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Abstract. Randomness is at the core of many cryptographic imple-
mentations. True random number generators provide unpredictable
sequences of numbers by exploiting physical phenomena. This work com-
pares multiple literature proposals of true random number generators
targeting FPGAs. The considered TRNGs are obtained as the combi-
nations of three digital noise sources, namely, NLFIRO, PLL-TRNG,
and ES-TRNG, and three post-processing techniques, namely, XOR, Von
Neumann, and LFSR. The resulting combinations of such components
are evaluated in terms of security, throughput, and resource utilization.
The experimental results, which were collected on Xilinx Artix-7 FPGAs,
highlight the importance of the post-processing stage for security pur-
poses and reveal NLFIRO as the best digital noise source and LFSR as
the best post-processing technique, having the highest throughput with
excellent security performance without compromising area and power
consumption.

Keywords: Field programmable gate arrays · True random number
generators · Hardware-based security primitives · Side-channel attacks

1 Introduction

Modern embedded systems at the edge are pervasively deployed in our living
environment and they are increasingly in charge of performing critical tasks or
managing sensitive data, thus calling for new and stringent privacy and security
requirements in addition to the more traditional energy-efficiency ones.

The use of efficient cryptographic primitives represents the de-facto solu-
tion to guaranteeing the privacy and security of the exchanged and processed
data. However, the security strength of the cryptographic system is directly con-
nected to the quality of the used random numbers, thus highlighting true random
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Fig. 1. Baseline architecture of a TRNG.

number generators (TRNGs) as essential components in the security infrastruc-
ture [8]. The correct implementation of TRNGs is indeed paramount to ensur-
ing the effective security of the wide array of cryptographic primitives where
they are employed, such as traditional [7] and post-quantum [10,12,19,20] key
exchange mechanisms, digital signature schemes [5,11,15], and countermeasures
to side-channel attacks [3,21]. A TRNG must therefore produce a sequence of
numbers such that the generated values are statistically independent, uniformly
distributed, and unpredictable.

The architecture of a generic TRNG is depicted in Fig. 1, and it can be split
into three main components. They are, respectively, entropy source, digitization,
and post-processing, with the latter also referred to as conditioning.

The entropy source is the only component in the architecture that generates
true randomness by exploiting some physical phenomenon, while the other com-
ponents are purely deterministic. Whenever the entropy source generates analog
signals, a digitization module is required to transform them into digital form.
The combination of an entropy source and a digitization module is also referred
to as a digital noise source, which is notably often indicated in the literature as
the TRNG itself due to its role in producing the actual entropy underlying the
random number generation. The digital noise source outputs the raw random
numbers, so-called since they are frequently vulnerable to statistical flaws.

Therefore, a post-processing module is used to improve the statistical and
security properties of the TRNG. The post-processed output, with increased
entropy, is also referred to as internal random numbers. Notably, applying con-
ditioning methods is not mandatory for the design of a TRNG, and it can instead
be avoided if the entropy produced by the digital noise source is already sufficient
for the target application of the TRNG.
Contributions - This manuscript presents an exploration of the state-of-the-art
TRNGs targeting FPGAs, evaluated according to resource utilization, through-
put, and security. The goal is to identify the best-performing combinations of
digital noise sources and conditioning methods that optimize the three afore-
mentioned quality metrics. The experimental results highlight the combination
of an NLFIRO digital noise source and an LFSR post-processing method as the
best-performing solution with respect to the throughput and security metrics
At the same time, ES-TRNG might be an effective solution in tightly resource-
constrained scenarios, albeit with a drastic reduction in the throughput.
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Fig. 2. Architecture of a NLFIRO TRNG.

2 Methodology

This section describes the architectures of the considered TRNGs, detailing sep-
arately the three digital noise sources and the three post-processing methods.
In particular, the evaluated digital noise sources are the NLFIRO, PLL-based,
and edge-sampling TRNGs, while the considered post-processing methods are
XOR, Von Neumann, and LFSR conditioning techniques. Notably, all of them
are suitable for an FPGA implementation, albeit exploiting different physical
phenomena and working principles.

2.1 Digital Noise Sources

NLFIRO TRNG. Non-linear feedback ring oscillators (NLFRO) [16] enhance
the design of ring oscillators by incorporating a non-linear feedback function.
NLFRO-based TRNGs harvest their high entropy from different sources, namely,
noise and variation in delay cells, unpredictable behavior in astable logic ele-
ments, and non-linear feedback loops.

