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Before the availability of large scale fault-tolerant quantum devices, one has to find ways to
make the most of current noisy intermediate-scale quantum devices. One possibility is to seek
smaller repetitive hybrid quantum-classical tasks with higher fidelity, rather than directly pursuing
large complex tasks. We present an approach in this direction where the quantum computation is
supplemented by a classical result. While the presence of the supplementary classical information
helps alone, taking advantage of its anticipation also leads to a new type of quantum measurements,
which we call anticipative. Anticipative quantum measurements lead to improved success rate over
cases where we would use quantum measurements optimized without assuming the later arriving
supplementing information. Importantly, in an anticipative quantum measurement the combination
of the results from classical and quantum computations happens only in the end, without the need
for feedback from the one to the other computation, a feature which hence allows for running both
computations in parallel. We demonstrate the method using an IBMQ device and show that it leads
to an improved success rate even in a real noisy setting.

I. INTRODUCTION

It is a trope of quantum computation to look for
problems with a more advantageous complexity than
their classical counterparts. With the advent of prac-
tical quantum computation, it became apparent that it
is worthwhile to look also at problems where even a mod-
est speedup can become useful. At this point, an addi-
tional aspect to be aware of is constituted by the lim-
ited resources of these devices. In particular, current
noisy intermediate-scale quantum (NISQ) devices have
too many imperfections to be used for general univer-
sal quantum computation [1, 2], hence approaches that
are able to deal with these imperfections are seeked both
in circuits [3–5] and in measurements [6–9]. A possible
application of limited NISQ devices is quantum-classical
hybrid computation [11–14], where the NISQ device has
only a partial role, for example as a subroutine that is
able to speed up a repeated computation task. One of
the questions arising in these kinds of schemes is how to
optimally combine classical and quantum computations
so that their overall functioning is as good as possible.

We are considering a class of tasks where one is re-
quired to compute the value of a function g : X → Y on
any given input x ∈ X. Concrete examples of interest
could be the following:

• X = {2, . . . , n}, Y = {1, 2, . . . , bn/2c}, g(x) = the
largest proper divisor of x.

• X = the set of graphs with at most n vertices, Y =
{1, 2, . . . , n}, g(x) = the chromatic number of x.

Task:

x=?

Q-program

Measurement

C-program

x=13?

x=41?

RESULT

x=42

FIG. 1. We consider hybrid computation where classical and
quantum computations are performed simultaneously. The
outputs of the two computations are then combined to re-
duce the possible final answers and to provide a more precise
output than from either of the two computations.

In the current work, we do not concentrate on any partic-
ular problem, but rather on a method that is applicable
to a variety of such tasks. We focus on a scheme where
the computation has two parallel parts: a classical part
and a quantum part. The essential assumption in our in-
vestigation is that these computations are run in parallel,
meaning that they take an input at the same time and
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the computations are carried out simultaneously. The
combination of the computations and the final inference
happens only after both parts have been completed (see
Fig. 1). The question is then if there is a way to opti-
mize the two parts jointly that would lead to a better
performance than individually optimizing each part.

The motivation for this parallel computing assumption
is the following. Naturally, we want the total computing
time to be minimal, which can be achieved by increasing
the total success rate. Considering current NISQ devices,
the motivation may be even more practical. The avail-
able quantum computer may be small and less efficient
than the computational problem would require, leading
to intrinsically imperfect computation. A classical com-
puter may provide a useful aid even if it cannot solve
the problem efficiently alone. For instance, the classical
computation can be used to rule out some wrong answers,
which is much more easier than to solve the question in
full. This partial information can still help the quantum
computation part, and that is exactly the main idea of
the current study.

We note that the method we are introducing does not
prevent from having also sequential steps in the total
computation process. Indeed, the method can be thought
to be applied separately in all phases. We can even find
further motivation in the sequential arrangement, since
this kind of hybrid tasks uses classical computation be-
tween separate quantum computations and so, during
each run of the quantum computation, classical comput-
ers are idle. In fact, the advantage of our approach is
that it allows to make use of this ineffective time.

