𝑛 ≥ 0

}
with itself, namely 

𝐿𝐻𝑉 ⊞𝐿𝐻𝑉 . An example is in Fig. 1, right.

5.1. Basic ℙℂ(𝐶𝐹 ) properties

The next result is immediate from Theorem 2.

Corollary 2. The family ℙℂ(𝐶𝐹 ) is closed under union, row/column concatenations and their closures, under inverse alphabetic homomor-

phism, under intersection with REC languages and under picture homomorphism.

The following properties are also immediate.

Corollary 3 (inclusion relations).

1. ℂ(𝑅𝐸𝐺) ⊊ℂ(𝐶𝐹 ).
2. ℂ(𝐶𝐹 ) is incomparable with 𝑅𝐸𝐶 .
8

3. 𝑅𝐸𝐶 = ℙℂ(𝑅𝐸𝐺) ⊊ ℙℂ(𝐶𝐹 ).
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Proof. Following Proposition 6, we just prove that 𝑅𝐸𝐶 is not included in ℂ(𝐶𝐹 ). By Lemma 1, the language 𝐿¬𝑅𝐶𝐶 = (𝑎++⦶𝑏++) ⊖
𝑏++ is not an RCC, hence it cannot be in ℂ(𝐶𝐹 ), but it is in 𝑅𝐸𝐶 . Then, since 𝑅𝐸𝐶 = ℙℂ(𝑅𝐸𝐺) it is obvious that 𝑅𝐸𝐶 ⊆ ℙℂ(𝐶𝐹 ); 
the inclusion is strict by considering any picture language with just one row where a CF, but not regular, language, is placed. □

Theorem 3. The membership problem for the family ℙℂ(𝐶𝐹 ) is NP-complete.

Proof. To prove the problem is in NP, consider an algorithm that, given two CF languages 𝐿1, 𝐿2, a projection ℎ and a picture 
𝑝, guesses the correct inverse projection ℎ−1(𝑝) (i.e., the pre-image) and then verifies if it is in 𝐿1 ⊞ 𝐿2 (which obviously takes 
polynomial time). The problem is NP-hard, since ℙℂ(𝐶𝐹 ) includes the class REC for which NP-hardness of membership testing is 
known. □

Example 4. We show an example of a language in ℙℂ(𝐶𝐹 ) but not in ℂ(𝐶𝐹 ). Let 𝑅𝑠𝑞 be the language of square pictures over 
alphabet {0, 1}, which is a classical REC language. Let 𝑃4𝑠𝑞 = 𝑃𝑆𝑃 ∩ 𝑅𝑠𝑞 , where 𝑃𝑆𝑃 is the HV-palindrome language of Example 3. 
By closure under intersection with 𝑅𝐸𝐶 , as stated in Corollary 2, it follows that 𝑃4𝑠𝑞 is in ℙℂ(𝐶𝐹 ). We observe that 𝑃4𝑠𝑞 is derived 
from the language 𝑃𝑆𝑃 of Example 3, with the constraint that the four rectangles in which each picture is divided are indeed squares.

To see that the language 𝑃4𝑠𝑞 is not in ℂ(𝐶𝐹 ), assume that 𝑃4𝑠𝑞 is an RCC. Consider a picture in 𝑃4𝑠𝑞 where each pixel is the letter 0: 
thus all words in (00)+ are both in 𝑅𝑂𝑊 (𝑃4𝑠𝑞), 𝐶𝑂𝐿(𝑃4𝑠𝑞). Therefore, by Proposition 1, also non-square pictures, with even height 
and width and composed only of symbol 0, must be in 𝑃4𝑠𝑞 , a contradiction.

5.2. Comparison with families of grammar-based picture languages

Various definitions of context-free picture languages have been proposed in the past (for a survey see [4]) that extend the formalism 
of context-free grammar productions into some sort of picture generating productions. Of course, the RCC operation is yet another 
approach to move from CF words to pictures, but unlike the past ones it does not construct any sort of 2D grammar productions.