Each stage of the ring oscillator presents a multiplexer driven by a clock
signal CLKE , making it possible to reconfigure the ring oscillator between a
local loop and an open loop. When the clock is low, the local loop is closed and
the signal runs in a ring oscillator composed by an inverter chain. When the
clock is high, the loop is open and the entire feedback starts working. CLKE

must have the same frequency and duty cycle of the sampling clock, while a
phase shift of −90◦ is required to leave a sufficient margin for the toggling of the
global feedback.

We implement the Fibonacci configuration of the NLFRO with nine stages
and three NOT gates as inverter chain, which is referred to as NLFIRO [16].
Figure 2 depicts the architecture of the implemented NLFIRO, whose feedback
function is shown in Eq. (1).

f(x) = x7 ⊕ (x2 · x1) ⊕ x0 (1)

For each TRNG, two NLFIROs are XORed together after being sampled in two
D-FFs, and the result of the XOR is registered in another D-FF.
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Fig. 3. Architecture of a PLL-based TRNG.

PLL-Based TRNG. A PLL-based TRNG [2,9] exploits the coherent sampling
principle. As shown in Fig. 3, which depicts its architecture, a reference clock clk0
is used to sample two other clock signals clk10 and clk11, where clk10 is delayed
of 90◦ respect to clk11, in two corresponding D flip-flops (D-FFs). The outputs
of such D-FFs are then XORed together and registered in another D-FF. Since
the output bits of the latter suffer of a period pattern, they are then decimated
by XORing KD consecutive bits to destroy such pattern and obtain a stream of
raw bits.

The reference and sampled frequencies are mutually related according to
Eq. (2), where KM1, KM0, KD0, and KD1 are the frequency multiplication and
division factors.

f1 = f0
KM1KD0

KM0KD1
= f0

KM

KD
(2)

The output signal of the last D-FF features a pseudo-random pattern with a
period TQ = KD/f0 = KM/f1, which is however removed by the decimator.
The output bit-rate R of the generator and its sensitivity S to jitter are defined
according to Eq. (3) and Eq. (4), respectively.

R = T−1
Q =

f0
KD

(3)

S = f1KD = f0KM (4)

Consequently, R and S are maximized by increasing f0 and KM and decreasing
KD. The algorithm proposed in [1] is exploited to find the best parameters for
all the PLLs, allowing to obtain a sufficient entropy and bit rate while fulfilling
the hardware requirements of the PLL instances.

Edge-Sampling TRNG. The edge-sampling TRNG (ES-TRNG) [18] is char-
acterized by a low resource utilization, with the core TRNG module occupying
only 5 LUTs and 6 FFs, as shown by its architectural representation depicted
in Fig. 4. Two components devoted to resynchronization and control logic are
however also required, in addition to such TRNG core logic.
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Fig. 4. Architecture of an edge-sampling TRNG.

The ES-TRNG digital noise source exploits the entropy produced by the
timing phase jitter of a free-running ring oscillator. The architecture of a ES-
TRNG consists of a small ring oscillator RO1 with an enable signal. The output
of RO1 is then digitalized through a tapped delay chain which slows down the
signal and allows saving three different values in three FFs (Stage[2:0]). The
latter FFs are driven by a larger ring oscillator RO2. As the final processing step,
a bit extractor module is tasked with extracting a high-entropy bit from the
sampled stages Stage[2:0].

The core idea of ES-TRNG is to repeat the sampling at high frequency thanks
to RO2 and focus only on the region around the edges of the RO1 signal, where
the bits have higher entropy.

RO1 must be reset after generating a new raw bit and be enabled for a period
TA before starting RO2. The accumulation time TA is used by RO1 to increase the
entropy. The designer shall find a trade-off between the required entropy value
and the desired throughput.

2.2 Post-processing Methods

XOR Post-processing. XOR post-processing [6] processes n bits of the raw
input stream at a time. In particular, such n bits are XORed together, which
reduces the throughput by a factor of n. Taking the parity of n independent
bits reduces the internal bias ε to εinternal = 2n−1εnraw, resulting into a higher
entropy. For the purposes of this work, n was set to 2 for NLFIRO, while XOR
post-processing was not applied to PLL-TRNG and ES-TRNG sources.

