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SECOND-ORDER ANALYSIS OF AN OPTIMAL CONTROL
PROBLEM IN A PHASE FIELD TUMOR GROWTH MODEL WITH
SINGULAR POTENTIALS AND CHEMOTAXIS

PIERLUIGI COLLIY*®, ANDREA SIGNORI'! AND JURGEN SPREKELS?>?

Abstract. This paper concerns a distributed optimal control problem for a tumor growth model
of Cahn—Hilliard type including chemotaxis with possibly singular potentials, where the control and
state variables are nonlinearly coupled. First, we discuss the weak well-posedness of the system under
very general assumptions for the potentials, which may be singular and nonsmooth. Then, we establish
the strong well-posedness of the system in a reduced setting, which however admits the logarithmic
potential: this analysis will lay the foundation for the study of the corresponding optimal control
problem. Concerning the optimization problem, we address the existence of minimizers and establish
both first-order necessary and second-order sufficient conditions for optimality. The mathematically
challenging second-order analysis is completely performed here, after showing that the solution mapping
is twice continuously differentiable between suitable Banach spaces via the implicit function theorem.
Then, we completely identify the second-order Fréchet derivative of the control-to-state operator and
carry out a thorough and detailed investigation about the related properties.
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1. INTRODUCTION

Lots of disclosures have been obtained in the past decades concerning tumor growth modeling: see, e.g., the
pioneering works [13, 14, 48]. The main advantage of a mathematical approach is to be capable of predicting and
analyzing tumor growth behavior without inflicting any harm to the patients, thus helping medical practitioners
to plan the clinical medications.

The phase field approach to tumor modeling consists in describing the tumor fraction by means of an order
parameter ¢ representing the concentration of the tumor, which usually is normalized to range between —1 and
1. Namely, the level sets {¢ = 1} and {¢ = —1} may describe the regions of pure phases: the tumorous phase
and the healthy phase, respectively. Moreover, the diffuse interface approach postulates the existence of a thin
transition layer {—1 < ¢ < 1} in which the phase variable passes rapidly, but continuously, from one phase to the
other. We assume the growth and proliferation of the tumor to be driven by the absorption and consumption of
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some nutrient, so that the equation for the phase variable, which has a Cahn-Hilliard type structure, is coupled
with a reaction-diffusion equation for the variable o capturing the evolution of an unknown species nutrient
(e.g., oxygen, glucose) in which the tissue under consideration is embedded.

Let o >0, 8> 0, and let Q C R? denote some open and bounded domain having a smooth boundary
[ = 99 (2 of class C? would be sufficient). We indicate by n the unit outward normal on T' with corresponding
outward normal derivative 0n. Moreover, we fix some final time 7' > 0 and introduce for every ¢ € (0,7 the
sets Q; == Q2 x (0,1), QF := QA x (t,T), and ; := T x (0,t), where we put, for the sake of brevity, Q := Q7 and
3 := Y. We then consider the following optimal control problem:

(CP)  Minimize the cost functional
o by ~ 2, b2 ~ 2, bo 2
W(pp.0) ) =2 [ o= Gal?+ 2 [ foT) ~ gl + 2 [ Jul (1)
Q Q Q

subject to the state system

adip+ Orp — Ap = P(p)(0 + X(1 — ¢) — ) — h(p)us in Q, (1.2)
Bowp — Ao+ F'(p) =p+Xo in Q, (1.3)
00 — Ao = —XAp — P(p)(o + X(1 — @) — p) + us in Q, (1.4)
Onpt = Onp = Ono =0 on X, (1.5)
#(0) = po, (p(O) = $o0, U(O) =00, in €, (1.6)
and to the control constraint
u = (u1,u2) € Uaa - (1.7)

Here, the constants by, by are nonnegative, while by is positive. Moreover, pg and g are given target functions,
and the set of admissible controls U,q is a nonempty, closed and convex subset of the control space

U= L>(Q)% (1.8)

The state system (1.2)—(1.6) constitutes a simplified and relaxed version of the four-species thermodynami-
cally consistent model for tumor growth originally proposed by Hawkins-Daruud et al. in [33] that additionally
includes chemotaxis effects. Let us briefly review the role of the occurring symbols. The primary variables ¢,
and o denote the phase field, the associated chemical potential, and the nutrient concentration, respectively. Fur-
thermore, we stress that the additional term ad;u corresponds to a parabolic regularization for equation (1.2),
whereas the term 50, is the viscosity contribution to the Cahn—Hilliard equation. The key idea behind these
regularizations originates from the fact that their presence allows us to take into account more general potentials
that may be singular and possibly nonregular. The nonlinearity P denotes a proliferation function, whereas the
positive constant X represents the chemotactic sensitivity. Lastly, as a common feature of phase field models, F’
is a nonlinearity which is assumed to possess a double-well shape. Typical examples are given by the regular,
logarithmic, and double obstacle potentials, which are defined, in this order, by

Freg(r) = i (1- 7’2)2 for r € R, (1.9)
(1+7)In(1+7)+ (1 —7)In(l —r) — kir? for r € (—=1,1)

Flog(r) =14 21In(2) — k; for r € {-1,1}, (1.10)
+o0o for r ¢ [717 ]-]
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where k1 > 1 and kp > 0 so that F,z and Fo,s are nonconvex. Observe that Fioe is very relevant in the
applications, where Fy  (r) becomes unbounded as 7 \, —1 and r  +1, and that in the case of (1.11) the
second equation (1.3) has to be interpreted as a differential inclusion, where F’(¢) is understood in the sense
of subdifferentials.

In this paper, we take two distributed controls that act in the phase equation and in the nutrient equation,
respectively. The control variable u;, which is nonlinearly coupled to the state variable ¢ in the phase equa-
tion (1.2), models the application of a cytotoxic drug into the system; it is multiplied by a truncation function
L(-) in order to have the action only in the spatial region where the tumor cells are located. For instance, it can
be assumed that h(—1) = 0,h(1) = 1,h(y) is in between if —1 < ¢ < 1; see [24, 30, 34, 35] for some insights
on possible choices of h. On the other hand, the control us can model either an external medication or some
nutrient supply.

As far as well-posedness is concerned, the above model has already been investigated in the case X = 0 in
[5, 7-9], and in [20] with o = 8 = X = 0. There the authors also pointed out how « and 3 can be set to zero,
by providing the proper framework in which a limit system can be identified and uniquely solved. We also note
that in [11] a version has been studied in which the Laplacian in the equations (1.2)—(1.4) has been replaced by
fractional powers of a more general class of selfadjoint operators having compact resolvents.

For some nonlocal variations of the above model we refer to [22, 23, 38]. Moreover, in order to better
emulate in-vivo tumor growth, it is possible to include in similar models the effects generated by the fluid
flow development by postulating a Darcy’s law or a Stokes—Brinkman’s law. In this direction, we refer to
[15, 19, 22, 24-28, 30, 48], and we also mention [31], where elastic effects are included. For further models,
discussing the case of multispecies, we address the reader to [15, 22].

The investigation of the associated optimal control problem also presents a wide number of results of which
we mention [10-12, 17, 18, 23, 29, 35, 39-43, 45, 46]. Notice that, despite the number of contributions, only [17]
established second-order optimality conditions under suitable restrictions on the considered model. In particular,
the authors of [17] avoid considering the chemotaxis effects and allow only regular potentials to be considered.

In this paper, first we discuss the weak well-posedness of the system (1.2)—(1.6) in a very general framework
for the potentials, which includes all of the cases in (1.9)—(1.11). Then, we turn our attention to the strong
well-posedness of (1.2)—(1.6) in the cases of the regular F,; and logarithmic Fi,s potentials. This is done in
Section 2, while the corresponding optimal control problem is investigated in the following sections. Section 3 is
concerned with the existence of minimizers, then the intensive and crucial Section 4 establishes the differentia-
bility properties of the control-to-state operator and contains a number of results on the concerned linearized
problems and the basic stability estimates for the solutions. The last two Sections 5 and 6 treat in some detail
the first-order necessary and second-order sufficient conditions for optimality, respectively. Let us point out that
the second-order analysis is challenging from the mathematical viewpoint and demands to prove that the solu-
tion mapping is twice continuously differentiable between suitable Banach spaces. By taking advantage of the
regularizing effect due to the aforementioned relaxation terms, we can deal with a complete study of the second-
order analysis, still covering the case of singular potentials and chemotaxis. Moreover, we are able to identify
the second-order Fréchet derivative of the control-to-state operator and investigate the related properties in a
sharp and profound way.

Throughout the paper, we make repeated use of Holder’s inequality, of the elementary Young’s inequality

ab < dla)* + 41—5|b|2 Ya,beR, V§>0, (1.12)

as well as the continuity of the embeddings H*(2) C LP(Q) for 1 < p < 6 and H?(Q) C C°(Q). Notice that the
latter embedding is also compact, while this holds true for the former embeddings only if p < 6.
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Lastly, let us introduce a convention that will be tacitly employed in the rest of the paper: the symbol small-
case c¢ is used to indicate every constant that depends only on the structural data of the problem (such as T,
Q, a or B, the shape of the nonlinearities, and the norms of the involved functions), so that its meaning may
change from line to line. When a parameter § enters the computation, then the symbol ¢s denotes constants
that depend on ¢ in addition. On the contrary, precise constants we could refer to are treated in a different way.

2. GENERAL SETTING AND PROPERTIES OF THE STATE SYSTEM

In this section, we introduce the general setting of our control problem and state some results on the state
system (1.2)—(1.6). To begin with, for a Banach space X we denote by || - ||x the norm in the space X or in
a power thereof, and by X* its dual space. The only exeption from this rule applies to the norms of the LP
spaces and of their powers, which we often denote by || - ||, for 1 < p < co. As usual, for Banach spaces X and
Y we introduce the linear space X N'Y which becomes a Banach space when equipped with its natural norm
llullxny = |lullx + |lully, for u € X NY. Moreover, we recall the definition (1.8) of U and introduce the spaces

H:=1%Q), V:=HYQ), Wy:={ve H*Q): dyv=0 on T}. (2.1)

Furthermore, by (-, ), || - ||, and (-,-), we denote the standard inner product and related norm in H, as well
as the dual product between V and its dual V*. For given final time T > 0, we introduce the spaces

Z = HY0,T; H)Nn L=, T;V)NL*(0,T;Wy), Z:=ZxZ x Z, (2.2)
V= (L>®(0,T; H)NL*(0,T;V)) x Z x (L>(0,T; H) N L*(0,T;V)), (2.3)

which are Banach spaces when endowed with their natural norms.

Some assumptions on the data are stated here.

(W1) «,f and X are positive constants.

(W2) F = Fy + Fy, where F} : R — [0, +00] is convex and lower semicontinuous with Fj(0) = 0, and where
Fy € CH(R) has a Lipschitz continuous derivative Fj.

(W3) P e C°R) is nonnegative, bounded, and Lipschitz continuous.

(W4) h € C°(R) is nonnegative, bounded, and Lipschitz continuous.

For the sake of simplicity, we indicate with a common notation
L as a Lipschitz constant for Fy, P, and h. (2.4)

Let us note that all of the choices (1.9)—(1.11) are admitted for the potentials. In fact, the assumption (W2)
implies that the subdifferential OF}; of F} is a maximal monotone graph in R X R with effective domain D(0F;) C
D(Fy), and, since Fy attains the minimum value 0 at 0, it turns out that 0 € D(0F;) and 0 € 9F;(0). Now,
in the general setting depicted by (W1)-(W4), we are able to provide a first well-posedness result for the
system (1.2)—(1.6). First, let us present the notion of weak solution to (1.2)—(1.6).

Definition 2.1. A quadruplet (u,p,&,0) is called a weak solution to the initial boundary value problem
(1.2)—(1.6) if

pe HY0,T; H)N L>(0,T; V)N L*(0,T; Wy), (2.5)
w0 € HY(0,T;V*)N L>(0,T; H) N L*(0,T; V),
¢ € L*(0,T; H),
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and if (u, ¢, &, o) satisfies the corresponding weak formulation given by

<@mu+@wwyLvaU=AP@MU+ML~M—mU—Ahwmw

for every v € V and a.e. in (0,7), (2.8)
BOrp — Ap+E+ Fi(p) =pu+Xo, £€0Fi(p), ae inQ, (2.9)
<6ta,v)—|—/ VU~Vv:X/ V<p~VU—/P(Lp)(0'+X(1—Lp) —/,L)’U+/U2U
for eve?y v eV and a.(g in (0,7, " " (2.10)
as well as
1(0) = po,  #(0) =0, 0(0) =09, ae. in (2.11)

It is worth noticing that the homogeneous Neumann boundary conditions (1.5) are considered in the condi-
tion (2.5) for ¢ (cf. the definition of the space Wp) and incorporated in the variational equalities (2.8) and (2.10)
for ;4 and o, when using the forms fQ V- Vv and fQ Vo - Vv. Moreover, let us point out that, at this level, the
control pair (u1,usz) just yields two fixed forcing terms in (2.8) and (2.10). The initial conditions (2.11) make
sense since (2.5) and (2.6) ensure that ¢ and p, o are continuous from [0, 7] to V' and H, respectively.

Theorem 2.2 (Weak well-posedness). Assume that (W1)—(W4) hold. Moreover, let the initial data (110, o, 00)
satisfy

Mo, 00 € LQ(Q>, Yo € Hl(Q), Fl((p()) € Ll(Q), (2.12)
and suppose that the source terms uyi,us are such that

(u1,u9) € L*(Q) x L*(Q). (2.13)

Then there exists at least one solution (u,p,&,0) in the sense of Definition 2.1. Moreover, if uy € L>®(Q)
in addition to (2.13), then the found solution is unique. Furthermore, let (u;, vi,&,04), i = 1,2, be two weak
solutions to (1.2)~(1.6) associated with the initial data (uh, 9y, o), which satisfy (2.12), and controls (u},ub) €
L>=(Q) x L*(Q), i = 1,2.Then there is a positive constant Cyq, depending only on the data of the system, such
that

ol — p2) + (01 — w2)llLoe 0,75y + IV (1 — p2) [l 220,71
+ [lo1 = w2l Lo 0, 7:m)nL20,75v) + |01 = 02| oo (0,75 L2 0,15V

< Ca(llatisd — 1) + (2 — )l + o — @Bl + llod — o)

+ Ca(llud = w3l romy + 163 = 3l 20, )- (2.14)

Before entering the proof, let us remark that the above result is very general and includes also the cases of
singular and nonsmooth potentials, such as the double obstacle potential defined by (1.11). For the dependencies
of the constant Cy, we invite the reader to follow the proof of the estimate (2.14) below.