Here we compare the ℂ(𝐶𝐹 ) family with three notable grammar-based cases, namely Siromoney [2] context-free Kolam Gram-

mars (KG) equivalent to Matz [25] grammars, Průša [26] grammars (PG), and Tiling Grammars [27] (TG). We denote with 
(𝐾𝐺), (𝑃𝐺), (𝑇𝐺) the corresponding language families. The following inclusions are known [4]:

(𝐾𝐺) ⊊(𝑃𝐺) ⊊(𝑇𝐺), 𝑅𝐸𝐶 ⊊(𝑇𝐺)

while (𝐾𝐺) and (𝑃𝐺) are incomparable with REC.

Theorem 4 (ℂ(𝐶𝐹 ) vs grammar-based picture families).

1. ℂ(𝐶𝐹 ) is incomparable with both (𝐾𝐺) and (𝑃𝐺).
2. (𝑇𝐺) is not included in ℂ(𝐶𝐹 ).

Proof. We prove Part (1). To prove (𝐾𝐺) ⊈ ℂ(𝐶𝐹 ), hence also (𝑃𝐺) ⊈ ℂ(𝐶𝐹 ), consider the subset of language 𝐿¬𝑅𝐶𝐶 = (𝑎++ ⦶
𝑏++) ⊖ 𝑏++ of Lemma 1, which is not in ℂ(𝐶𝐹 ), such that it only contains two-row pictures. It is immediate to see that also such 
a language, denoted by 𝐿′

¬𝑅𝐶𝐶 , is not in ℂ(𝐶𝐹 ) and it is generated by the following Kolam grammar (using the Matz simplified 
notation for column and row concatenation):

𝑆 →

(
𝑋
𝐵

)
, 𝑋→ 𝑎𝑋 ∣ 𝑎𝐵, 𝐵→ 𝑏𝐵 ∣ 𝑏.

To prove ℂ(𝐶𝐹 ) ⊈ (𝐾𝐺), consider the two-row picture language defined as 𝑃 =𝐿1⊞𝐿2, where

𝐿1 =
(
{𝑐+𝑤𝑤𝑅 ∣𝑤 ∈ {𝑎, 𝑏}+}

)
∪
(
{𝑤𝑤𝑅𝑐+ ∣𝑤 ∈ {𝑎, 𝑏}+}

)
and 𝐿2 is the set of length two words over {𝑎, 𝑏, 𝑐} excluding 𝑐𝑐. Hence, in 𝑃 there is no occurrence of the tile 𝑐 ⊖ 𝑐. 𝑃 is known not 
to be in (𝐾𝐺) [4].

Part (2) follows from (𝑃𝐺) ⊊ (𝑇𝐺). □

The incomparability results of Theorem 4 change if we consider the projective RCC of CF languages. For instance, the language 
𝐿′
¬𝑅𝐶𝐶 in the proof of that theorem is in ℙℂ(𝐶𝐹 ) indeed. But a precise comparison of ℙℂ(𝐶𝐹 ) with the grammar-based families 

would require a fine analysis of the possibility to simulate quite different picture generating devices, and is out-of-scope.

6. 2D Dyck languages

The family of context-free word languages is characterized by the Chomsky-Schützenberger Theorem that was briefly recalled in 
Sect. 2.1, where we anticipated our use of the non-erasing variant [18] whose alphabet is independent of the language.

An interesting question is whether a similar characterization for the families ℂ(𝐶𝐹 ) and ℙℂ(𝐶𝐹 ) is possible, saying that any 
9

CF crossword is the projection of a “2D Dyck language” intersected with a strictly locally testable picture language. This of course 
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requires a suitable definition of 2D-Dyck languages. But the naive choice of “2D Dyck” as the RCC of two Dyck languages does not 
work. For instance, the RCC of two Dyck languages 𝐷1, 𝐷2 over the alphabet {𝑎, 𝑎′} is empty [19] (e.g., if the first row of the RCC is 
𝑎𝑎′, it is impossible to place a Dyck word in both the first and the second column), hence a CF crossword cannot be the homomorphic 
image of this RCC.

This motivates the introduction of a less constrained crossword operation.