Von Neumann Post-processing. The Von Neumann conditioning
method [13] splits the input bits into non-overlapping pairs and, for pairs whose
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first and second bits are different, it outputs the first bit, while nothing is output
if the two bits hold the same value. The throughput is not constant, but it can
never exceed 1/4 of the raw throughput, i.e., the throughput of the digital noise
source.

LFSR Post-processing. A linear-feedback shift register (LFSR) is a shift
register whose input bit is a linear function of its previous state, and it is defined
by a characteristic polynomial. The bit positions that affect the next state are
called the taps. The taps are XORed sequentially with the output bit and the
new raw bit, and the result is then fed back into the leftmost bit. LFSRs are
employed for post-processing purposes due to their good statistical properties.
In this work, the raw bits are processed by a LFSR [17] whose feedback function
is shown in Eq. (5).

f(x) = x32 ⊕ x30 ⊕ x24 ⊕ x21 ⊕ x20 ⊕ x9

⊕ x8 ⊕ x7 ⊕ x6 ⊕ x2 ⊕ x0
(5)

3 Experimental Evaluation

The considered TRNG designs were evaluated according to a set of three quality
metrics: area, performance and security. Area expresses the number of LUTs and
FFs occupied by the design, performance indicates how many random bits per
second are produced by each batch of TRNGs and it is expressed in megabits
per second, and security measures how many tests of the NIST suite are passed,
as a ratio of the total number of tests. The NIST SP800-22 suite [4] consists of 15
algorithmic tests and 188 subtests, which allow evaluating the unpredictability of
the output of a TRNG and therefore its suitability for cryptography applications.
Performing the NIST tests required collecting 33 million random bits, split into
33 individual sequences of 1 million bits each. The NIST SP800-22 tests were
carried out by employing the C implementation publicly available on the NIST
website [14].

3.1 Setup

NLFIRO was evaluated with each of the three post-processing methods as well
as without any conditioning, considering bit widths of 1, 8, 32, 64, and 128 bits.
PLL-based TRNG was tested without any conditioning, since the raw output
of the digital noise source already provided the highest security according to
NIST tests, while the bit width was limited to 1 and 4 bits due to the scarce
availability of PLL components on the target FPGAs. Finally, ES-TRNG was
implemented both without post-processing and with LSFR, since the latter con-
ditioning method showed the best overall metrics of the three discussed ones,
with the same bit widths employed as NLFIRO.

All the implemented TRNG designs were instantiated on chips from the
Xilinx Artix-7 FPGA family, in particular on the Artix-7 35 (xc7a35tcpg236-
1) and 100 (xc7a100tcsg324-1) chips, targeting a clock frequency of 50MHz.
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Fig. 5. Resource utilization, expressed as the number of LUTs, of TRNGs combining
different digital noise sources and post-processing methods at various bit widths.

Synthesis, implementation, and generation of area reports were all carried out
through Xilinx Vivado 2020.2. All designs were automatically placed and routed,
without any specific constraints.

3.2 Resource Utilization

Figure 5 shows how the number of LUTs grows circa linearly with respect to the
bit width for all three considered digital noise sources. NLFIRO is the TRNG
which occupies the largest amount of LUTs. ES-TRNG requires a significantly
smaller amount of LUTs, with a maximum of 2806 for a 128-bit LFSR post-
processing configuration, but it requires instead the most FF resources, as high-
lighted by Fig. 6. This high amount of FF is due to the resynchronization circuit
of ES-TRNG together with its control circuit, which is not necessary instead
for NLFIRO. PLL-based TRNGs require the smallest amount of LUTs and FFs,
requiring 21 of both resources with a 1-bit bit width. Even though PLL-based
TRNGs consume minimal amounts of LUT and FF resources, it must be noted
that PLLs are a very limited resource on FPGAs, and they might also be required
in other components of the design.

Focusing on the post-processing methods, LFSR results in the most resource-
hungry one, while XOR is the smallest conditioning architecture.

3.3 Throughput

Figure 7 shows the throughput for the considered TRNG designs. NLFIRO is the
best performing digital noise sources, providing a raw random bit every clock
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Fig. 6. Resource utilization, expressed as the number of FFs, of TRNGs combining
different digital noise sources and post-processing methods at various bit widths.

cycle, eclipsing every other design, with a maximum of 6.4 Gb/s in its best
configuration. On the other hand, ES-TRNGs are around 30 times slower than
NLFIRO. PLL-based TRNGs have the lowest throughput, moreover their bit
width is limited to 4 due to the limited amount of PLLs available on the target
FPGAs.