Proof. For the proof of the existence of a solution, we point out that the arguments are quite standard, since
similar procedures have already been used in previous contributions. Thus, for that part, we proceed rather for-
mally, just employing the Yosida approximation of F; for our estimates, without recurring to finite-dimensional
approximation techniques like the Faedo—Galerkin scheme.
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Hence, we introduce the Yosida regularization of 0F;. For € > 0 let Fj. denote the Moreau-Yosida
approximation of F; at the level e. It is well known (see, e.g., [2]) that the following conditions are satisfied:

0< Fi.(r) <Fi(r) forall reR. (2.15)

FY . is Lipschitz continuous on R with Lipschitz constant £, and F{ _(0) = 0. (2.16)

|[F] ()] < [(0F1)°(r)| and li{% Fi _(r) = (0F)°(r), forall r e D(OF). (2.17)
g

Here, (0F1)° denotes the minimal section of OF7, that is, (0F;)°(r) defines the element of (0F})(r) with minimal
modulus.

Next, we are going to prove a series of estimates for the solution to problem (2.8)—(2.10), where (0F})(r) is
replaced by Fl/,s and the inclusion in (2.9) reduces to an equality. Namely, we argue on

Bowp — Ap+ F| (o) + Fo(p) =p+Xo ae inQ. (2.18)

For the sake of simplicity, we still denote by (u,®,§,0), with £ = F] _(¢), the solution to the approximated
system in place of (i, e, &, 0c); the correct notation will be reintroduced at the end of each estimate.

FIRST ESTIMATE: We add the term ¢ to both sides of (2.18) and test by d;¢. Then, we take v = p in (2.8) and
v =0 in (2.10). Moreover, we add the resulting equalities and, with the help of a cancellation, we deduce that
almost everywhere in (0,7) it holds the identity

1d
33 (P + el +2 | Ficto)+ o))
+IVAI? + Blowl? + 191 + | Ple)u—o)?
= [xP@)0 = odn=a) = [ Byt [ xov

+/((P*F2/(<p))at(p+X/VQD'VO'+/U20':2 I
Q Q Q

Note that the last term on the left-hand side is nonnegative due to (W3). Then, we can integrate the above
inequality over [0,¢] for ¢t € (0,T], using the initial conditions (2.11). We point out that the quantity

allpoll® + lleolly + 2/ F1(po) + [loo]|* is bounded independently of ,
Q

thanks to (2.12) and (2.15). Next, owing to the boundedness and regularity properties of P, h and Fj, and by
Young’s inequality, it is straightforward to infer that

K 1
[ 10as <X1Ple [l P 1) + 510 [ (P )

t

Qt
X2
w5 [ o+ [ ol G [ ol e [ o)
Qt Q Qt Qt
2

1 X 1
by [ 9ol [ 9P [ (el + o)
Qt Qt Q1

¢ 1
< [ (1o + 5Ivo()l?) ds + c
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+ C/O (eI + ()1 + o ()1 + Nur ()1 + lluz(s)]|?) ds,

so that it suffices to apply Gronwall’s lemma to conclude that

Hﬂs||Lw(o,T;H)mL2(0,T;V) + ||<PsHHl(o,T;H)mLoc(o,T;V)

1/2
+ HFLE(QOE)HL/oo(o,T;Ll(Q)) + ol Lo 0,13 m)nL20,15v) < € (2.19)

SECOND ESTIMATE: Now, owing to (2.19), from a comparison of terms in the variational equalities (2.8)
and (2.10) it follows that

10pie |l 20,757 +) + 10t 20, 75v+) < e (2.20)

In fact, arguing for instance on (2.8), and taking advantage of (W3), (W4), (2.13) and (2.19), we have that
for a.e. t € (0,T) and for every v € V it holds

[(@dun(t), )] < 10 (@] 0]l + V4] 9]

+e(lle®l + el + 1+ @) ol + ¢ lur @]l
< c([19ep@] + llur (W) + 1) [[o]]v-

Thus, dividing by ||v||yv and passing to the superior limit, we readily have the bound for ||d;u(t)||v+ in terms
of ¢(||Ope(t)]| + |lur(®)|| + 1). Then, by squaring and integrating over (0,7), we deduce (2.20) for d;u. The
corresponding property for d;o can be obtained in a similar way from (2.10).

THIRD ESTIMATE: We rewrite (2.18) as
—Ap+ F{ (p) = p+Xo — Bowp — Fy(p) = f, (2.21)

almost everywhere. Due to (2.19) and the Lipschitz continuity of Fy, we infer that f, is uniformly bounded in
L?(0,T; H). Moreover, let us notice that F{ _ : R — R is Lipschitz continuous in R with (F] )’ = F}'_ € L>(R).
Thus, we may use the known chain rule for generalized derivatives (see, e.g., the comment below the proof of
[32], Thm. 7.8) to infer that J;(F] .(¢)) = Fi'.(¢) Orp a.e. in @, so that it readily follows, along with the above
estimates, that Fy _(¢) € L*(0,T;V). Therefore, we can test (2.21) by Fi (¢) and integrate by parts in the
first term, taking advantage of the homogeneous Neumann boundary condition and obtaining a nonnegative
contribution. Thus, by a standard computation it turns out that F] _(¢) is bounded in L?(0,T; H) independently
of e. Then, by comparison in (2.21) and thanks to the elliptic regularity theory, we finally derive that

IFY e (P 2 0.y + el 201wy < (2.22)

PASSAGE TO THE LIMIT: Denote now by (pe, ¢e, 0c) the triplet solving the problem (2.8), (2.18), (2.10), (2.11)
with the regularity (2.5), (2.6). Then, in view of the estimates (2.19), (2.20), (2.22), which are independent of
€, by weak and weak-star compactness it turns out that there are u, ¢, 0 and & such that

pe — p weakly star in H*(0,T;V*) N L>(0,T; H) N L*(0,T;V), (2.23)
¢ — ¢ weakly star in H'(0,T; H) N L>(0,T;V) N L*(0,T; Wy), (2.24)
0. — o weakly star in H'(0,T;V*) N L>®(0,T; H) N L*(0,T; V), (2.25)
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Fi (pe) = & weakly in L*(0,T; H), (2.26)

as € \ 0, possibly along a subsequence. By virtue of (2.23)—(2.25) and the Aubin—Lions lemma (see, e.g., [44],
Sect. 8, Cor. 4), we deduce that p. — p, . — ¢, 0. — o, all strongly in L?(0,T; H). Then, we can pass to the
limit in the variational equalities (2.8), (2.10) and also in (2.18), in order to obtain the equality in (2.9). The
nonlinearities P(y¢), h(ve), F5(pe) can be easily taken to the limit, because of the Lipschitz continuity of the
involved functions and of the strong convergence of ¢, to ¢ in L?(0,T; H). In addition, the inclusion in (2.9)
results as a consequence of (2.26) and the maximal monotonicity of dF}, since we can apply, e.g., Lemma 2.3,
p. 38 of [1]. Finally, the initial conditions (2.11) can be readily obtained by observing that (2.23)—(2.25) imply
weak convergence in CY([0, T]; H) (actually, even strong for . to ¢).

As for uniqueness, it suffices to show that (2.14) is fulfilled for weak solutions. In fact, if we let (s, i, &, 04),
i = 1,2, denote two different weak solutions to (1.2)—(1.6) associated with the same initial data (uo, o, 00)
and control variables (uj,us), then we derive that (2.14) holds with the right-hand side equal to zero, so that
P1 = @2, 1 = pa, &1 = &9, 01 = 09, whence the uniqueness follows.

CONTINUOUS DEPENDENCE ESTIMATE: Now, recalling the notation in the statement of the theorem, we set, for
1=1,2,

W= p1 — f2,  ©=@1 =2, §:=§&§ —§&, 0:1=01— 02,
Mo = #(l)*ﬂ(zn Po = 905*@(2)7 0o = 03*0(2),

wi i =u; —ui,  Ri= Plpi)(oi +X(1 = ¢i) — ), hi == h(g),

and consider the difference of the equations in (2.8)—(2.11) to infer that

(Op(ap + ), v /Vu Vv—/RU—/ (hy — hy)u} + houy)v
for every v € V and a.e. in (0,7), (2.27)
BOwp — Ap + &+ (Fi(p1) — Fy(g2)) = p+ Xo ae. in @, (2.28)
<3ta,v>+/VJ~Vv:X/ch~Vv—/Ev—«—/uw
Q Q Q Q
for every v € V and a.e. in (0,7T), (2.29)
1(0) = po,  #(0) = o, o(0) =00, ae. in, (2.30)

where
R:= Ry — Ry = (P(¢1) — P(p2))(01 + X(1 — 1) — 1) + P(2)(0 — Xop — p).

We take v = oy + ¢ in (2.27), test (2.28) by (X* + )¢, and let v = ¢ in (2.29). Then, we add the resulting
equalities and integrate over (0,t¢) and by parts to obtain that

S+ Q)OI + 5 0C + eI + 1Ha<t>||2

a/t|w|2+<x2+ >/Q Vel? + /€s0+/t|Vrf|2

1
= oo ol + 50C + Dlieol? + lool?) = | - Ve
t
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[ Blopte-o) - / (I — ha)ul (ot + ) — / haur (g + )
Qt t t

~0¢+3) [ (e - Fileao+ 0+ 3) [ San+ ol

t

1

—a(X2+§)/ |¢\2+(X2+§)X/ op+ X ch-VJ+/ ugo
Qt t

Qt t

(2.31)

for a.e. t € (0,T), where we also used that = 1(au+ ¢) — 2. Observe that all of the terms on the left-
hand side are nonnegative; in particular, the sixth is nonnegative thanks to the monotonicity of 0F;. Next, we
denote by I, ..., I1; the eleven terms on the right-hand side of (2.31), in the above order, and estimate them

individually. Using the Young inequality, we infer that

1 o 1
L+ < 203+ 1) / Vo2 + 2 / Yl + 2 / Vo2,
2 Q¢ 2 Q¢ 2 Q¢

and here the last three contributions on the right-hand side can be absorbed on the left-hand side of (2.31). We
also immediately observe that Is < 0. Moreover, with the help of (W2), (W4), and recalling (2.4), we deduce

from Young’s inequality that

L+ SLHu%HLm(Q)/ |so\|au+so|+||h2||oo/ fur] g + ]
Q¢

t

<c/Q (g + o + lgl? + Jur )

as well as

Is + I7 + Ig + 113
1
<20+ 3) [ 1P+ 5o 08+ 3) [ (ot ol + 1o
Qt @ Qt
X 1
#3000 [ ol e+ 5 [l + o)
t

t

sC/Q (lol? + loga + 0l + o + [ual?).
t

It remains to estimate I3. Using the boundedness and Lipschitz continuity of P, the Holder and Young

inequalities, and the continuous embedding V' C L*(Q2), we find that

13s1:/Q l(jo1] + X + Xl | + ) (et + | + o)
+ ||P||oo/Q (I + Lag + ¢f + (X + L)) (jop + @] + o)
t t
<e / o) la(lo s + lenlla + laalla)(s) (lag + o] + oll)(s) ds

te / o) |l + ] + o) (s) ds + / (o + lap + o + o)

Q1
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t t
S5/O ||<p(s)\|2vds+c5/0 ((loalls + lalls + 7)o + @lI* + o ]%)) (s) ds

+c/Q (ol + Jap + ol + lol?).
t

for a positive ¢ to be chosen, for instance, less than or equal to i(X2 + é) Since (p1,¢1,&1,01) is a weak solution
to (1.2)—(1.6) in the sense of Definition 2.1, it follows that the function

t= (lor @5 + ller O + I @)17)

belongs to L'(0,T). Hence, we can collect all the above inequalities and apply the Gronwall lemma to finally
derive the estimate (2.14). O

Since the control problem introduced above will demand strong regularities, we also prove the existence
of strong solutions (i.e., regularity results for our weak solutions) to the system (1.2)—(1.6) under further
assumptions. In this direction, in addition to (W1)—(W4), we postulate that:

(S1) F = Fy + Fy; F1 : R — [0,40o0] is convex and lower semicontinuous with Fy(0) = 0; F € C°(R), and F}
is Lipschitz continuous on R.

(S2) There exists an interval (r_,ry) with —oo < 7_ < 0 < r; < 400 such that the restriction of F; to
(r—,r4) belongs to C®(r_,ry).

(S3) It holds lim,~,_ F'(r) = —oo and lim, »., F'(r) = +o0.

(S4) P,he C3(R) N W3°°(R), and h is positive on (r_,r,).

Observe that (S4) entails that P, P’, P” h,h',h” are Lipschitz continuous on R. Moreover, let us remark
that the above setting allows us to include the singular logarithmic potential (1.10) and the associated quartic
approximation (1.9), but it excludes the double obstacle potential (1.11), which cannot be considered in the
framework of (S2)—(S3). Furthermore, the prescribed regularity for the potential F' entails that its derivative
can be defined in the classical manner so that we no longer need considering a selection £ in the notion of strong
solution below. Moreover, it will be useful to set, for a fixed R > 0,

Up == {u= (ur,u2) € L®(Q)*: |ul| < R}. (2.32)

Under these conditions, we have the following result concerning the well-posedness of the state system (1.2)—(1.6),
where the equations and conditions have to be fulfilled almost everywhere in Q.

Theorem 2.3 (Strong well-posedness). Suppose that the conditions (W1), (S1)—(S4), and (2.32) are fulfilled.
Moreover, let the initial data fulfill

po,00 € H'(Q) N LX(Q), w0 € W, (2.33)
as well as
r— < min ¢g(z) < max po(z) < 4. (2.34)
e e

Then the state system (1.2)—(1.6) has for every u = (u1,us) € Ug a unique solution (p,p, o) with the reqularity

pe HY(0,T; H)nCO([0,T]; V) N L*(0, T; Wo) N L™(Q), (2.35)
e Wh>(0,T; H)nH'(0,T; V) N L>®(0,T; Wo) N C°(Q), (2.36)
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o€ HY0,T; H) N C°([0,T]; V) N L*(0,T; Wy) N L>=(Q). (2.37)

Moreover, there is a constant K1 > 0, which depends on Q,T, R, «, 8 and the data of the system, but not on the
choice of u € Ug, such that

[l £11 (0,7 )0 10,71V )N L2 (0,75 Wo )L (Q)
+ ”90”leoo(O,T;H)ﬁHl(O,T;V)HLW(O»T;WO)OCO(G)

+ ol 0,7 m)nc0 (j0,77,v)N L2 (0,1:Wo) Lo (@) < K1 . (2.38)

Furthermore, there exist two values r.,r*, depending on Q, T, R, «, B and the data of the system, but not on the
choice of u € Ug, such that

r_ <r. <pla,t) <r*<ry  forall (z,t) € Q. (2.39)

Also, there is some constant Ko > 0, with the same dependencies as K1, such that

max ||P® H + max H]h(i) H
[P, o, («)

i=0,1,2,3 i=0,1,2,3 L=(Q)
g
R G HF O gy = K2 (2.40)

Finally, fori=1,2, let (ui, ¢i,0;) be a strong solution to (1.2)—(1.6) associated with the initial data (u§, @}, o)
satisfying (2.33)—(2.34) and the controls u’ = (u},ub) € Ugr. Then, there is a positive constant Cp, depending
only on data, such that

|1 — /~L2||H1(O,T;H)OLOO(O,T;V)OL2(O,T;WO) + 1 — 902||H1(O,T;H)OLOO(O,T;V)OLQ(O,T;WO)

+llor = o2l m1 0,1 )N Lo (0,75v)NL2 (0,75 W)

< CD(H/"(% - M(2)||V + H‘p(lJ - @?)HV + Haé - 0’8”\/ + Hul - u2HL2((),T;H)2>' (2'41)

Remark 2.4. (i) The separation property (2.39) is particularly important for the case of singular potentials
such as Fioe. Indeed, it guarantees that the phase variable always stays away from the critical values r_,r4
that may correspond to the pure phases. In this way, the singularity is no longer an obstacle for the analysis;
indeed, the values of ¢ range in some interval in which Fj is smooth.