6.1. Cartesian crosswords

We introduce a new type of row-column combination, called Cartesian crossword (or Cartesian RCC), that defines a non-empty 
language also for two languages with different alphabets; it creates a picture on a common alphabet that is the Cartesian product 
of the row and column alphabets. Therefore, each symbol is a pair (row-symbol, column-symbol) and it is natural to define the 
resulting picture in such a way that its pixel by pixel projection on the row-symbols produces a picture whose rows belong to the 
first language; similarly for the projection on the column symbols.

Definition 4 (Cartesian crossword). Let Σ1, Σ2 be two (possibly not distinct) alphabets and let ℎ1 ∶ Σ1 ×Σ2 → Σ1 and ℎ2 ∶ Σ1 ×Σ2 → Σ2
be the projection maps from the set Σ1 × Σ2, called the Cartesian alphabet, to the first and to the second component, respectively.

Given two word languages 𝐿1 ⊆ Σ∗
1 and 𝐿2 ⊆ Σ∗

2 , their Cartesian crossword (CCW), denoted as 𝐿1 ⊠ 𝐿2, is the picture language 
𝑃 ⊆ (Σ1 × Σ2)++ defined as:

𝑃 = ℎ−11 (𝐿1) ⊞ ℎ−12 (𝐿2).

A picture language is called a CCW if it is the Cartesian crossword of two word languages. Let  be a family of word languages. The 
Cartesian crossword of  , denoted as ℂ𝐶 ( ), is the family of picture languages of the form 𝐿1⊠𝐿2, for all languages 𝐿1, 𝐿2 of  .

Properties of Cartesian crosswords From the definition we have:

ℎ1(𝑅𝑂𝑊 (𝐿1⊠𝐿2)) =𝐿1 and ℎ2(𝐶𝑂𝐿(𝐿1⊠𝐿2)) =𝐿2. (4)

Hence, the Cartesian crossword of two non-empty languages is not empty and every word of 𝐿1 and 𝐿2 contributes to define some 
pictures. The following statement is immediate from Definition 4.

Proposition 7. If a family  of word languages is closed under inverse alphabetic homomorphism, then ℂ𝐶 ( ) ⊆ℂ( ).

This inclusion clearly holds for the language families LOC, SLT, REG and CF.

The following Lemma, whose proof is immediate from the definition of Cartesian RCC, is needed to prove Theorem 5.

Lemma 2. Let 𝐿1 ⊆ Σ∗
1 and 𝐿2 ⊆ Σ∗

2 .

1. If 𝐿3 ⊆ Σ∗
1 and 𝐿4 ⊆ Σ∗

2 , then

(𝐿1⊠𝐿2) ∩ (𝐿3⊠𝐿4) = (𝐿1 ∩𝐿3)⊠ (𝐿2 ∩𝐿4).

2. If Σ1 = Σ2 = Σ, then 𝐿1⊞𝐿2 = ℎ((𝐿1⊠𝐿2) ∩𝐺++), where 𝐺 is the alphabet { (𝑎, 𝑎) ∣ 𝑎 ∈ Σ} and ℎ ∶𝐺→ Σ is the projection defined, 
for all 𝑎 ∈ Σ, as ℎ( (𝑎, 𝑎)) = 𝑎.

6.2. Cartesian crossword of Dyck languages

We now apply the new definition to Dyck languages.

Definition 5 (2D-Dyck language). Let 𝐷1, 𝐷2 be two Dyck languages defined respectively over the Dyck alphabets Δ1 and Δ2. The 
alphabet Γ =Δ1 ×Δ2 is called a 2D-Dyck alphabet. The Cartesian crossword 𝐷1⊠𝐷2 is called a 2D-Dyck language over Γ.

Example 5. We define a 2D-Dyck language as 𝐷1⊠𝐷2 where:

• 𝐷1 ⊆Δ∗
1 , Δ1 = {𝑎, 𝑎′, 𝑏, 𝑏′} with coupling {(𝑎, 𝑎′), (𝑏, 𝑏′)};

• 𝐷2 ⊆Δ∗
2 , Δ2 = {𝑎, 𝑎′, 𝑏, 𝑏′, 𝑐, 𝑐′, 𝑑, 𝑑′} with coupling {(𝑎, 𝑎′), (𝑏, 𝑏′), (𝑐, 𝑐′), (𝑑, 𝑑′)}.