While LFSR produces the maximum overall throughput, with no reduction
compared to not applying any post-processing, the XOR and Von Neumann con-
ditioning methods reduce instead the throughput. In particular, Von Neumann
post-processing is the slowest one.

With respect to the bit width, the throughput increases linearly for all
TRNGs.

3.4 Security

Figure 8 reports the experimental results related to the security metric. The bar
chart expresses the number of passed NIST tests out of 15. PLL-based TRNGs
ended up as the best digital noise sources from the viewpoint of the security
metric, being able to pass every test even without any post-processing stage.
Such good performance is due to the careful selection of PLL parameters that
guarantee a high entropy sensitivity. NLFIRO manages to pass most of the tests,
however not being secure enough in absence of post-processing. Finally, the raw
entropy of ES-TRNG is excessively weak, with only one NIST test passed if no
conditioning is applied.
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Fig. 7. Throughput, expressed as bit rate in Mb/s, of TRNGs combining different
digital noise sources and post-processing methods at various bit widths.

The experimental results highlighted the critical role of the post-processing
stage, which is more obvious in the ES-TRNG case. LFSR always allows all the
TRNGs to pass 15/15 NIST tests and 188/188 subtests for every bit-width up
to 64, while all the other conditioning method always fail at least one subtest in
some configuration.

Concerning bit width, the experimental results highlighted a significant drop
in security when moving from 64- to 128-bit bit width, with all the TRNGs with
the larger bit width failing the majority of the NIST tests and being therefore
unsuitable to cryptography applications.

3.5 Overall Results

NLFIRO-based TRNGs provide the best throughput and a high security, albeit
at the cost of the largest resource utilization in terms of LUTs and FFs. ES-
TRNG-based solutions occupy a smaller area, although producing a signifi-
cantly smaller throughput and a reduced security, when not applying any post-
processing method. PLL-based TRNGs provide the highest security without
needing any conditioning, but their bit width, and therefore their throughput,
is strongly limited by the amount of PLLs available on the target FPGA chip.

Concerning post-processing methods, LFSR provides the best improvement
in security without any reduction in the TRNG throughput, producing how-
ever the largest resource utilization. Nevertheless, the difference in LUT and FF
resources occupied compared to the other two post-processing methods or to
not applying any conditioning is minimal, particularly with respect to the total
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Fig. 8. Security, expressed as the percentage of NIST tests passed, of TRNGs combin-
ing different digital noise sources and post-processing methods at various bit widths.

resources available on the target chip and to the area occupied by the other com-
ponents of the TRNG and of the overall design. On the contrary, applying the
XOR and Von Neumann post-processing methods results in a steep reduction
in the throughput metric, while not applying any conditioning provides a low
security, except for PLL-TRNGs.

Finally, regarding bit-width, the experimental results highlighted a critical
drop in security for bit widths larger than 64, i.e., equal to 128, which makes
such TRNGs, albeit faster than those with smaller bit widths, not suitable for
cryptography applications.

4 Conclusions

This work evaluated different combinations of digital noise sources and post-
processing techniques to identify optimal TRNGs that are suitable for crypto-
graphic applications on FPGA targets. In particular, we considered the NLFIRO,
PLL-based TRNG and ES-TRNG digital noise sources and the XOR, Von Neu-
mann, and LFSR post-processing methods, while also analyzing the impact of
varying the clock frequency and the bit width of the TRNG.

The experimental evaluation was carried out according to three quality met-
rics, encompassing functional and non-functional requirements. Functional qual-
ity metrics included the security and the throughput of the TRNG, while the
non-functional metric studied in this work was the resource utilization.

On the one hand, the experimental results highlighted the combination of
an NLFIRO digital noise source and an LFSR post-processing method as the
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best-performing solution with respect to the throughput and security metrics.
On the other hand, ES-TRNG-based solutions were shown to be effective choices
in tightly resource-constrained scenarios, albeit with a drastic reduction in the
throughput. In addition, the results validated the strong positive impact of con-
ditioning methods on the security of the TRNG, while emphasizing the need to
limit the TRNG bit width up to 64 bits to avoid a critical drop in the generated
entropy.
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