(ii) Notice that (2.34) entails that F®)(pg) € C°(Q) for i = 0,1,...,5. This condition can be restrictive for
singular potentials; for instance, in the case of Fios we have r+ = %1, so that (2.34) excludes the pure phases
(tumor and healthy tissue) as initial data.

Notice also that, owing to Definition 2.1, the control-to-state operator

S:u= (ul,uQ) — (/%9070)

is well defined as a mapping between U = L*°(Q)? and the Banach space specified by the regularity
results (2.35)—(2.37). Actually, the control-to-state operator 8§ may be well defined just after Theorem 2.2,
but the notion of weak solutions proposed there (c¢f. Def. 2.1) would not suffice for the investigation of the
optimal control problem (CP).

Proof. Again, we proceed formally, but still using the Yosida approximation F7 _, at least in the first part of the
proof. Of course, we take for granted all the estimates already done in the existence proof for Theorem 2.2, and
start now with additional estimates independent of €. To avoid a heavy notation, we proceed as in Theorem 2.2
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and use the simpler notation (p, ¢, o) for the variables of the approximated system instead of (p., ., 0c), while
we will reintroduce the correct notation exhibiting the dependence of € at the end of each estimate.

FIRST ESTIMATE: We rewrite the variational equality (2.8) as
(O, v) —|—/ V- Vo= / fuv  for every v € V and a.e. in (0,T), (2.42)
Q Q

where f,, := =00+ P(¢) (0 + X(1 — ¢) — i) — h(p)u; is already known to be uniformly bounded in L?(0,T; H)
by (2.19). As 1(0) = po is now in H'(Q), it follows from the regularity theory for parabolic problems (see, e.g.,
[37]) that

| e || 2 0,7 )AL (0,752 (0,73 W0) < € (2.43)

and (2.42) can be equivalently rewritten as the equation (1.2) along with the Neumann boundary condition
Onpt = 0 a.e. on X. Next, recalling also (2.22) and arguing similarly for the variational equality (2.10), rewritten
as

<8ta,v>+/QVa~Vv=—/Q(XAgp+P(<p)(cr—|—X(1—<p)—,u)—ug)v

for every v € V and a.e. in (0,7),

we also deduce that

lloell 1 0,75y AL (0,75v)AL2(0,75W0) < C- (2.44)
Hence, (1.4) holds a.e. in @, and all of the boundary conditions in (1.5) hold a.e. on X.
SECOND ESTIMATE: We formally differentiate (2.18) with respect to time, obtaining
B0 (9rp) — A(Dyp) + FY'(9)dyp = D1 4 XOro — Fy (0)0p0 = gy, (2.45)

where g, is bounded in L?(0,T; H) independently of £, on account of (2.43), (2.44), (S1), and (2.19) (indeed,
F} is globally bounded on R). Then, multiplying (2.45) by d;¢ and integrating over  and by parts, we find
that

pd .
gallaﬂp\ﬁ +IVoel* + Qlﬂ”,s(so)|f(9t<P|2 < llgellideell,  a-e. in (0,7, (2.46)

where the third term on the left-hand side is nonnegative owing to the monotonicity of Fy .. Now, we aim to
integrate (2.46) with respect to time. Note that taking ¢ = 0 in (2.18) produces

Brp(0) = 5 (Apo — Fi (v0) + po + X 00 — F5(0)),

where the right-hand side is bounded in H by virtue of (2.17), (2.33), (2.34), and (S1). Hence, we can
integrate (2.46) over [0,t], with ¢ € (0,7, to conclude that

[pellwree . 1:mnm 0.1y < € (2.47)

THIRD ESTIMATE: We come back to the elliptic equation (2.21) and observe that now we have at hand that f,
is bounded in L*°(0,T; H). Then, arguing similarly as in the proof of (2.22), using monotonicity and elliptic
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regularity theory, we easily infer that
1Y o (el Lo 0,50 + el oo 0,m5mw) < € (2.48)
so that the continuity of the embedding Wy C C°(Q) entails that

llellze(@) < c (2.49)

FOURTH ESTIMATE: Next, we consider the parabolic equation (1.2), written as

adip — App = =0y + P(p) (0 + X(1 — @) — p) = h(p)ur =: fy,

and observe that now, thanks to (2.47), we have that 0., and consequently f,, are bounded in L>(0,T; H).
Moreover, we recall (2.33) and note that g € L>(Q), in particular. Thus, we can apply the regularity result ([36],
Thm. 7.1, p. 181) to show that

el (q) < e (2.50)

With similar arguments we can easily obtain the same property for the nutrient variable. In fact, it suffices to
rewrite (1.4) as a parabolic equation with forcing term

fo = —XAp+ P(p)(o +X(1 — ¢) — p) + uz,

and notice that (2.48) allows us to infer that Ag, and thus f,, are bounded in L*°(0,T; H). Hence, we can
apply the same argument to conclude that

loell (g < c. (2.51)

Now, we collect the estimates (2.43)—(2.44), (2.47)—(2.51) and point out that they still hold for the real
solution (u,p, o) when passing to the limit as € N\, 0, because of the weak or weak star lower semicontinuity
of norms. Then, we realize that indeed the global estimate (2.38) in the statement has been proved, with the
observation that L>(Q) for ¢ is replaced by C°(Q), since this continuity property is actually ensured by

© € WH™(0,T; H) N L>(0,T; Wy)

and the compact embedding Wy C C°(Q) (see, e.g., [44], Sect. 8, Cor. 4).

SEPARATION PROPERTY: At this point, the equation (1.3) holds for the limit functions, with the datum F’ =
F| + F} as in (S1)—(S3) and with the right-hand side bounded in L>°(Q). Thus, there exists a positive constant
C, for which

1t + Xo|| Lo (q) < Cs- (2.52)

Moreover, the condition (2.34) for the initial ¢g and the growth assumption (S3) imply the existence of some
constants r, and r* such that r_ <r, <r* <ry and

re < infesspo(x), r* > supessyo(z), (2.53)
€N EQ

F(r)+C, <0 Vre(r_,r.), F@)—C.>0 Yre(r,ry). (2.54)
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Then, let us multiply (1.3) by v = (¢ — r*)T — (p — r4) ™, where the standard positive (- )T and negative ()~
parts are used here. Then, we integrate over Q; =  x (0,t), for ¢ € (0,T], and with the help of (2.52) deduce

that
B
gl\v(t)ll2 + [ [V

— [ W@ ux)e-p [ ke o))
Qin{e<r.} Qin{p>r=}
F' Co)(rs — C,—F' —r"),
<[ o F@rea [ (e )

where we also applied (2.53) to have that v(0) = 0. Note that the right-hand side above is nonpositive due to
(2.54), so that v = 0 almost everywhere, which in turn implies that

re < <7r" ae in Q. (2.55)

Then, (2.39) is proven, and, at this point, the assumptions (S1)—(S4) enable us to directly deduce (2.40).

On account of the above regularity, the separation property, and the assumptions (S1)—(S4), we are now in
a position to show the refined continuous dependence estimate given by (2.41). In this direction, we employ the
notation introduced in the proof of Theorem 2.2 and consider the system of the differences (2.27)—(2.30). Notice
that we now have that F is differentiable, so that & + (Fy(1) — F3(p2)) = F'(¢1) — F'(¢2). Moreover, let us
remark that due to the separation property (2.39) and to the reinforced assumptions (S1)—(S3), it follows that
F' is Lipschitz continuous in the range of the occurring arguments.

FIRST ESTIMATE: We test (2.27) by p, (2.28) — to which we add the term ¢ on both sides — by O, as well
as (2.29) by o. Then, we sum up and integrate over Q; and by parts. With the help of the cancellation of two
terms we deduce that

o 1 1
S+ [ VP48 [ 10wk + Slelt + 5lo@I+ [ vof
Qt Qt Qt

1 ~
— 5 (@l + lleolly + ool + [ Rtu=) = [ (= bajuln

—/ ]h2U1M_/ (F’(wl)—F’(w)—«p)@tWr/ (10

t t t

+X/ odp + X V(p~VU+/ uso =: Iy + ... + Iy.
t Qt t

Using the Young and Hoélder inequalities, the Lipschitz continuity and boundedness of P along with the strong
regularity (2.38) of the solutions, we infer that

I < L/Q Il(ot] + X + Xleor| + paa]) (1 + [o])
P /Q (o] + Xleo| + L) (1l + o)

t
<c (||01H2Loo(Q) + 1+ le1ll7o o) + ||I~L1||2Loo(Q)) /0 le(s)]1? ds

e [ (ul? + lof? + o),
Qs
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Recalling (2.32), we have that

I < / (1) — (o) [}
<L / (o) (5) o Na(s) 1 s < 27 /Q (Tl + [uf?).

Moreover, it is easy to see that

5
Iy < C/ (|l + 1w |?), Is < 1 100 + ¢ lo)?,
t Qt t
5
Io+Ir <7 [ 1ol + ¢ | (ul*+1of),

1
Ry [ VoPe [ el mse [ (of +luaf)
Qt Qt Q

Hence, we can collect the inequalities and apply the Gronwall lemma to infer that the differences satisfy

[l o 0,030z 0,1v) + 1l 2 0,1y AL 0,73v) + o]l Loe 0,75 1) L2 0,130
< c(llpoll + lleollv + llooll + llutllz2(0,7;m) + lluzllL2(o,7;))- (2.56)

SECOND ESTIMATE: By exploiting the ellipticity of equation (2.28), the Lipschitz continuity of F’, along with
the above estimates, it is straightforward to derive that

lellz2(0,75w0) < e(lpoll + llpollv + llooll + lluillzz(0,7;m) + lluallz2o,7:m))- (2.57)

THIRD ESTIMATE: We argue in a similar way as in (2.42) and rewrite (2.27) as a parabolic variational equality
for p = py — pe with source term given by

fu = =0+ (P(p1) = P(p2)) (01 + X(1 = ¢1) — p1) + P(p2)(0 — X — i)
— (Ihl — ]}lg)ui + IhQ’U,l.

On account of (2.38) and the above estimates, we easily deduce that
[ fullz2.mmry < e(llmoll + llollv + llooll + l[wallL20,mmy + luzllzo.7:m))-

Hence, observing that p(0) = uo = pd — p3 is in H(Q), we can readily infer from the parabolic regularity theory
(see, e.g., [37]) that

||M||H1(o,T;H)mLoo(o,T;V)mL?(o,T;WO)
<c(luollv + llpollv + llooll + [luallz20, 5y + llullz2(0,7:m))- (2.58)

FOURTH ESTIMATE: Arguing in a similar manner for the equality (2.29), we infer that the right-hand side can
be rewritten as [, fov, with

Jo = =XAp = (P(p1) — P(p2))(01 + X(1 = 1) — 1) — Pp2)(0 — Xop — ) + ua.
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Note that || f5 |l z2(0,7;m) is again already bounded as above and ¢(0) = 0g = o — 0§ is in H*(£2), so that

”0”H1(O,T;H)ﬁLOO(O,T;V)ﬂL2(0,T;WO)
< c([luoll + lleollv + lloollv + llurllzzo,7;m) + [luzllzzo,7;m))- (2.59)

By collecting (2.56)—(2.59), we finally conclude the proof of the assertion. O

3. EXISTENCE OF A MINIMIZER

Now that the well-posedness results for system (1.2)—(1.6) have been addressed, we can deal with a corre-
sponding optimal control problem, where the source terms u; and us act as controls. In this direction, we require
that the cost functional J is defined by (1.1) and that the following assumptions are fulfilled:

(C1)  by,be are nonnegative constants, and by is positive.

(C2) g € L2(Q) and 3o € L3(9).

(C3) Upa={u=(ug,uz) eU:u, <u; <u; ae. in@, i=1,2},
where u;,u; € L™®(Q) satisfy w; <u; ae. in Q,i=1,2.

Notice that U,q is a nonempty, closed and convex subset of U = L°(Q)?. In the following, it will sometimes
be necessary to work with a bounded open superset of U,q. We therefore once and for all fix some R > 0 such
that Ur D Uaq, where Up is defined by (2.32). The first result for (CP) concerns the existence of a minimizer,
where the proof readily follows from the direct method of calculus of variations, along with weak and weak star
compactness arguments.

Theorem 3.1 (Existence of minimizers). Assume that (W1), (S1)—(S4), (2.33), (2.34), and (C1)—(C3) hold
true. Then the minimization problem (CP) admits a minimizer.

Proof. At first, let us notice that J is nonnegative, so that we can pick a minimizing sequence {u, }neny C Uag
with the corresponding sequence of states {(n, ¥n,0n)}nen to have

lim J((kn, on,0n),up) = inf J(8(v),v) >0,

n—00 vEUaq

where 8(v) denotes the state corresponding to the control v. Furthermore, by combining the estimates (2.38)—
(2.40), which are uniform with respect to n, with the structure of U,4, it is a standard matter (upon extracting
a subsequence that we do not relabel) to infer the existence of limits U € U,q and 71, P, & such that, as n — oo,

u, — u weakly star in L*(Q)?,

tn — 1 weakly star in H*(0,7; H) N L>(0,T; V)N L2(0,T; Wy) N L>=(Q),

©n — P weakly star in W (0,T; H) N HY(0,T;V) N L>(0,T; Wy) N L>=(Q),
on — @ weakly star in HY(0,T; H) N L*°(0,T; V) N L2(0,T; W) N L*(Q),

and, by the compactness of the embedding Wy C C°(€), also that (see, e.g., [44], Sect. 8, Cor. 4),
©n — @ strongly in CY(Q).