An example of a picture in (𝐷1⊠𝐷2) is in Fig. 2, left. For clarity, the picture in Fig. 2, right, associates also a corner symbol to each 
10

pair of letters in the row-column alphabet, as shown in the following table:
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𝑎𝑐 𝑎′𝑏 𝑏𝑑 𝑏′𝑎 𝑎𝑎 𝑎′𝑏

𝑎𝑐 𝑎𝑎 𝑎𝑎 𝑎′𝑏 𝑎′𝑏 𝑎′𝑑

𝑎𝑐′ 𝑏𝑎′ 𝑏𝑎′ 𝑏′𝑏′ 𝑏′𝑏′ 𝑎′𝑑′

𝑎𝑐′ 𝑎𝑏′ 𝑎′𝑑′ 𝑎′𝑎′ 𝑏𝑎′ 𝑏′𝑏′

I𝑎𝑐 G𝐚′𝐛 I𝑏𝑑 G𝑏′𝑎 I𝑎𝑎 G𝐚′𝐛
I𝑎𝑐 I𝑎𝑎 I𝑎𝑎 G𝑎′𝑏 G𝑎′𝑏 G𝑎′𝑑

C𝑎𝑐′ C𝑏𝑎′ C𝑏𝑎′ A𝑏′𝑏′ A𝑏′𝑏′ A𝑎′𝑑′

C𝑎𝑐′ C𝐚𝐛′ A𝑎′𝑑′ A𝑎′𝑎′ C𝑏𝑎′ A𝐛′𝐛′

Fig. 2. (Left) A picture of the 2D-Dyck language of Example 5. (Right) The same picture with corner symbols.

corner row col example

I open open (𝑎, 𝑎)
C open closed (𝑎, 𝑎′)
G closed open (𝑎′, 𝑎)
A closed closed (𝑎′, 𝑎′)

We highlight in bold an instance of two coupled pairs violating the Dyck condition over the alphabet Γ: (𝑎′, 𝑏) is matching vertically 
with both (𝑎, 𝑏′) and (𝑏′, 𝑏′). Thus, the column language over alphabet Γ is not Dyck, but it is a very simple case of the Input-Driven 
languages [28], later renamed Visibly Pushdown languages [29],

7. A Chomsky-Schützenberger theorem for RCC with projection

In this section we establish our main result: a homomorphic characterization of ℙℂ(𝐶𝐹 ) languages based on 2D-Dyck languages. 
As a first step, we prove a homomorphic representation theorem for the RCC of CF languages.

7.1. A representation theorem for ℂ(CF)

We show that any CF crossword can be represented as the projection of the intersection of a 2D-Dyck language and a ℂ(𝑆𝐿𝑇 )
language. We assume that all pictures have even height and width, until Sect. 7.2.1 where the restriction is lifted. To this goal, we 
denote with 𝐶𝐹𝑒𝑣𝑒𝑛 the class of context-free languages whose words may only have even length.

Theorem 5 (representation theorem). Let 𝑃 ⊆ Σ++ be a picture language in ℂ(𝐶𝐹𝑒𝑣𝑒𝑛). Then there exist a 2D-Dyck alphabet Γ, a 2D-Dyck 
language 𝐷⊠, a ℂ(𝑆𝐿𝑇 ) language 𝑅, both over alphabet Γ, and a projection ℎ ∶ Γ → Σ such that 𝑃 = ℎ(𝐷⊠ ∩ 𝑅).

Proof. Let 𝑃 =𝐿1⊞𝐿2, where 𝐿1, 𝐿2 ⊆ Σ∗ are context-free languages.

By applying Theorem 1 to 𝐿1, 𝐿2, we have that 𝐿1 = ℎ1(𝐷1 ∩𝑅1) and 𝐿2 = ℎ2(𝐷2 ∩𝑅2), where: Δ is a Dyck alphabet, 𝐷1, 𝐷2 ⊆Δ∗

are Dyck languages, 𝑅1, 𝑅2 ⊆Δ∗ are two SLT languages, and ℎ1 ∶ Δ → Σ, ℎ2 ∶ Δ → Σ are two projections.