It is then a standard matter to pass to the limit as n — oo in the formulation (1.2)—(1.6) written for
(ttn, Pn,0on) and u, to conclude that (&, $,7) = S(W), and then to exploit the weak lower semicontinuity of J
to derive that U is a minimizer for the optimization problem (CP). O
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4. DIFFERENTIABILITY PROPERTIES OF THE SOLUTION OPERATOR

We now discuss the Fréchet differentiability of 8, considered as a mapping between suitable Banach spaces.
To show such a result, it is favorable to employ the implicit function theorem, because, if applicable, it yields
that the control-to-state operator automatically inherits the differentiability order from that of the involved
nonlinearities. The technique employed here is an adaptation of that used recently in [45] in a similar context.
For the reader’s convenience, we give the details of the argument. For this, some functional analytic preparations
are in order. We first define the linear spaces

XXX'XX, where

X :
X = HY0,T; H)nC°([0,T); V) N L*(0,T; Wy) N L™=(Q),
X == Wh(0,T; H) N HY(0,T; V)N L®(0,T; W) N C°(Q), (4.1)

which are Banach spaces when endowed with their natural norms. Next, we introduce the linear space

Y= {(mp,0) € X: adip+ Orp — Ap € L(Q), Borp — Ap — p € L=(Q),
oo — Ao+ XAp € L¥(Q)}, (4.2)

which becomes a Banach space when endowed with the norm

(s 25 0)Mly == [[(ps 0, 0)|xx + [[@Oepr + Orp — Apl[ Lo (@) + B0k — Ap — | L= ()
+ ||8t0 — Ao + XA(,OHLoc(Q) . (43)

Finally, we fix constants 7_, 7 such that
ro < T < <t < T <y, (4.4)
with the constants introduced in (S2) and (2.39). We then consider the set
P = {(n,p,0) €Y :7_ < (z,t) <7y forall (z,t) € Q}, (4.5)

which is obviously an open subset of the space Y.
We first prove an auxiliary result for the linear initial-boundary value problem

adip+ Opp — Ap = M [P(@)(0 — X — p) + P(P)(T + X(1 = D) — ) — (D) U1 ]

—Xh(@)h +A3f1 in Q, (4.6)
BOp — Ap —p = M [Xo = F"(@)¢] + Asf  in Q, (4.7)
00 — Ao+ XAp = A [-P(P)(0 — X — p) = P'(@)(T + X(1 - §) — )¢
+ Xoho + Asfs  in Q, (4.8)
Onpt = Opp = Opo =0 on X (4.9)
1(0) = Aapo,  ©(0) = Mo, (0) = Moo, in Q, (4.10)
which for Ay = Ay = 1 and A3 = Ay = 0 coincides with the linearization of the state equation at

((@y,12), (1, 2,7)). We will need this slightly more general version later for the application of the implicit
function theorem. To shorten the exposition, we introduce the Banach space of the initial data satisfying (2.33),
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which is given by
N :Z{(,uo,gO(),O'o) : o, 00 € Hl(Q) n LOO(Q), po € Wo}, (4.11)

endowed with its natural norm.

Lemma 4.1. Suppose that Ai,A2,A3,Aq € {0,1} are given and that the assumptions (W1), (S1)-
(S4), and (2.32)—(2.34) are fulfilled. Moreover, let ((u1,uz), (5, %,0)) € Ug x ® be arbitrary. Then the
linear initial-boundary value problem (4.6)~(4.10) has for every (hi,hs) € L=¥(Q)* and (fi,fo, f3) €
L*(Q) x (HY0,T; H) N L*>®(Q)) x L>=(Q) a unique solution (u,p,0) €Y. Moreover, the linear mapping

((hh h2)7 (fl» f27 fd)v (/1'07 o, 00)) = (:uv 2 U)

is continuous from L*(Q)* x (L>=(Q) x (H*(0,T; H) N L>=(Q)) x L=(Q)) x N into Y.
Proof. We use a standard Faedo—Galerkin approximation. To this end, let {\;}ren and {ex}ren denote the
eigenvalues and associated eigenfunctions of the eigenvalue problem

—Ay+y=Ay inQ, Jhyy=0 on I,

where the latter are normalized by ||ex|| = 1 for all kK € N. Then {ej}ren forms a complete orthonormal system
in H which is also dense in V. We put V,, :=span{es,...,en}, n € N, noting that |J .y V» is dense in V.
We look for functions of the form

neN

n

() = 3o (Der(@), pulent) = S o Wer(@), oule,t) = 3wl Bera),
k=1 k=1

k=1

that satisfy the system

(a0 (t),v) + (Depn(t),v) + (Via(t), Vo) = (z01(t),v), (
(BOpn(t),v) + (Veon(t), Vo) = (ta(t),v) = (2n2(t),v), (
(Oron(t),v) + (Von(t), Vv) = X(Vpn(t), Vv) = (zx3(t),v), (4.14
1n(0) = MPrpio,  ©n(0) = MPrpo, 0n(0) = AyPpo00, (

for all v € V,,, and almost every ¢ € (0,T), where P, denotes the H'(Q)-orthogonal projection onto V,,, and
where

Zn1 = A [P(@)(on = Xeon — pn) + P'(P)(T + X(1 = P) — m)pn — h'(2) W1 0]

= Ah(@) b + Asfi, (4.16)
Zna = M [Xon — F'(@)en] + A3 fa, (4.17)
zn3 = M1 [=P(@)(0n — Xepn — pin) — P'(@)(@ + X(1 = B) — 1) n]

+ Agho + Asfs. (4.18)

Insertion of v = e, for k € N, in (4.12)—(4.14), and substitution for the second summand in (4.12) by means
of (4.13), then lead to an initial value problem for an explicit linear system of ordinary differential equations
for the unknowns pgn), e p%"), vgn), IR wgn), ., wi™ . in which all of the coefficient functions belong to
L®°(0,T). Hence, by virtue of Carathéodory’s theorem, there exists a unique solution in W1°°(0, T; R3") that

specifies the unique solution (piy,, ©n,0,) € W1°(0,T; Wy)? to the system (4.12)—(4.15), for n € N.
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We now derive some a priori estimates for the Faedo—Galerkin approximations. In this procedure, C; > 0,
i € N, will denote constants that are independent of n € N and the data ((f1, f2, f3), (o, po,00)), while the
constant M > 0 is given by

M :=Xa [[(hy, h2)ll Lo @)z + A3 (15 f25 £3) || Lo (@) x (1 (0,1 )L (Q)) x L= (@)
+ A [[(10, P, 00) ||v- (4.19)

Moreover, (7, %,5) € ®, and thus it follows that 17,& € L>(Q) and %, h(p), b/ (%), P(®), P’ (@), F"' (%) € C°(Q).
Hence, there is some constant C; > 0 such that, for a.e. (z,¢) € @ and for all n € N,

(lzn1l + [zn2| + |2ns]) (2, 8) < C1 (M(lpnl + lonl + lon]) (@, 1) + Aa(|ha] + |ha|) (z, 1)
+ 3Ll + |2l + 1 f3]) (@, 1))
< C1 (Mpnl + lenl + lon))(@,t) + M). (4.20)

FIRST ESTIMATE: We insert v = i, (¢) in (4.12), v = O¢p,(t) in (4.13), v = 0, (t) in (4.14) and add the resulting

equations, whence a cancellation of two terms occurs. Then, we add to both sides of the resulting equation the
1d

same term 3 [l¢n ()12 =(¢n(t), Opon(t)). Integration over [0, 7], where 7 € (0,7, then yields the identity

1
3 (@l DIF + llon (3 +low(T)II?) +/ (IVunl* + [Voul?) + ,6’/ |Oepn?
QT

QT

2

24
2

T

(@lIPrpio]|* + IPaspoll5 + Puool|?) +/OT(un(t),2n1(t))dt +/0 (2ns(t), on(t)) dt

T T 5
+ [ ualt) + a0 () dt + X [ (T (0) V(1) dt = > (4.21)

with obvious notation. We estimate the terms on the right-hand side individually. First observe that, for all
n €N,

I < Gy )‘i ”(PnNOuPn‘povpngo)”%/xVxV < Gy )‘421"(M0790070'0)”%/><V><V < Cp M2, (4.22)

Moreover, by virtue of (4.20) and Young’s inequality, we deduce that

L1y < CsM? + 04/ (tnl? + lonl? + oul?) - (4.23)
Likewise, it results that
C C
Iy < é/ Oronl® + == M2 + =2 [ (|lual® + |onl* + |on]?) - (4.24)
2 Jq, B B Jq.

Finally, we have that

1
Is < — |V<pn|2+f/ Vo, |?. (4.25)
2 Ja. 2

.
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Combining the estimates (4.21)—(4.25), we have shown that

1 1 B
3 @O+ leall +loa@I) + [ (Tl + 51900 + 5 [ 10008

.

< 0222 + Cy [ (IO +en(®IR + (O] at.
Therefore, invoking Gronwall’s lemma, we conclude that

lnllLoe 013220, 17v) + lPnll 0,7 5) AL (0,75v)
+ Ho'n||L°°(O,T;H)QL2(O,T;V) < CyM VneN. (426)

SECOND ESTIMATE: Next, we insert v = O, (t) in (4.12) and integrate over [0, 7], where 7 € (0,77, to obtain
the identity

1 T
3 19 + o [ o)

)\2 T T
= TVl + [ (0. 00t = [ (0 (1)

Applying Young’s inequality appropriately and making use of (4.20) and (4.26), we conclude the estimate
ol 0,735y L 0,757y < Cro M V€ N, (4.27)

THIRD ESTIMATE: At this point, we insert v = —Apu,(t) in (4.12) and v = —Ap,(t) in (4.13), add, and
integrate over [0, 7], where 7 € (0,T]. We then obtain that

o /8 T T
I + SV + [ IamolRat + [ 1ae, P a

o)

a)\i 9
= — Pn
5 VP, poll* + 2

IVPapol? — | (e () — Bupn (1), Apin (1)) dt
0
- / (i) + 20 (t), A (1)) dt.

whence, using (4.20), (4.26), (4.27) and Young’s inequality,
T
/ (A7 + |Aga()]?) dt < C1LM? ¥n € N. (4.28)
0

Classical elliptic estimates, using (4.9) and (4.26)—(4.28), then yield that

ltnll 20,702 )) + lenllezo a2y < CiaM  Vn eN. (4.29)

With the estimate (4.29) at hand, we may (by first taking v = 0,0, (f) in (4.14) and then v = —Aog,(t)) infer
by similar reasoning that also

lonllmo,r:m)nL= 0,7V L2 0, 1:H2(02)) < C1aM Vn €N (4.30)
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At this point, we can conclude from standard weak and weak star compactness arguments the existence of a
triple (u, @, o) such that, possibly only on a subsequence which is again indexed by n,

B = [y On =@, Op — 0,
all weakly star in H'(0,T; H) N L>(0,T;V) N L*(0,T; Wp).

Standard arguments, which need no repetition here, then show that (u,, o) is a strong solution to the
system (4.6)—(4.10). In particular, it turns out that Onpu = O = Ono = 0 almost everywhere on 3. Moreover,
recalling (4.26)—(4.30), and invoking the weak sequential lower semicontinuity of norms, we conclude that there
is some C14 > 0 such that

(11, 0,0) |2 < CraM, (4.31)
where Z is defined in (2.2).
We now derive further estimates for (u, ¢, ). In the next one we argue formally, noting that it can be carried

out rigorously on the level of the Faedo-Galerkin approximations. Indeed, we differentiate (4.7) formally with
respect to time to obtain the identity

ﬁ@t(ﬁtga) — A@tga = ﬁtu + )\1 (Xat(j — F"’(¢)8t¢<p — F”(@)at@) + Agatfg =i0p- (432)

Testing (4.32) formally by d;¢ and integrating formally by parts, we find that
p 2 2 _ B 2
SMoee@I” + | Voo™ = S0 (O + [ 90 Orp. (4.33)
Q Q¢
Now observe that, owing to (4.31), (2.38), (2.40), and (4.19) we have that

| 90000 < lallzoiran 100l < Cisdr®. (4.34)

Q1

As for (4.34), we point out that the term —X\ F"($)0;% ¢, which is part of g,, is bounded in L?(0,T’; H) since
V C L*(Q) with continuous embedding, and consequently it follows that ||9,%| 12(0,7;14()) is under control and
¢l £oe 0,724 (0)) < C16 M, whence

=AM F"" (@)% @l 120,151
< MIF" (@) Lo (@) 10:Pl 20,7240 1@l L= (0,7524 (2)) < C17 M.

Next, writing (4.7) for ¢ = 0 and recalling (4.10), we have that
drp(0) = B~ (Aa(Ago + po + A1Xoo — AL F” (o)po) + As f2(0)),
and it follows from (2.33), (2.34), (4.19) that
[0:p(0)]| < CrsM. (4.35)
Combining (4.33)—(4.35), and invoking Young’s inequality and Gronwall’s lemma, we thus can conclude that

||€0||WLM(&T;H)mHl(o,T;V) < CioM. (4.36)
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Now, in view of (4.36) and (4.31), a comparison of terms in (4.7) and standard elliptic estimates yield that
el Loo (0,712 (0)) < Co0M, (4.37)

and the compactness of the embedding (W°°(0,T; H) N L>=(0,T; H*(Q))) C C°(Q) (see, e.g., [44], Sect. 8,
Cor. 4) then shows that also

lellcog) < Caa M. (4.38)

At this point, we observe that, by bringing the term 0;p to the right-hand side, equation (4.6) can be rewritten
as a linear parabolic equation for p whose right-hand side is already known to be bounded in L*°(0,T; H) by an
expression of the form Coy M. Since y satisfies zero Neumann boundary conditions and po € H*(2) N L (),
we can apply the classical result of Theorem 7.1 in [36] to conclude that p € L*°(Q) and

[pllpe (@) < CasM. (4.39)

Similar reasoning on equation (4.8), invoking the L*°(0,T'; H)-bound for Ay implied by (4.37), shows that also
o € L*(Q) and

lollz=(@) < CaaM. (4.40)

About the linear dependence of the right-hand sides of (4.39) and (4.40) on the constant M that is specified
in (4.19), we point out that this dependence is a consequence of the linearity of the problem (4.6)—(4.10). Indeed,
e.g., if we choose a full set of data for which M = 1 and prove the above estimates, then we obtain all of the
bounds (4.31) and (4.36)—(4.40) with some particular constants — fully determined — and without specification
of M. Next, we can take a generic set of data for which the constant M (# 0) in (4.19) is different from 1. Thus,
pick the corresponding solution (u, ¢, o) of (4.6)—(4.10) and divide all components of the triplet (u, ¢, ) by M;
then, the scaled triplet (u/M,p/M,c/M) solves another problem in which the data are all divided by M and
satisfy (4.19) with constant 1. Hence, the previously found universal estimates work also for (u/M, ¢ /M, o /M)
with the same constants as before. As a consequence, it is straightforward to finally obtain (4.39) and (4.40)
(and previous estimates as well), simply by multiplying by M.
At this point, we can combine all the estimates (4.31), (4.36)—(4.40) and deduce that

(11, 0,0) | < Ca5M, (4.41)

X being defined in (4.1). Moreover, it is readily seen from the equations (4.6)—(4.8) that (u,¢,0) € Y (¢f. (4.2))
and that

(s p,0)ly < Ca6M. (4.42)

The existence of a solution with the asserted properties is thus shown. It remains to prove the uniqueness. To
this end, let (p;, @i, 04) € Y, ¢ = 1,2, be two solutions to the system. Then (u, @, o) := (1, 91,01) — (2, P2, 02)
solves the system (4.6)—(4.10) with zero initial data, where the terms Agh;, ¢ = 1,2, and A3 f;, e = 1,2,3, on
the right-hand sides do not occur. By the definition of Y (recall (4.1) and (4.2)), and since (u, p,0) € Y, all of
the generalized partial derivatives occurring in (4.6)—(4.8) belong to L?(Q). Therefore, we may repeat — now
for the continuous problem — the a priori estimates performed for the Faedo—Galerkin approximations that
led us to the estimate (4.26). We then find analogous estimates for (i, p, o), where this time the constant M
from (4.19) equals zero. Thus, (u,¢,0) = (0,0,0). With this, the uniqueness is shown, which finishes the proof
of the assertion. O
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Remark 4.2. A careful inspection of the estimates (4.21)—(4.30) shows that the term M appearing on the
right-hand side of the corresponding estimates can be replaced by

M =X [[(ha, o)l z20,7:m)2 + Asl|(f1s fos f3) 20,3 + Aa [l (10, 0, 00) (Ve
since, in particular, only the L?(Q) norms of the increments h;, i = 1,2, and of the source terms f;, i = 1,2, 3,
enter the computations. This, along with (4.31), entails that the linearized variables (u, ¢, o) (which correspond
to the choices \y = Ay = 1, A3 = Ay = 0) satisfy
1,01z < el peo.mesme, (4.43)

with some positive constant ¢ (cf. also Rem. 4.5), being h = (hq, h2).

Having proved Lemma 4.1, we are in a position to prepare for the application of the implicit function theorem.
For this purpose, let us consider two auxiliary linear initial-boundary value problems. The first,

adit + Opp — A = fy in Q, (4.44)
BOrp —Ap —p = fo in Q, (4.45)
O — Ac +XAp = f3 in Q, (4.46)
Onpt = Opp = Opo =0 on X, (4.47)
1(0) = ¢(0) = ¢(0) =0 in Q, (4.48)

is obtained from (4.6)—(4.10) for Ay = Ay = Ay = 0, A3 = 1. Thanks to Lemma 4.1, this system has for each
(f1, f2, f3) € L>(Q) x (H'(0,T; H) N L*=(Q)) x L>(Q) a unique solution (u,¢,0) € Y, and the associated
linear mapping

91 : (LOO(Q) X (Hl(O,T; H) OLOO(Q)) X LOO(Q)) - y; (flva»fB) = (/1'790;0—)7 (449)

is continuous. The second system reads

O+ Oprp — A = 0 in Q, (4.50)
B —Ap—p =10 in Q, (4.51)
0y0 — Ao+ XAp =0 in Q, (4.52)
Onpt = Opp = Ono = 0 on X, (4.53)
1(0) = po,  ¢(0) = o, c(0) = oo in €, (4.54)

and results from (4.6)—(4.10) for Ay = A2 = A3 = 0, Ay = 1. For each (1o, po0,00) € N, it also enjoys a unique
solution (u,p,0) € Y, and the associated mapping

G2 : N =Y, (NO?QOOaUO) — (/147(,0,0'), (455)

is linear and continuous as well. In addition, we define on the open set A := (Ur x ®) C (U x Y) the nonlinear
mapping

S5 : A — (L®(Q) x (H'(0,T; H) N L®(Q)) x L™(Q));
((u1,u2), (1, ,0)) = (f1, f2, f3), where
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(f1, f2, f3) = (P(p) (o + X(1 = ¢) — p) = h(p)ur, X o = F' (),
— P(p)(o +X(1 =) —p) +u2) . (4.56)

The solution (u, ¢, o) to the nonlinear state equation (1.2)—(1.6) is the sum of the solution to the system (4.44)—
(4.48), where (f1, f2, f3) is chosen as above (with (u,p, o) considered as known), and of the solution to the
system (4.50)—(4.54). Therefore, the state vector (u,¢,o) associated with the control vector (ui,us) is the
unique solution to the nonlinear equation

(1, 0,0) = G1(S3((ur,u2), (1, 0,0)) + S2(ko, o, 00). (4.57)

Let us now define the nonlinear mapping F: A — Y,

3:((“1’ UQ)’ (:uv ') 0)) = 91(93((u17 u2)7 (M’ ©s U)) + 92(#07 ©05 00) - (:u’ 2 U)' (458)

With F, the state equation can be shortly written as

9:((’1141,7.1/2),(#, 9070—)) - (07070) (459)

This equation just means that (u, ¢, o) is a solution to the state system (1.2)—(1.6) such that ((u1,u2), (1, ¢,0)) €
A. From Theorem 2.3 we know that such a solution exists for every (u;,us) € Ug. A fortiori, any such solution
automatically enjoys the separation property (2.39) and is uniquely determined.

We are going to apply the implicit function theorem to the equation (4.59). To this end, we need the
differentiability of the involved mappings.

Observe that, owing to the differentiability properties of the involved Nemytskii operators (see, e.g., [47],
Thm. 4.22, p. 229), the mapping G3 is twice continuously Fréchet differentiable into the space L (Q) x L™ (Q) x
L>(Q), and for the first partial derivatives at any point ((u1,us2), (@, 9,7)) € A, and for all (u;,us) € U and
(1, 0,0) € Y, we have the identities

D, un) 93 (@1, 02), (B,9,7)) (u1,u2) = (=h(P)u,0,uz), (4.60)
D(0.0)93 (W1, 02), (11,8, 7)) (11, 0, 0)
= (P®)(0 = Xp —p) + P'(@)([@ + X(1 =9) = p)p — W' (@) w1 ¢, Xo — F" (@),

—P(@)(0 —Xp — ) = P'(@) @ +X(1 —p) — ")) - (4.61)

It remains to show that the second component of G3 is also twice continuously Fréchet differentiable into the
space H(0,T; H). But this follows exactly as in ([45], Sect. 2, (2.70) ff.). We thus can refer the reader to [45]
for this argument, just pointing out that the regularity requirement F € C°(r_,r,) in (S2) is crucial for this
argument.

At this point, we may apply the chain rule, which yields that F is twice continuously Fréchet differentiable
from Ug x ® into Y, with the first-order partial derivatives

D(u1 ug)?(<u17ﬂ2)> <ﬁ7 ¢76)> = 91 © D(ul,u2)93((ﬂl7ﬂ2)7 (ﬁv@a E))a (462)
D(;L,cp,a)‘{-fr((ﬂhﬂQ)? (ﬁ7¢75)) =Gio0 D(H7W70)93<(ﬂl7ﬂ2)7 (ﬁ’¢75)) - th (463)

where Iy denotes the identity mapping on Y.
At this point, we introduce for convenience abbreviating denotations, namely,

u:= (U1,U2), u:= (ﬂlaﬂ2)a y = (,LL,(,O,CT), y = (ﬁv¢76)7
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Yo = (/1‘0750070-0)7 0:= (07070)

With these denotations, we want to prove the differentiability of the control-to-state mapping u — y defined
implicitly by the equation F(u,y) = 0, using the implicit function theorem. Now let @ € U be given and
¥y = 8(u). We need to show that the linear and continuous operator D, JF(U,y) is a topological isomorphism
from Y into itself.

To this end, let v € Y be arbitrary. Then the identity D,F(U,y)(y) = v just means that
91 (DyS3(1,¥)(y)) —y = v, which is equivalent to saying that

w =y +v =01 (DyG3(0,¥)(W)) = G1 (DyGs(0,¥)(v)) -

The latter identity means that w is a solution to (4.6)—(4.10) for Ay = A3 = 1, A2 = Ay = 0, with the specification
(f1, f2, f3) = —G1 (Dy93(0,¥)(v)) € Y. By Lemma 4.1, such a solution w € Y exists and is uniquely determined.
We thus can infer that DyF(@,y) is surjective. At the same time, taking v = 0, we see that the equation
DyF(@,y)(y) = 0 means that y is the unique solution to (4.6)—(4.10) for A\ = 1, A2 = A3 = Ay = 0. Obviously,
y = 0, which implies that Dy F(W,¥) is also injective and thus, by the open mapping principle, a topological
isomorphism from Y into itself.

At this point, we may employ the implicit function theorem (cf., e.g., [3], Thms. 4.7.1 and 5.4.5 or [16],
10.2.1) to conclude that the mapping 8 is twice continuously Fréchet differentiable from Ug into Y and that the
first Fréchet derivative D8(u) of 8§ at uw € Ug is given by the formula

D$(u) = —DyF(@,y) ' o DLI(W,y). (4.64)
Now let h = (hy, he) € U be arbitrary and y = (i, ¢, o) = DS(@)(h). Then,
Dy?(ﬁv y)(y) = —Du?(ﬁ, y)(h)a

which is obviously equivalent to saying that

y= 91 (Dy93(ﬁ7y)(y)) + 91(7h(¢)h1707 h2)

This, in turn, means that y is the unique solution to the problem (4.6)—(4.10) for Ay = Ao = 1, A3 = Ay = 0.
In summary, we have shown the following result.

Theorem 4.3 (Fréchet differentiability of 8). Suppose that the conditions (W1), (S1)—(S4), and (2.32) are
fulfilled. Moreover, let the initial data (uo, po,00) verify (2.33) and (2.34), and let @ = (u1,u2) € Ug be arbitrary
and (@, $,7) = 8(UW). Then the control-to-state operator § is twice continuously Fréchet differentiable at W as
a mapping from U into Y. Moreover, for every h = (hy,he) € U, the Fréchet derivative D8(u) € L(U,Y)
of 8 at @ is given by the identity DS(a)(h) = (u,p,0), where (u, v, o) is the unique solution to the linear
system (46) *(410) with, )\1 = )\2 = 1, Ag = )\4 =0.

Motivated by the forthcoming analysis, we now present a stability estimate for the solutions to the linearized
system. In abuse of notation, we will denote the linearized variable associated with ¢ by &, which up to now
was devoted to indicate a selection of the subdifferential 9F; evaluated at some point. Since the optimal control
problem demands to work with strong solutions, we no longer have any selection to work with, so that from
now on the variable ¢ will play a different role (¢f. Thm. 2.3). We have the following result, where we recall the
definition (2.3) of the space V.

Theorem 4.4. Suppose that the conditions (W1), (S1)—~(S4), (C3) and (2.32) are fulfilled. Moreover, let the
initial data (po, o, 00) satisfy (2.33)—~(2.34), and let @ = (uy,us) € Ug be arbitrary and (@;, p;,0;) = S(W'), i =
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1,2. Furthermore, let (n;,&;,0;) denote the associated solutions to the linearized system (i.e., the system (4.6)—

(4.10) with Ay = Ay = 1, 3 = Ay = 0). Then the mapping DS is Lipschitz continuous on Ug in the sense that
there exists a positive constant Kq such that for all h € U we have

I(D8(') — DS(@?)) (h)|lv < Ka|[@ — 0| 20,112 1]l 2(0,7: 12 (4.65)
Proof. Due to Theorem 4.3, the proof of (4.65) reduces to showing that there exists a constant ¢ > 0 such that
(1, €1,61) = (112, &, 02)lv < c[[@ = 0| 20,12 10| 20,712, (4.66)

which is the estimate we are going to check. Moreover, let us notice that (4.43) in Remark 4.2 guarantees the
existence of a positive constant ¢ such that

(ni;&ir 0:)lz < clhlp20,13m)2, 1= 1,2. (4.67)

Next, we set

B=[ — g, ©=0; =Py, 0=01—02
n=m-—1m2, =& —&, 0=~0—0y

and observe that the triple (7, £, 0) solves the system obtained from taking the difference between the linearized
system written for (n1,£1,61) and (12, €2, 62), which reads

aom+héE—An=fi+ fo in @, (4.68)
BOE — AL+ (F" (@) — F"(@2))6 + F"(B,)§ = n + X0 in @, (4.69)
00 — AO+XAE = —f in @, (4.70)
Onl = 0n€ =0n0 =0 on X, (4.71)
n(0) =£(0) =60(0) =0 in Q, (4.72)
where now f1 and fo are specified by
fi=(P(®1) — P(®3))(0h — X&1 — m1) + P($2)(0 — X§ — 1)
+ (P1(@1) = P'(@2))61 (01 + X(1 = @) — 1) + P'(®2)€(@1 + X(1 = 21) — i)
+ P($)62(0 — Xp — 1),
fo = —(W(@) — W(@:))amh — () €51 — 1 (@) & (3} — )~ (B(31) — h(@)hu.
Moreover, let us recall that due to (2.41), we have the stability estimate
731 = Follz + 171 = Ballz + 01 = 2llz < clf@’ — 8|l L2(,r;m)2- (4.73)

We now aim at deriving some a priori estimates for the differences (7,&,0) which will entail (4.66). Prior
to this, let us premise a general fact that will be employed several times later on. To this end, let f : R — R
be a regular, bounded and Lipschitz continuous function with Lipschitz continuous and bounded derivative
f' (in what follows the role of f will be played by P, h, F, and possibly their derivatives). Let ¢; and ¢
be the second components of different strong solutions (p1,¢1,01) and (uz, @2, 02) associated with controls
u!, u? € Ug according to Theorem 2.3. Then it follows from the continuity of the embeddings V C LP(2) and
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Wo C WHP(Q), p € [1,6], and the estimate (2.38) that, a.e. in (0,7,

1£(e1) = flw2)llp < cllf(er) = fp2)llv
= c[[f(e1) = fle2)l +cllf (1) Vi1 = f(p2) Ver||
< cller — @2l +ell(f'(p1) = f(92))Veor + f'(92) Vg1 — @2)]
< c(ller — w2l + ller = @2lla [Verlla + 1V (e1 — @2)]I)
<e(1+ K1) ller — pallv (4.74)

In addition, for the sake of a shorter exposition, in the upcoming estimates we will avoid to explicitly write the
integration variable s in the time integrals.