By Lemma 2, Part (2),

𝐿1⊞𝐿2 = 𝜋
(
(𝐿1⊠𝐿2) ∩𝐺++) (5)

where 𝐺 = {(𝑎, 𝑎) ∣ 𝑎 ∈ Σ} and 𝜋 ∶𝐺→ Σ is such that 𝜋((𝑎, 𝑎)) = 𝑎.
Let Γ =Δ ×Δ. Let 𝜌 be the projection 𝜌 ∶ Γ → Σ × Σ defined by 𝜌 (⟨𝛼, 𝛽⟩) = ⟨ℎ1(𝛼), ℎ2(𝛽)⟩.
Therefore:

𝐿1⊠𝐿2 = ℎ1(𝐷1 ∩𝑅1)⊠ℎ2(𝐷2 ∩𝑅2)) = 𝜌
(
(𝐷1 ∩𝑅1)⊠ (𝐷2 ∩𝑅2))

)
.

Thus, by Lemma 2, Part (1):

𝐿1⊠𝐿2 = 𝜌
(
(𝐷1⊠𝐷2) ∩ (𝑅1⊠𝑅2)

)
. (6)

From (5) and (6), it follows:

𝐿1⊞𝐿2 = 𝜋
(
𝐺++ ∩ 𝜌

(
(𝐷1⊠𝐷2) ∩ (𝑅1⊠𝑅2)

))
. (7)

Define the subset 𝐹 of Γ as:

𝐹 = {(𝛼, 𝛽) ∣ ℎ1(𝛼) = ℎ2(𝛽)}. (8)

The picture language 𝐹++ is in ℂ(𝑆𝐿𝑇 ), since 𝐹++ = 𝐹+⊞𝐹+.

For every picture language 𝑊 ⊆ Γ++, we have:

𝜌(𝑊 ) ∩𝐺++ = 𝜌(𝑊 ∩ 𝐹++). (9)

Therefore, combining (7) and (9), we have:

𝐿1⊞𝐿2 = 𝜋(𝜌
(
(𝐷1⊠𝐷2) ∩ (𝑅1⊠𝑅2) ∩ 𝐹++)). (10)

We notice that, since the word language family SLT is closed under inverse alphabetic homomorphism, by Proposition 7, it follows 
11

that 𝑅1⊠𝑅2 ∈ℂ(𝑆𝐿𝑇 ).
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Picture: Pre-image:

0 1 1 0 0 1
0 0 0 1 1 1
0 1 1 0 0 1
0 0 1 1 1 0

I𝑎𝑐 G𝑎′𝑏 I𝑏𝑑 G𝑏′𝑎 I𝑎𝑎 G𝑎′𝑏

I𝑎𝑐 I𝑎𝑎 I𝑎𝑎 G𝑎′𝑏 G𝑎′𝑏 G𝑎′𝑑

C𝑎𝑐′ C𝑏𝑎′ C𝑏𝑎′ A𝑏′𝑏′ A𝑏′𝑏′ A𝑎′𝑑′

C𝑎𝑐′ C𝑎𝑏′ A𝑎′𝑑′ A𝑎′𝑎′ C𝑏𝑎′ A𝑏′𝑏′

Fig. 3. A picture and its pre-image for Example 6.

The statement of the theorem follows if we let 𝐷⊠ be the 2D-Dyck language 𝐷1 ⊠𝐷2, we let ℎ be the projection composition 
𝜋◦𝜌, and we let 𝑅 = (𝑅1⊠𝑅2) ∩ 𝐹++; hence, 𝐿1⊞𝐿2 = ℎ 

(
(𝐷1⊠𝐷2) ∩𝑅

)
. By closure of ℂ(𝑆𝐿𝑇 ) under intersection, also 𝑅 is in 

ℂ(𝑆𝐿𝑇 ). □

We illustrate the construction of the proof of Theorem 5.

Example 6. Let Σ = {0, 1} and let 𝐿1 = {𝑥 ∈ Σ+ ∣ #0(𝑥) = #1(𝑥)}, i.e., 𝐿1 is the set of words with the same number of 0 and 1, defined 
for instance by the CF grammar: 𝑆 → 0𝑆1𝑆 ∣ 1𝑆0𝑆 ∣ 𝜀.

Let 𝐿2 = (00)+ ∪ {𝑥 ∈ (Σ2)+ ∣ #1(𝑥) ≥ #0(𝑥)}, defined for instance by the following grammar: 𝑆 → 𝐴 ∣ 𝐵, 𝐴 → 0𝐴0𝐴 ∣ 𝜀, 𝐵 →
0𝐵1𝐵 ∣ 1𝐵0𝐵 ∣ 1𝐵1𝐵 ∣ 𝜀.

The alphabets Δ1, Δ2, Γ =Δ1 ×Δ2, and the Dyck languages 𝐷1, 𝐷2 are the same of Example 5. Define:

• The projections ℎ1, ℎ2 ∶ {𝑎, 𝑏′} ↦ 0, {𝑎′, 𝑏} ↦ 1 and also ℎ2 ∶ {𝑐, 𝑐′} ↦ 0, {𝑑, 𝑑′} ↦ 1.

• The language 𝑅1 = {𝑎, 𝑎′, 𝑏, 𝑏′}∗ is the universal language; 𝑅2 is the local language defined by the following forbidden factors of 
length 2:

𝔽𝔽 =
{
𝑥𝑦, 𝑦𝑥 ∣ 𝑥 ∈ {𝑎, 𝑎′, 𝑏, 𝑏′, 𝑑, 𝑑′}, 𝑦 ∈ {𝑐, 𝑐′}

}
,

i.e., the letters 𝑐 and 𝑐′ may not occur next to one of the other letters in Δ2 .

The equality 𝐿1 = ℎ1(𝐷1 ∩𝑅1) follows immediately since the Dyck language 𝐷1 can be defined by the grammar 𝑆 → 𝑎𝑆𝑎′𝑆 ∣
𝑏𝑆𝑏′𝑆 ∣ 𝜀 and the projection ℎ1 correctly maps the Dyck letters to 0,1. The same reasoning can be used to prove the equality 
𝐿2 = ℎ2(𝐷2 ∩𝑅2).

• The projection ℎ ∶ Γ → Σ is defined as 0, respectively 1, for the following sets Γ0, Γ1:

Γ0 =
{
(𝑥, 𝑦) ∣ 𝑥 ∈ {𝑎, 𝑏′}, 𝑦 ∈ {𝑎, 𝑏′, 𝑐, 𝑐′}

}
Γ1 =

{
(𝑥, 𝑦) ∣ 𝑥 ∈ {𝑎′, 𝑏}, 𝑦 ∈ {𝑎′, 𝑏, 𝑑, 𝑑′}

}
.

• The set 𝐹 –defined in Eq. (8)–is just Γ0 ∪ Γ1.

An example of a picture and its pre-image in (𝐷1⊠𝐷2) ∩ (𝑅1⊠𝑅2) ∩ 𝐹++ is in Fig. 3. The pre-image was already shown in Fig. 2, 
right. We also add the corner symbols for clarity.

Notice that the inverse of Theorem 5 does not hold, i.e., a language of the form ℎ(𝐷⊠ ∩𝑅) is not necessarily a CF crossword. For 
instance, the language 𝐿¬𝑅𝐶𝐶 = (𝑎++ ⦶ 𝑏++) ⊖𝑏++ of Lemma 1 is not in ℂ(𝐶𝐹 ), but it is in REC hence also in ℙℂ(𝑅𝐸𝐺) ⊆ ℙℂ(𝐶𝐹 ); 
therefore, it can be defined as the projection of a ℂ(𝐶𝐹 ) language. By Theorem 5 and composing two projections, it has the form 
ℎ(𝐷⊠ ∩ 𝑅). The complete characterization à la Chomsky-Schützenberger requires the addition of the projection operation and is 
presented in the next section.

7.2. A Chomsky-Schützenberger Theorem for ℙℂ(CF)

We move to the projective CF crosswords and state a complete C-S Theorem, that was not possible without projection. As for 
Theorem 5, we first prove the theorem under the restrictive hypothesis that the pictures height and width are even. Then in Theorem 7

we drop the restriction.