FIRST ESTIMATE: We test (4.68) by 7, (4.69), to which we add £ on both sides, by 9;£, and (4.70) by 6, add the
resulting equalities and integrate over time, obtaining

1 1
SIn0E+ [ 19nf 5 [ 1 + Sl + o+ | vor
= [ s=ors [ g [ e - FreEaae - | Fre

Qt Q¢

+/ (77+X9+£)8t£+x vag =L +..+1.
t Qt

Using the Young and Holder inequalities, the Lipschitz continuity of P, P’ and h', the continuous embedding
V C L*(Q), the uniform bounds (2.38)—(2.40) for (f;, @;,0:), i = 1,2, as well as (4.67), (4.73), and (4.74), we
infer that

t
B<e | (P +1eP+16P) +c / 1P@Gy) = P@)IE (6311 + 1]l + mu2) ds
t
+c(71lie ) + @1l 7~ @) + 1Fi e + 1) /0 |1P'(®y) — P'(@,) |13 €111 ds
+c([T1l7e ) + 18117~ @) + 1F1 =) + 1)/@ [4&
t
+ c/o (Ior — 72llf + 121 — @all7 + 17 — 1113) €213 ds
<e / (Il + 1€ + 16P)
Q¢
t
+ C(||91||2L<><>(0,T;V) + ||£1||%°°(0,T;V) + ||771||2L°°(0,T;V))/0 %1 — Ballf ds
2 2 2 2 k 2
+ cll&illzoe0,75v) ([T11 70 (@) + 11T (@) + 1Bl L (@) + 1)/0 71 — Pllv ds
+ C(Wl”ioc(@) + H¢1||%w(Q) + ||ﬁ1||2Loo(Q) + 1)/@ lI?
t
t
+ Cllézllim(o,nm/o (lor — T2} + 81 — Boll¥ + [y — Ball}) ds

<e /Q (Il + €12+ 101%) + [ — W20 201092 10112 0,710
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Next, by similar computations, we deduce that, for any § > 0 (to be chosen later),

L<c / 0 + e |72 ) / I (@) — W @)1 1112 ds + ¢ [ 2 / €
12 / I3 ds + g / ot — W) €l ds + o5 / Ih(@)) — B(@y) 2 17a]? ds
t
<(e+2) [ P+ el ra @i [ 17 -7l ds
T2 o / € + 26 / V2
Q+ Q+
t t
+es €l o 2009 / o - @2 ds + e / 181 — Bll? 112 ds

<25 [Vnl* + 06/ > + C/ €7 + cs [t — ﬁzH%?(O,T;H)2 Hh||2L2(0,T;H)2 .
Qt Q1 Qt

The terms involving the potentials can be easily handled by invoking the separation principle (2.39), which
entails the Lipschitz continuity of F' and of its derivatives. Using this, (4.67), (4.74), and the Young inequality,
we obtain that

t
L4L<o /Q 0P + 5 1612017 / 1B - Ball? ds + cs /Q P

<4 0 10817 + es [T =T L0 my2 [RIZ2 0,0y + Cé/@ €17
t t

Finally, we have that

Is + Is Sé/ (|3t£\2+\V9l2)+ca/ (In* + 101 + [€* + [VE).
Q

t

At this point, we collect the above estimates and adjust ¢ € (0,1) small enough. Gronwall’s lemma then yields
that

111 oo (0,7 5yn 20,75y + €l B2 (0,7 ) Loe (0, 15v) + 101 e (0,73 L2 0,73

<c|u' = a®| 20,7002 1Bl 20,7582 (4.75)

SECOND ESTIMATE: Estimate (4.75) entails that the term 9, is bounded in L2(0,T; H) by the expression on
the right-hand side of the above estimate. Hence, equation (4.69) can be expressed as an elliptic equation for &
whose right-hand side is bounded in L2(0,7T; H) by the same expression. Therefore, we easily get from elliptic
regularity theory that

1€l 20wy < @' =2 2o, m)2 1Bl L2 (0,7500)2- (4.76)

This concludes the proof of Theorem 4.4. O

Remark 4.5. Let us point out that Theorem 4.3 establishes the Fréchet differentiability of 8§ as a mapping
from L>°(Q)? into Y, a space of very regular functions. However, the Fréchet differentiability can also be directly
obtained as a mapping from L?(0,T; H)? into a space of less regular functions. Indeed, a closer look at the proof
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of Theorem 2.5 in [39] reveals that the line of argumentation employed there can straightforwardly be adapted
to our present situation, yielding that in the notation used there it holds that

IE*—p—n" " —p - -7 - ")z <c Hh||2L2(0,T;H)2’ (4.77)

which in turn entails that the control-to-state operator § is Fréchet differentiable as a mapping from L?(0,T; H)?
into Z O Y. We have chosen to not follow this approach because, although it will suffice to handle the first-
order necessary conditions pointed out below in Section 5, it would not allow us to deal with the second-order
sufficient conditions established in Section 6.

Motivated by the forthcoming analysis on the second-order sufficient optimality conditions, let us now also
explicitly identify the second-order Fréchet derivative of the control-to-state operator 8, which exists according
to Theorem 4.3. To this end, let € Ug be given. For arbitrary increments h, k € U, we set

(ﬁ,¢75)128(ﬁ), (nh7§h79h)::DS(ﬁ)<h)7 (nkaékaek)::DS(ﬁ)(k>7

where it is known that (n®, &R 0%), (nk, €% 0%) € Y. Now, if one adapts the argumentation of the proof of
Theorem 5.16, pp. 288-289 in [47] to the present situation, starting from the identities (4.57)-(4.63), then one
concludes that the second-order Fréchet derivative D?8(1)(k)(h) can be evaluated using the system (4.78)—(4.82)
introduced below. Since we intend to give an independent proof, we do not give the details of the argument,
here. We begin our analysis with the following result.

Theorem 4.6. Assume that (W1), (S1)—(S4), (2.32)~(2.34) are fulfilled. Then the following initial-boundary
value problem, which will be referred to as the “bilinearized system”, admits a unique solution (v,1,p) € Y:

O + 0 — Av = g1 + go m Q, (4.78)
o) — A —v = Xp — F" (@) — FO (p)ehe" in Q, (4.79)
Op —Ap+ XAY = —gq in Q, (4.80)
OnV = Op = Onp = 0 on X, (4.81)
v(0) = ¥(0) = p(0) =0 in €, (4.82)
where g1 and g2 are defined as
g1=P@)(p—X¢ —v) + P'(3) < (6" — X" — ")
+P'(@) € " (T +X(1-9) — @)+ P(®) ¥ (@ +X(1-9) —h)
+P'() €7 (01 — X< — "), (4.83)
g2 = —h"(@) £ " u —1' (@) k1 — W' (@) a1 — h'(@) £ ha. (4.84)

Moreover, there is some constant D > 0, which only depends on the data of the system and R, such that
1w 9:p)llv < Db rz0.r:m)2 [Kll20. 102 Vhik € U (4.85)

Proof. Writing (u, ¢, o) in place of (v,,p), we see that the system (4.78)—(4.84) is of the form (4.6)—(4.10)
with the specifications A\ = A3 = 1, Ao = A\y =0, and
hi=P @O =X =n") + P'@) " @+ X(1-7) - 7)
+ P(@) " (0% — Xg =) = 0" (@) & m —W (@) — (@) £ I,
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fo = —FO) (p) el ex,

fs = fP’(@Ek( = X" —n") = P"(@) €M @+ X(1-P) — 7)
P'() " (6% — Xg< — ).

Since (n®, &R 0P), (nk, ¢k, 0%) € Y, it is easily seen that (fi,fo,f3) € L¥(Q) x (HY0,T;H)
N L>(Q)) x L>=(Q), and so the existence result follows from Lemma 4.1.

It remains to show (4.85). To this end, we first add the term ¢ on both sides of (4.79) and then test (4.78)
by v, (4.79) by 0, and (4.80) by p. Adding the resulting equalities, and integrating over time and by parts,
we infer that

S+ [ 1908 [ 10w+ Sl + e + [ 198
— [ a-n+ [ (o=@ - FOEERE+ v

+X V’lﬂ . Vp + / gaV —=: Il + [2 + I3 + I4, (486)
Qt t

with obvious meaning. Now, using the global estimates (2.38) and (2.40), the continuity of the embedding
V C L4(Q), as well as Holder’s inequality and the estimate (4.43) for the linearized variables, we can easily
check that

t
B e [ Qo W2+ 1) + [ IEKIE (1" + 170 + 16°12) ds
tt k h ¢ h k k k
wo I IEIE s +e [ IEME (kI + <15 + 10418) ds

< /Q (2 + 102 + 10%) + el roarys 11220 2000y - (4.87)
t

Arguing similarly, where we also invoke Young’s inequality, we obtain that

B
I < 3 o 0] + ¢ 0 (121 +1p1*) + eIz 0 1oy 1KlI72 (0 7:01)2 (4.88)

as well as
1 , X2 )
L5 | INplP+ 5 [ VY~ (4.89)
Q1 Q1
Finally, using also that u; is bounded, we see that
t
L<e /Q (W + 1) + o [ 1€IR e as
t

t
+ C/o e lla e Ll ll + NIE¥ lalla]]) ds

< (4 20) [ Qw41 + 20 [ 190 4 s Il ony Il r (4.90)
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Combining (4.86)—(4.90), and choosing ¢ > 0 appropriately small, we thus obtain from Gronwall’s lemma that

[VllLe< 0, 7;m)nL20,75v) + [¥lE 075" 0,75v) + (1PNl L2 0,722 (0,73v)
< cllbllzzo,7;m)2 Kl L2075z (4.91)

Having shown this, we may bring 59;¢ to the right-hand side of (4.79). Elliptic regularity theory and the
estimates shown above then yield that also

9120, 75w0) < cllbllz20,7;m)2 Kl L2 0,7 00)2,
which concludes the proof of the assertion. O

We now provide the announced independent proof for the form of the second-order derivative.

Theorem 4.7. Assume that (W1), (S1)—(S4), (2.32)-(2.34) are fulfilled, and let T € Ug be given. Then
the second Fréchet derivative D*8(u) € L(U, L(U,Y)) is given, for every h = (hy, ha),k = (k1,k2) € U, by the
identity D?8(0)(k)(h) = (v, %, p), where (v,1, p) is the unique solution to the bilinearized system (4.78)—(4.84)
introduced in Theorem /.6.

Proof. By virtue of Theorem 4.3, D2§(1) exists as an element of £(U, £(U,Y)). Now, the embedding of Y in V is
continuous. Therefore, 8 is also twice continuously Fréchet differentiable between U and V, and the expressions
for the derivatives coincide. It thus suffices to work in the space V. To this end, we recall that Ug is open in
U. Hence, there is some K > 0 such that 4+ k € Ugr whenever |k|y < K. In the following, we always tacitly
assume that the occurring increments k satisfy this condition. R

To prove the claim, we proceed in a direct way, by showing that there exist some € > 0 and C > 0 such that

ID8 (@ + k) — DS(1) — D*8(W) (k)| c (v

= su H (DSt + k) — DS(a) — 1323(ﬁ)(1<))(11)Hv < O IKIE4S oo (4.92)

At this point, we introduce some additional notation: for arbitrary h, k € U, we define the linearized variables
(", €, 6%) = DS(@ (k). (7".€",0") := DS(T+1k)(h).
Notice that (4.43) implies that
1™, €% )z < ellbll o NG E 8|z < e hllzso e (4.93)
where, here and in the remainder of this proof, ¢ > 0 denote constants that may depend on the data, but not

on the choice of k € U with u + k € Ug.
Next, we fix some h € U with ||h|ly = 1 and introduce the auxiliary variables

—h —h
C:ﬁh—nh—% ¢:€ _gh_wa w=20 _Hh_[%

where (v, 1, p) stands for the unique solution to the bilinearized system as obtained from Theorem 4.6. With
this notation, we realize that (4.92) reduces to

1 &)l < ClIKIZE, 7,1y (4.94)
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which is the estimate we are going to show for some € > 0. To this end, we first observe that these new variables
solve the initial-boundary value problem

P(7*) = P(p) — P'(@)"](0" — x&™ — ™)

(@) — P'(p) — P"(@)"] (7 + X(1 — ) — m)&™

+ P'(@)(w—X¢— )" + P(9) (7 + X(1 — @) — )¢

+ (P'(@%) - P'(@)((c* —7) — (@“—@)—(ﬁk—ﬁ))ﬁh
+ (PP~ Pl()(@ +X(1 - p) —m)(E" —f)

+P'(@)((6* —7) - X(@* —) — (5" —p) (€ —f‘“)
+(P'(g*) - P'(p))((@* —7) — X(s@“*so)
(® [

aatC + 8t¢ — AC = Al + A2 in Q, (495)
BOp — Adp— (= Xw— F"(p)p + A3 in Q, (4.96)
Ow — Aw + XA¢ = -\ in Q, (4.97)
OnC = Opn¢ = Opw = 0 on X, (4.98)
¢(0) = ¢(0) = w(0) = 0 in Q, (4.99)
where
= P(@)(w — X6 — ) + (P(@*) - P@))((0" — 6™ — x(€" — &) — @ — n™))

+1

+ [P

Az = —h[h(F*) ~ h(7) - ' (@)E"] — ' (7) -
~ (@) - (@) E" - M- (0'(F) - ’<¢>>ehk1
fh'r)(zh—sh)kl—(h/(*k)f @)E" — Mk,

As = —[F"(@) — F"(p) — FO(@)ejen — (F"(@) — F"())(E" — &v),

and (7, 7,3) = S(T0), (7%, 7%,5%) = S(q + k).
Before estimating in detail, let us recall that, owing to the continuous dependence results obtained in
Theorem 2.3 and in Theorem 4.4, and recalling that ||h|ly = 1, we have that

I - . —h —h
(7, 2", 7%) — (m,%.0) |z + M. € .07 ) — (", £, 6™)|lv
< c(1+ |Ihl[z20,7:m)2) 1Kl 20,1582 < cllklp2 0,582
In particular, we point out that
12 = Pllzeo.r3v) + 1€ = EMzeo,mvy < cllkllz20,1m)2- (4.100)

We will use this estimate in the following at several places without further reference.
Moreover, let us recall that (77, ,5) and (P, &R, 61), as solutions to (1.2)—(1.6) and (4.6)—(4.10) with A\; =
A2 = 1,A3 = A\y = 0, enjoy the bounds provided by (2.38)—(2.40) and

(™, €% 6M)ly < e,
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respectively. Notice also that the estimate (4.74) is valid for the arguments 1 = 7, o = %. In addition, we
also owe to Taylor’s formula with integral remainder for P9 and h(® for i = 0,1, which yields that

PO@*) — PO (p) - PV (@)e= PV (@) (7" ~ 7 — £ + Q5L (" ~ )%, (4.101)
hO (@) -1 (p) - K (@)e" = W (@)(F" — 7 - £5) + R, (7 - 9), (4.102)

for i = 0,1, where the remainders Q¥, R¥ are uniformly bounded and defined by

1 1
o= [ PR sk - p)(1 - s ds, B, = [ WG4 s - ) (1 - 5)ds
0 0
Namely, there exists a positive constant R* such that, for all k € U with a4+ k € Ug,

Q51 @) + Q5] L= (@) + ISl (@) + RSl L=(q) < R".

Moreover, owing to Remark 4.5, we also have that
(7 =1 =0, 9" =9 — €5,5% =7 — 6%)||2 < |kl 200,752

Thus, we test (4.95) by ¢, (4.96), to which we add on both sides the term ¢, by 9;¢, and (4.97) by w, add the
resulting equations, and integrate over time and by parts to obtain that

o 1 1
SICO+ [ 1945 [ ool + 1ol + el + [ v
= [ mic=w+ [ hacr [ (- FU@)o+ Aa+ 0)0u0
Qt t t

+X/ ngVw =: Il+I2+Ig+I4. (4103)

Using the Young and Hélder inequalities, the above properties, the continuous embedding V' C L%(Q), (4.65),
the general property (4.74) with p =4 and p = 6, and (4.100), as well as Taylor’s formulae (4.101)—(4.102), we
infer that

Bsef (wP+lof+Ich e | B (" — 0 € — €M+ 2 s
+ eI i) + 1m0y + I ) [ (I + 7% — Bl ds
+ el i) + Ty + i)+ DIE i | el oays + 1% — Bl ds
T el + 1) /Q (wf? + 161 + I¢1%)
e ey [ I = B (1% ~ 71+ 15 ~ I + 7 - 7 s

t
_ _ _ L _ —=h
+0(H0H%m<Q)+IIWIIiw<Q)+||u||ioc(Q)+1)/0I\wkfwll%/llﬁ — "7 ds
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t
] _ - _ - _ —h
+e / (% — a2 + 2% — I + 72 — m2)IE" — &2 ds
—h
e / 12— 212 (7% — 72 + 175 — 212 + 7 — @) IE" — "2 ds
/0 (Il + 19112 + 1C11%) ds + ¢ [l o.rurry

Similar computations show that also
i k 4
L<c /Q 2 + el / (Ul o 00y2 + 175 — 711 ds
t
€ o [T 2 ) / (Kl 0 sy + 7% — PI4) ds
t
_ _ o . —h
el e /Q 612 + ¢ [ 2 ) / 2% — BIEIE" — |2 ds
t t )
5 / ¢ ds + s [1E" B o / 12 — Ik P ds
k G hy2 2
45 [l ds-+es [ 8"~ €I as
0 0
t t h
5 / ¢ ds + cs / 17 — BI2IE" — €821k > s
<35 / V¢ + s / ¢+ e / 1612 + ekl 0.7
Q¢ Q+ Q:

for a positive 0 yet to be determined. As for I3, we use (2.40) and, for the first term in Az, we can argue as
n (4.101)—(4.102) and the following lines. Then, we have that

fgsa/ |at¢|2+caf (\w|2+|¢\2)+05/ [As?
Qt Q¢ Q+

t
<9 0 |8t¢|2+66/Q (\w|2+|¢\2)+0||€h||iao(g)/0 (1Kl Z2 0,007 + 2% — 213) ds

t
] _ —h
o / 7% — B2 € — €®)2 ds

10,612 + s / (ol + 162) + 5 1Kl a0 rurr
Q¢ Q¢

1 X2
n<y [ e+ [ v
2 Q¢ 2 Q¢

where the first term can be absorbed on the left-hand side of (4.103). Therefore, collecting the above estimates
and choosing § > 0 small enough, we obtain from Gronwall’s lemma that

and, as for I4, we see that

¢l Lo 0,7 1) L2 (0,13v) F+ 1Dl 11 0,75 Loe (0,13v) + @] Loe (0,77 )N L2 0,73V

< C”k”ZL?(O,T;H)Z .
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With this estimate shown, we can move the term $9;¢ to the right-hand side of (4.96), and it readily follows
from elliptic regularity theory that also

ol L2(0,7mw0) < C||k||2L2(o,T;H)2~

In conclusion, the estimate (4.94) is valid with € = 2. This finishes the proof of the assertion. O

The last result we present in this section will be useful later on to handle the second-order sufficient optimality
conditions and establishes the Lipschitz continuity of D28 in a suitable sense.

Theorem 4.8. Suppose that the conditions (W1), (S1)-(S4), (C3) and (2.32) are fulfilled. Moreover, let
the initial data (uo,po,00) satisfy (2.33)~(2.34), and let 0" = (ui,u,) € Ur be controls with the associated
states (f;, @;,0:) = 8(*'), t = 1,2. Furthermore, let h,k € U be admissible increments with the corresponding
linearized variables (n?, 8, 08) = D8(1;)(h), (nk, &X 91‘) D8(u;)(k), and bilinearized variables (v;, s, pi) =

AR R

D%8(u;)(h)(k), i = 1,2. Then it holds that

I(D?s(") — D*8(u?)) (h)(k)|lv
< K|u' - ﬁ2||L2(O,T;H)2||h||L2(O,T;H)2HkHL2(07T;H)27 (4.104)

with a constant K > 0 that does not depend on the choice of h,k € Ug.

Proof. By virtue of Theorem 4.7, (4.104) directly follows once we show the existence of some ¢ > 0 such that
(1,91, 1) = (V2,92 p2)llv < e [0 = 0| 20, 1m2 1] 20,792 K| 2 0,702 (4.105)
which is the estimate we are going to check. To this end, we set

L= — gy, Q=9 =Py, 0 =01—02
v=uv1—Vvy, Y=11—12, p=p1—pa2

and observe that the triple of differences (v, 1), p) solves the system

adw + ) — Av = fi + fa in Q, (4.106)
Bow — A —v =Xp+ f3 in @, (4.107)
Oep—Ap+ XAy =—f in Q, (4.108)
OnV = Ont) =Onp =0 on X, (4.109)
v(0) = ¥(0) = p(0) =0 in Q, (4.110)

with

fi=(P(@1) — P(@2))(p1 — X1 — 1) + P(@2)(p — Xtp —v)
+(P'(71) - /(%))fi((@h — XEP — ) + P (@) (65 — &5)(0F — X&' — )
+ P'(2)&5 (07 — 03) = X(&' = &3) — (' —m3))
+ (P"(1) — P"(82))6r6r (@1 + X(1 = 21) — 1)
+ P"(,) (& — &)& (@1 + X(1 = By) — 1)
+ P (@y)E5 (€1 — &) (a1 + X(1 — ) — 10y)
+ P (@,)E585(0 — X — ) + (P'(%1) — P/ (@)1 (01 + X(1 — By) — y)
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+ P (@)Y (@1 + X(1 = @y) — Tiy) + P(P2)¢2(0 — X@ — 1)
+ (P'(g,) — Pl(@z))ﬁl(alf - Xflf - 7711() + Pl(@Q)(& 52 )( Xfl )
+ P/ ()5 (05 — 0%) — X(&F — &) — (nr — n¥)),

fa= (") —B'(@,))&5 670 — b (%) (€1 — )61 — b (B,)&5(€7 — )0
—b"(%,)&565 (@ — 1) — (W () — ' (9,))E0 ks — b (B) (67 — &)k
— (W' (%)) — W (@) 1ty — b (@) 9ty — b (@2) 92 (ur — 3)
— (B () — B (@,))érht — B (B,) (&F — E5)ha,
( "(@1) = F(@2))¢1 — '( 2 — (F(B)( 1) — FO(@,))erer
FO ()& — )68 — FO@,)€ (6 - &)

Moreover, due to (2.41) and (4.65), we have (4.73) as well as
||77{l - U;IHLOO(O,T;H)HLQ(O,T;V) + ||§{1 - f;l”H1(O,T;H)ﬁLw(O,T;V)ﬂLQ(O,T;WO)
167 = 05| Lo, nz20,mvy < e @ =@ 20wz Bl 20,7312 (4.111)

and the corresponding estimate for k. Also, owing to Theorems 2.3, 4.3 and 4.6, for ¢ = 1,2 it is clear that
(ﬁ“@,a) (P eb oMy, (nk, €k 0%), and also (v;,%i,p;) belong to Y. Moreover, for both (nP, &R 08) and

1974
(nk, ¢k 0%), i = 1,2, we have (4.67) with the corresponding increment, and from Theorem 4.6, that

1w, s, pi)llv < clibllao e Kl ooz, i=1,2. (4.112)

We are now ready to proceed by arguing in a similar fashion as in Theorem 4.4 in order to check (4.105).

FIRST ESTIMATE: To begin with, we multiply (4.106) by v, (4.107), to which we add to both sides the term 1,
by 01, and (4.108) by p. Then we add the resulting equalities and integrate @); and by parts to obtain

1 1
§||u<t>\\2+ JLrver e [ o+ Sl + o+ [ 9o
[ nwns [ s [ oo pow

+ X Vi -Vp = L1 + 1o+ I3+ 1.
Qt

Then, lengthy, but straightforward, calculations along the same lines as in the proofs of the previous theorems,
eventually lead to the following estimates (with § > 0 yet to be chosen):

L < C/Q (IV* + [¢? + |p?) + cla’ — ﬁ2||2L2(0,T;H)2||h|‘%2(0,T;H)2 ||kH%2(O,T;H)27

IQ§5/ |V1/|2+05/ |1/|2+c/ 4|2
Q¢ Q Qt

+ csllut — ﬁ2”%2(0,T;H)2 ||h||%2(o,T;H)2 ”kH%Z(O,T;H)?’

I3 <é 0 0 ? + Cé/Q (Ipl? + [9?) + esa _ﬁ2||%2(0,T;H)2HhH%?(O,T;HV||k||%2(07T;H)27
t t
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<9 |vp\2+C5/ V|2
Qt Qt

Therefore, choosing 4 > 0 small enough, and invoking Gronwall’s lemma, we conclude that
[Vl Lo (0, 7;mm)nr20,7v) + ¥l 10,75y L= 0,73v) + [Pl Lo 0,75y L2 (0,73v)

< clfat = | 20,7502 Bl 20,7002 1K L2 0,7 112

SECOND ESTIMATE: The above estimate entails that the norm of ;1 in L2(0, T'; H) is bounded by the expression
on the right-hand side. Thus, in equation (4.107) the term O;% can be absorbed on the right-hand side. A
straightforward computation, which may be left to the reader, shows that the entire right-hand side is bounded
in L2(0,T; H) by the same expression. Hence, we can infer from the elliptic regularity theory that also

10l L20,mw0) < T = || 20,7512 Bl L2 (0, 758002 K| L2 (0, 75112

This concludes the proof of the assertion. O

5. FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

We now derive first-order necessary optimality conditions. By the well-known characterization for differen-
tiable maps on convex sets, it holds (see, e.g., [47]) that

Dgred(ﬁ)(u - ﬁ) > 0 Vue uad7 (51)
where DJ,.q denotes the derivative of the reduced cost functional given by
Jrea(n) := J(8(u), u). (5.2)

Therefore, using Theorem 4.3 and the chain rule, we have the following result:

Theorem 5.1. Suppose that (W1), (S1)-(S4), (C1)-(C3), as well as (2.33)—(2.34), are fulfilled. Moreover,
let @ be an optimal control for (CP) with corresponding state (@, ,). Then it holds the variational inequality

bl/Q(ga—@Q)§+b2/Q(<p(T)—¢Q)£(T)+bo/Qu~(u—u) >0 Vu€ U, (5.3)

where (n,€,0) denotes the unique solution to the linearized system obtained from Lemma 4.1 with h =u—u
CLTLd)\l :)\2 = 1,)\3:)\4:0

As usual, we simplify (5.3) by means of the adjoint state variables (p, ¢, ), which are defined as the solution
triple to the adjoint system whose strong form is given by the backward-in-time parabolic system

— Oip — B0 — Aq+ XAr + F"(@)q + L' (@)urp

~P' @@ +X(1-2) = 7)p—7) + XP@)(p — 1) = b1(7 — o) in Q, (5.4)
—adp—Ap—q+ P@)(p—7)=0 in Q, (5.5)
—Or—Ar—Xqg—P(@)(p—1)=0 in @, (5.6)
Onp = Ong = Onr =0 on X, (5.7)
(p+ B(T) = b2(B(T) — Pa), ap(T) =0, r(T)=0 in Q. (5.8)
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Let us point out that since the terminal condition (p + 8¢)(T’) prescribes a final datum in L?(Q2) (cf. (C2)), it is
clear that the first equation (5.4) has to be considered in a weak sense. Here is the corresponding well-posedness
result.

Theorem 5.2 (Well-posedness of the adjoint system). Suppose that (W1), (S1)—(S4), (C1)-(C3), and
(2.33)—(2.34) hold. Then the adjoint system (5.4)—(5.8) admits a unique solution (p,q,r) in the sense that
p+pBge H(0,T; V"),
p € H'Y(0,T; H) N L>(0,T;V) N L*(0, T; Wo)NL>(Q),
q € L>(0,T; H)Nn L*(0,T;V),
r€ HY0,T; H)n L>=(0,T; V) N L0, T; Wo)NL>(Q),

where (p,q,r) satisfies

— (0:(p+ Bq),v /Vq Vo — X /Vr Vv+/F”( )qv—l—/lh( YL pv
—/P'(@)(?er(l—@—ﬁ)(p—T)U+X P(@)(p—r)vzh/(@—ﬁcz)%
Q Q Q

— {adp,v) + QVp Vv—/qv—l— P@)(p—r)v=0,

— {(Oyr,v) + /Vr Vv —X /qv—/P =0,

for every v € V' and almost every t € (0,T), as well as the terminal conditions
(p+B(T) =b2(B(T) — Pa), ap(T)=0, r(T)=0, ae. in .

Remark 5.3. Before entering the proof of the above theorem, let us point out that the regularity conditions
on the solution imply that both p+ 8¢ and g are in H*(0,T;V*)NC°([0, T]; H), whence all terminal conditions
make sense. About that, we observe that the first condition may be rewritten just in terms of ¢ as Bq(T") =

b2 (P(T) = ¢a)-

Proof. For brevity, we again argue formally, thus avoiding the introduction of approximation schemes like in the
proof of Lemma 4.1 and just providing the relevant a priori estimates. Moreover, let us notice that the adjoint
system (5.4)—(5.8) is linear, so that the uniqueness part also follows from standard arguments as a consequence
of the following estimates.