Theorem 6 (even case). A picture language 𝑃 ⊆ Σ++, is in ℙℂ(𝐶𝐹𝑒𝑣𝑒𝑛) if, and only if, there exist a 2D-Dyck alphabet Γ, a 2D-Dyck 
language 𝐷⊠ over Γ, a ℂ(𝑆𝐿𝑇 ) language 𝑅 ⊆ Γ+ and a projection ℎ ∶ Γ → Σ such that 𝑃 = ℎ(𝐷⊠ ∩𝑅).

Proof. Since 𝑃 can be obtained applying a projection to a language in ℂ(𝐶𝐹 ) and the composition of two projections is still a 
projection, by Theorem 5 it follows that 𝑃 = ℎ(𝐷⊠ ∩𝑅) as in the statement of this theorem.

It remains to show that any language of the form ℎ(𝐷⊠ ∩ 𝑅) is in ℙℂ(𝐶𝐹 ). The language 𝐷⊠ is in ℂ(𝐶𝐹 ), since by definition 
it is equal to 𝐷1⊠𝐷2 for some Dyck word languages 𝐷1, 𝐷2. Hence it is also in ℙℂ(𝐶𝐹 ). Since 𝑅 ∈ 𝑅𝐸𝐶 and 𝐷⊠ ∈ ℙℂ(𝐶𝐹 ), by 
closure of ℙℂ(𝐶𝐹 ) under intersection with 𝑅𝐸𝐶 (Corollary 2) and under projection, we have that the language ℎ(𝐷⊠ ∩ 𝑅) is also 
12

in ℙℂ(𝐶𝐹 ). □
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Picture: Pre-image:

0 1 1 0 0 1 𝟎
0 0 0 1 1 1 𝟏
0 1 1 0 0 1 𝟎
0 0 1 1 1 0 𝟏
𝟎 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎

𝑎𝑐 𝑎′𝑏 𝑏𝑑 𝑏′𝑎 𝑎𝑎 𝑎′𝑏 𝛿0𝑎

𝑎𝑐 𝑎𝑎 𝑎𝑎 𝑎′𝑏 𝑎′𝑏 𝑎′𝑑 𝛿1𝑏

𝑎𝑐′ 𝑏𝑎′ 𝑏𝑎′ 𝑏′𝑏′ 𝑏′𝑏′ 𝑎′𝑑′ 𝛿0𝑏
′

𝑎𝑐′ 𝑎𝑏′ 𝑎′𝑑′ 𝑎′𝑎′ 𝑏𝑎′ 𝑏′𝑏′ 𝛿1𝑎
′

𝑎𝛿0 𝑎′𝛿1 𝑏𝛿1 𝑏′𝛿0 𝑎′𝛿0 𝑎′𝛿1 𝛿0𝛿0

Fig. 4. (Left) Example of a picture with odd height and width, in the language 𝑃 ′ of Example 7; (right) its pre-image in the 2D-Dyck language.

7.2.1. Homomorphic characterization for pictures of arbitrary size

We drop the restriction that all pictures must have even height and width. It suffices to revisit Theorem 5 for ℂ(𝐶𝐹 ), since 
projections do not change the picture size. As anticipated in Section 2, we extend the Dyck alphabet with new symbols, called 
neutral, that are not coupled.

Replace in Theorem 5 the Dyck word languages, used in the proof for the characterization of row/column languages, with the 
Dyck languages with neutral symbols of Theorem 1. A 2D-Dyck alphabet with 𝑛 neutral symbols is Γ = Δ1 × Δ2, where Δ1, Δ2 are 
Dyck alphabets with 𝑛 neutral symbols. A 2D-Dyck language over Γ is the picture language 𝐷⊠ =𝐷1⊠𝐷2 where 𝐷1, 𝐷2 are Dyck 
languages over Δ1, Δ2. Thus, we immediately have:

Theorem 7 (main). A picture language 𝑃 ⊆ Σ++ is in ℙℂ(𝐶𝐹 ) if, and only if, there exist a 2D-Dyck alphabet Γ, with |Σ| neutral symbols, 
a 2D-Dyck language 𝐷⊠ over Γ, a ℂ(𝑆𝐿𝑇 ) language 𝑅 ⊆ Γ+ and a projection ℎ ∶ Γ → Σ such that 𝑃 = ℎ(𝐷⊠ ∩𝑅).

Example 7. We consider a language 𝑃 ′ allowing also pictures with odd sizes. The row language is 𝐿′
1 = {𝑥 ∈ {0, 1}+ ∶ |#0(𝑥) −

#1(𝑥)| ≤ 1} and the column language is 𝐿′
2 =𝐿2 ⋅ {0, 1}, where 𝐿2 is the language of Example 6.

Then, for 𝑖 = 1, 2, 𝐿′
𝑖 = ℎ

′
𝑖(𝐷

′
𝑖 ∩𝑅

′
1), where 𝐷′

𝑖 is obtained from the Dyck language 𝐷𝑖 ⊆ Δ++
𝑖 of Example 6 by allowing also two 

neutral symbols 𝛿0, 𝛿1; the projection ℎ′𝑖 is equal to ℎ𝑖 over Δ𝑖, with ℎ′𝑖(𝛿0) = 0, ℎ′𝑖(𝛿1) = 1; the regular language 𝑅′
𝑖 is obtained from 

𝑅𝑖 by adding 𝛿0 or 𝛿1 at the end of words of even length. An example of picture in 𝑃 ′ = 𝐿′
1⊞𝐿

′
2, obtained by adding one row and 

one column (in bold) to the picture of Fig. 3, is in Fig. 4 (left), together with its pre-image (right).

8. Conclusion

In this paper we have advanced in the study of row-column combinations in two cases, the regular languages (with the strictly 
locally testable subfamily) and chiefly the context-free languages. The RCC operation is a very simple constructor of pictures and a 
popular one for crossword games. A commonality in both cases ℂ(𝑅𝐸𝐺) and ℂ(𝐶𝐹 ) is that the resulting family has such as poor 
closure properties, but it gains many more formal properties when the RCC is followed by projection. In fact ℙℂ(𝑅𝐸𝐺) is the family 
REC of tiling system recognizable languages, well-known for preserving quite a few properties of regular languages.

But an important conceptual difference separates the ℙℂ(𝑅𝐸𝐺) and ℙℂ(𝐶𝐹 ) families. The former is officially defined by a 
homomorphic characterization, i.e., as the projection of pictures tiled with two-by-two tiles. Such a definition is acknowledged as the 
transposition in 2D of the Medvedev’s theorem that homomorphically characterizes the regular languages starting from local ones. 
Since the Chomsky-Schützenberger Theorem is widely viewed as the counterpart for CF languages, of the Medvedev’s theorem, a 
natural idea is to investigate whether the RCC of CF languages can be characterized by a C-S Theorem extension in 2D, much as REC 
is defined by the 2D extension of Medvedev’s theorem. Such a characterization of ℙℂ(𝐶𝐹 ) was unknown until now, and it is our 
major contribution.

All the three entities in C-S Theorem, namely a Dyck language, a 2-strictly locally testable language and a homomorphism, have 
been suitably redefined in 2D. The redefinition of the homomorphism and of the 2-SLT entities is quite natural: a letter-to-letter 
homomorphism and a strictly locally testable picture language, respectively. But what should be the essence of a Dyck language in 
2D was unclear, and several possibilities having intuitive appeal were investigated in [19], none unfortunately being adequate for 
stating a C-S Theorem in 2D. By replacing the standard RCC operation with the Cartesian RCC, resulted in the Definition 5 of the 
2D-Dyck language, that acts as generator in the homomorphic characterization of the ℙℂ(𝐶𝐹 ) family.

Now, this family possesses two equivalent definitions: one uses the row-column combination of CF words, and the other selects 
the relevant 2D-Dyck structures by means of the intersection with strictly locally testable picture languages, and then projects them 
on the terminal alphabet. In our opinion, such a new homomorphic definition may play the role of the grammar-based one for CF 
languages, with the accompanying theory of syntax structures. This may hopefully open a new direction of research on the syntactic 
structure of ℙℂ(𝐶𝐹 ) pictures.
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