FIRST ESTIMATE: First, we add to both sides of (5.5) the term p. We then multiply (5.4) by ¢, the new (5.5) by
—0;p, and (5.6) by X?r, add the resulting equalities, and integrate over Q7 = Q x (¢,T) and by parts to obtain
that

1 2
S+ [ 9a o [ ol + SOl + Sl < [ e
_ E 2 —_ X _ " (— 2
=Sl o [ GGaurx [ vrva [ @
- [ W@+ [ PEE -9 -me-a-X [ PEE-1

T
t t t
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11
JF/ P(@)(?*’”)atpf/ patPJrXS/ qr+X2/ P@)(p—r)r=: ZL-.
QF QF Qf QT i=1

We estimate the terms on the right-hand side individually. The first summand is bounded by a constant,
due to the terminal conditions (5.8) and the assumptions (C1)—(C2). For the other terms on the same line, we
have that

X2 1
12+13+14gc/ <|q|2+1>+—/ |W|2+—/ VaP,
QT 2 Jor 2 Jor

by virtue of Young’s inequality, the assumptions (C1)—(C2), and the separation property (2.39). Using the
Young and Holder inequalities, we bound the integrals in the second line of the right-hand side by

T
Is+Is+ I < c/ (Ipf* +lal*) + 0/ (17l + 1@l + I2lloe + 1) (llpll + llgl)liqll ds
t

Qf

+c/ (Ipl? + lgl* + |7 < c/ (Ip” + gl + Ir),
QT QT

where we also owe to the boundedness of P, P’ and %y, and to the fact that (&, ,7), as a solution to (1.2)—(1.6)
in the sense of Theorem 2.3, satisfies (2.38). Finally, the terms on the last line of the right-hand side can be
easily bounded by means of Young’s inequality, namely,

@
I+ Iy +Io+ 111 < 5/ |0:p|? JFC/ (Ipl* + lg|* + I7]?).
QT Qf

Now, we combine the above estimates and invoke Gronwall’s lemma to infer that
ol e 0,75y 0,75v) + @l nos 0,75y L2 0,79y + 17l Loo (0,73 5)n L2 (0, 13v) < -

SECOND ESTIMATE: We can now rewrite equation (5.6) as a parabolic equation with the source term f,.: =
Xq + P(®)(p — r), which is bounded in L*°(0,T; H) due to the above estimate. It is then a standard matter to
infer that

7|22 0.1y Lo (0.1:v) L2 0.7 w0) < -

In addition, since r(T") = 0 € L*°(Q2), we can apply the regularity result ([36], Thm. 7.1, p. 181) to infer that
HTHLoo(Q) <c as well.

THIRD ESTIMATE: From equation (5.5) and the parabolic regularity theory, similarly we recover that
1Pl 220, 75w0)n L= (@) < €
FOURTH ESTIMATE: Finally, comparison in equation (5.4), along with the above estimates, produces that

10:(p + B 20, 73v+) < ¢,

and this further estimate concludes the proof. O
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It is then a standard matter to use the adjoint variables to simplify the first-order necessary conditions
obtained in Theorem 5.1.

Theorem 5.4. Assume that (W1), (S1)—(S4), (C1)—-(C3), and (2.33)~(2.34) are fulfilled, and let @ € Uaq
be an optimal control for (CP) with corresponding state (@, 0, 7). Then, setting

d(z,t) := (— ]h(@(a:,t))p(gc,t),r(ac,t))7 for a.e.(z,t) € Q,
we have that

/ (d+bol) - (u—1) >0 Yu € Uy, (5.9)
Q

Moreover, U is the L?(0,T; H)?-orthogonal projection of fbald onto Uyg.

Proof. By comparing the variational inequalities (5.3) and (5.9), it follows that it suffices to show the identity
= [ n@mes [ nar=b [ G- Fae b [ @)~ G0 (5.10)

with the choices hy = u; — @ and hg = us — Ug, where (n,&,60) and (p, ¢, r) denote the unique solutions to the
linearized system and to the adjoint system obtained from Lemma 4.1 with Ay = Ao =1 and A3 = A4 = 0, and
Theorem 5.2, respectively.

In this direction, we multiply the linearized system, written with (u,¢,0) = (1,£,60), by p,q and r, in this
order. Then we add the obtained equalities and integrate over ) and by parts to obtain that

T
OA<am+@m@&+Lvqu
+ /Q ¢XAr + F"(p)g + ' (p)up
—P'(@)@+X1—-9)—n)(p—r)+XP@)(p—1)]
+/Qn[a8tpqu+P(so)(pr)}
+/Q€[—8tr—Ar—Xq—P(go)(p—r)]
+K}w@hﬂﬁ+@+ﬁ@ﬂ%0§+dﬂﬂTﬂ

+Amwamw

Now, we use the weak form of (5.4), as well as (5.5)—(5.8), to deduce that the above equality reduces to (5.10),
which concludes the proof. O

6. SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS

We now establish second-order sufficient optimality conditions. Since the control-to-state mapping 8 is only
known to be Fréchet differentiable on U, we are faced with the so-called “two-norm discrepancy” (see also [47],
Sec. 4.10.2). In order to overcome this difficulty, we follow the approach taken in Chapter 5 of [47]. Since many



SECOND-ORDER ANALYSIS OF AN OPTIMAL CONTROL PROBLEM 41

of the arguments developed here are rather similar to those employed in [47], we can afford to be sketchy here.
For full details, we refer the reader to [47], noting that there the case of one control variable is treated while in
our case we have to deal with a pair of controls. In order to simplify the analysis somewhat, we now make an
additional assumption.

(C4) Tt holds by = 0.

Notice that under the assumption (C4) we have a zero terminal condition for p + 8¢ in (5.8). This easily leads
to the conclusion that we have the additional regularity ¢ € Z, which, in turn, means that the adjoint system
is satisfied in the strong form (5.4)—(5.8).

By virtue of (C4) , we readily infer that for every ((i, p, ), u) € (C°([0,T]; H))? x Wand v = (vq,v9,v3), W =
(w1, w,w3) such that (v, h), (w,k) € (C°([0,T]; H))? x U we have

D2((41, 0, 0), u) (v h), (w,K)) = by /

VoWso + bo/ h- k. (61)
Q Q

Using Theorem 4.7 along with the above expression, we can now derive the second-order derivative of the
reduced cost functional J,eq. Namely, for a fixed control u we find that

D23red (u)(h,k) = D(u,tp,o)g((ﬁv ,7),0) (v, 9, p)
+ D*3((m,%,7), W) (((n™, £, 6™),h), ((n*, €5, 6%), k), (6.2)

where (n®, &8, 08), (nk,£%,60%), and (1,4, p) stand for the unique corresponding solutions to the linearized
system associated with h and k, and to the bilinearized system, respectively. From the definition of the cost
functional (1.1) (recall that now b = 0), we readily infer that

D3 2.7), ) (1, . ) = by /Q @ - Ba)w. (6.3)
We now claim that

by /Q (7 - Py = /Q [P (@)ER(6" — XE™ — ) (p— 1)

+ P'(@)EeP(m+ X1 —p) —m(p—r)
+ P'(@)ER (0% — x&k — ") (p —r) — b (@)E"ePurp
— 1/ ()& k1p — W (@) hp — FO (3)R e q). (6.4)

To prove this claim, we multiply (4.78) by p, (4.79) by ¢, (4.80) by r, add the resulting equalities, and integrate
over (), to obtain that

0= / pladw + 0pp — Av — g1 — go]
Q
+ /Q q[BoY — A — v — Xp+ F" (@) + FO) (p)ehek]

+ / r[0sp — Ap 4 XA 4 g1],
Q
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with the functions g; and go defined in (4.83)—(4.84). Then, we integrate by parts and make use of the initial
and terminal conditions (4.82) and (5.8) to find that

0- /Q V—adp — Ap— g+ P@)(p— 1)
" /Q Bl=0up — BOg — Ag + XAr + F(P)g + b (7)mp
~P'@@E+X1-9) —mp—r)+XP@)(p—7)
+ /Q pl=0ir — Ar — Xq — P(@)(p - 7)]
+ /Q [— P/(@)E(8" — x¢® — ™) (p— 1)

—P'(@)E T+ X(1—-p) —pm)(p—7)
— P(@)E" (6" — X" — 1) (p — r) + b (p)€ mp
b (B)E%k1p + b/ (B) hip + FB) (@)ehekq],

whence the claim follows by using the adjoint system. From this characterization, along with (6.2) and (6.3),
we conclude that

D?Frea(@) (b, 1) = bo[[B[ 20 7,412 +/ 2P (@) (0™ — ™) (p —7) /Q%’(@éhhlp
" /Q (b - P@ @+ X0~ )~ B0~ 1) -2XP (@)~ 1)
+ (@) mp + FO(@)q) €M (6.5)
This explicit expression for the second-order derivative of J..q allows us to establish sufficient conditions for
optimality of . We aim at showing that, under suitable assumptions, D?J,cq(1) is a positive definite operator
on a suitable subset of L2(0,T; H)?, meaning that for any admissible increment h it holds that
D?Jrea(@)(h,h) > 0. (6.6)

However, (6.6) is rather restrictive as we need such a condition just along some suitable directions. To this end,
for every 7 > 0, we introduce the sets of strongly active constraints,

Al@) := {(a:,t) €Q: | —h(@(x,t))p(x,t) + boﬂl(x,t)| > 7'},
={(z,t) €Q: |r(z,t) + boua(x,t)| > 7}.

Moreover, for any increment h = (hy, hy) € U we introduce the componentwise conditions

,t) €
if uy(z,t) = uy(x,t) and (z,t) ¢ AL(Q) (6.7)
if wy (z,t) = Uy (x,t) (x,t) & AL(u)
if (x,t) € A2(0),
if Up(w,t) = uy(x,t) and (z,t) ¢ A2(Q) (6.8)
if Uy (x,t) = us(x,t) (x,t) ¢ A2(Q)
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and define the associated 7-critical cone by
C-(@) := {h = (h1,he) € U: hy satisfies (6.7) and hy satisfies (6.8) a.e. in Q}. (6.9)
The second-order sufficient condition for optimality then reads as follows:
36,7 >0 ¢ Drea() (0. h) > 5030 7 € Co(R), (6.10)

where D%J,.q4(0)(h,h) is given by (6.5) with the choices (i, ,7) = §(1), (n", &R, 68) = D§(1)(h), and the
corresponding adjoint variables (p, ¢, 7). We have the following result.

Theorem 6.1. Assume that (W1), (S1)-(S4), (C1)-(C4), as well as (2.33)~(2.34) are fulfilled. Let T € Uaq
be an admissible control which satisfies (5.3) and (6.10) with the corresponding state (@, ®,0) and adjoint
variables (p,q,r), as obtained from Theorem 2.3 and 5.2, respectively. Then there exist positive constants €1, €
such that

Jrea(1) > Jrea(T) + €1]ju — ﬁ||2L?(0,T;H)2 for every u €U such that ||u—1a|y < es.

In particular, it follows that W is locally optimal for (CP) in the sense of U.

For the proof we follow the line of argumentation employed in the proof of Theorem 5.17 in [47], where in
our case we deal with a system of parabolic equations and a pair of controls, with state and control nonlin-
early coupled. However, the techniques used in [47] can straightforwardly be adapted to our more complicated
situation. We therefore merely sketch the arguments.

Proof. Given an arbitrary u € U,q, we infer from Taylor’s theorem with integral remainder that
1
gred<u> - Hred(ﬁ) - Dgred(ﬁ)(v) + §D23red(ﬁ)<va V) + Rgred <u7ﬁ>7

where we have set v = u — 1, and where the remainder R4 is given by
1
Riwea (u,w) = / (1= 8)(D?rea(T + 5v) — D?3peq (W) (v, v) ds.
0

To estimate (DQHred (@+ sv) — D*Jrea (ﬁ)) (v,v), we set

(/-Lsﬂpsvgs) :S(ﬁ—FSV), (nafve) :DS(ﬁ)(V), (nsafsves) ZDS(ﬁ—I—SV)(V),
(v, 9, p) = D*8(@)(v,v), (v°,¢°p°) = D?8(U+ sv)(v,V).

By arguing along the lines of the proof ([47], Thm. 5.17), we find that it suffices to show that

’Rgred (u, ﬁ)’

— — 0 as |lu—1ly —0. (6.11)
||u_u||L2(O,T;H)2

Using (6.3), we see that

D(,u,tp,a')g((usa QDS; 08)7ﬁ+ Sv)(ys’ 1#87[)3) - D(u,ap,a)g((ﬂa ¢7E)>ﬁ)(l/aw?p)

- /Q (¢° — B+ by /Q (¢ — Bo)(¥* — ) = I, (6.12)
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and from (6.1)—(6.2) we obtain that

D*J((1*, ¢, 0%), @+ sv)(((n°, €°,6°),v), (7, 6°,6°),v))

— D23((s1, 0. 0), W) (1, £,0),v), ((1,€,0),v)) = by /Q (€ +6)(E €)= L. (6.13)

It then readily follows from the Cauchy—Schwarz inequality, and the stability estimates (2.14), (4.65) and (4.104),
that

Il S bl(”(lps - @HLQ(O,T;H)Hw”Lz(O,T;H) + HQOS - @QH[?(O,T;H)H/(/)S - /(/)”Lz(O,T;H))

< CSHVH%%O,T;H)?-

Moreover, owing to (C2), Theorem 4.3, and to the stability estimate (4.65),

I <bi([1€° + €l 20mm 167 = Ell2o.1:m) < eslIVIEz (0,72

We thus can conclude that

1
R, < e [ (1= sl rome ds < vl VI

so that (6.11) directly follows. With this, the proof can be completed by adapting the argumentation of [47]
correspondingly to our situation. O

7. CONCLUSIONS

We investigate a distributed optimal control problem for a tumor growth model of viscous Cahn—Hilliard type
with source term including chemotaxis effects and possibly singular potentials. Similar systems have already been
investigated from the viewpoint of classical optimal control theory, obtaining the existence of optimal controls
and first-order necessary conditions for optimality. This paper aims at contributing to this common effort by
providing some mathematical results on second-order optimality conditions: indeed, this subject is widely open
for similar systems. In this direction, we are just aware of the paper [17]. Second-order conditions are usually
very challenging for nonlinear systems due to the high technicality which is required for a rigorous treatment.
As it happens frequently in the second-order analysis for systems of PDEs, we have to deal with the so-called
two-norm discrepancy, as we can prove that the solution operator 8 (hence the reduced cost functional Jyeq)
is twice Fréchet differentiable with respect to one norm (L>°(Q)?), but the coercivity condition of the second
derivative of Jyeq expressed by (6.10) holds just in a weaker norm (L?(Q)?) in which the (second) derivative of
the solution operator 8 (hence of Jcq) is not even well defined. To this concern, let us mention the work [4];
there, the authors show that, provided some additional properties are fulfilled, the two-norm discrepancy issue
can be overcome by deriving the more natural sufficient condition in Theorem 6.1 with respect to L? — L? norms
instead of the L? — L™ situation. However, while ([4], Ass. (A1)) can easily be checked, the second assumption
in this paper ([4], Ass. (A2)) requires a number of nontrivial properties to be proven (and we are not sure
whether this can actually be done). For these reasons, we have chosen the present line of approach.
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