II. PARALLEL QUANTUM-CLASSICAL
COMPUTATION WITH ANTICIPATIVE

MEASUREMENTS

A. Parallel quantum-classical computation

In our setting, the quantum computing part uses a d-
level quantum system in the encoding of inputs and this
size evidently limits the power of the quantum device.
Each input x is encoded into a quantum state %x. Then,
the quantum system is acted on by a quantum process
Φ, hence the state is transformed into Φ(%x). The pro-
cess can be a complicated array of quantum gates, it can
use higher dimensional ancillary systems, and the pro-
duced states may possibly be not orthogonal. Further,
the transformed state Φ(%x) can be a state of a differ-
ent quantum system having a different dimension than
d. The system in the transformed state is measured by a
quantum measurement M and an outcome z is recorded.
The conditional probability to obtain z is given by the
Born rule

p(z |x) = tr [Φ(%x)M(z)] . (1)

In the most favorable case, one has p(z |x) = δz,g(x), i.e.,
the recorded outcome is the value g(x) that we wanted to

compute. However, due to the limited size of the quan-
tum computer and the noise involved in the process and
in the final measurement, we expect p(z |x) to be a proba-
bility distribution that has nonzero variance. The quan-
tum computing part is therefore giving a probabilistic
information about the correct answer for the value g(x).

In addition to the quantum computation, we assume
that there is a classical computation part where the aim
is to rule out one or more wrong answers. We denote by
S ⊂ Y the set of values that the classical computation
determines to be wrong. For example, in NP-problems
checking answers is a fast process that can be used to
generate the set S. Getting back to our earlier examples,
if g(x) is the largest proper divisor of an integer x ≥ 2,
the set S may be obtained by performing divisibility tests
for some choice of potential divisors. Or, if x is a graph
and g(x) is the chromatic number of x, S could be the
result of some random coloring heuristics carried out on
x. The aim of the current investigation is not to identify
specific problems where the classical computation can be
explicitly described, and we actually let the set S be any
non-trivial subset of Y .

The limits on the computation time and the efficiency
of the classical computer may imply that S is a singleton
set or has some other fixed size. In a typical application
that we have in mind, S is a small set compared to the
size of Y . The information in the form of S is provided
only after the quantum part has concluded and we will
therefore call it the classical posterior information, ab-
breviated to CPOST. We further assume that the classi-
cal computation is error-free, so that g(x) /∈ S. However,
we allow it to be non-deterministic, and we denote the
conditional probability to obtain S given x as p(S |x).
For instance, if we would use a quantum computer to
speed up some NP-problem, alongside we could run some
number of classical computations in which we may ran-
domly choose potential answers y1, y2, . . . , ym ∈ Y , and
either learn that one of our choices is the correct answer,
or learn that g(x) 6∈ S = {y1, y2, . . . , ym}. As the classi-
cal and quantum computations work in parallel and do
not interact up to this point, we further require that the
set S of the excluded answers is independent of the mea-
surement outcome z when conditioned on the input x,
that is, p(S, z |x) = p(S |x) p(z |x).

The final step is then to combine the results from the
two parts and make the final guess y, based on the out-
come z of the quantum computation and the set S con-
sisting of wrong values. In general, again, this guess is
probabilistic and described by the conditional probabil-
ity p(y |S, z). Moreover, it depends on the input x solely
through the classical and quantum computations, mean-
ing that p(y |S, z) = p(y |S, z, x). The efficiency of the
full computation is characterized by its success proba-
bility, i.e., the probability of having y = g(x) when the
input x is sampled from X. For simplicity, we will con-
sider uniform sampling, although we remark that this is
not a necessary requirement in our approach.

Let us now discuss different ways of utilizing poste-
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rior information. The setting provides a four-fold dis-
tinction between different scenarios. Firstly, we can dis-
tinguish between the cases in which CPOST is present
or absent. A motivation for this distinction can be the
case when CPOST might improve the quality of the re-
sult from the quantum computation, but the result might
be useful even without CPOST. Secondly, and more im-
portantly, we distinguish the cases where the quantum
measurement is optimized without considering CPOST
(the resulting measurements will be called standard) and
where the quantum measurement is optimized by hav-
ing CPOST in mind (measurements of this kind will be
called anticipative).

The focus of this paper lies on the anticipative mea-
surements with CPOST. Our method thus optimizes the
quantum and classical steps together instead of treating
them separately, even if they are run independently in
parallel. In practice, this means that we adjust the mea-
surement performed in the end of the quantum compu-
tation. The crux is to take into account that there will
be CPOST, in our case in the form of wrong answers,
before we have to make the final decision, although we
cannot know the specific wrong answers before we have
to perform the measurement.

It is not evident from this general description that the
anticipative measurement method works and, in fact, it
does not necessarily lead to a better success probability
than the independently optimized parts. However, we
demonstrate with examples that the anticipative mea-
surement does give a benefit on a class of problems. The
main goal of the current investigation is to show that
the anticipative method can be better than the standard
method and therefore might be a valuable tool in hybrid
quantum-classical computation.

To summarize, for a given task, we have four scenarios
to which we assign the respective success probabilities P.

1. P st
0 : standard quantum measurement without

CPOST. In this scenario, we use quantum compu-
tation only.

2. P st
CPOST

: standard quantum measurement with
CPOST. This means that we run both quantum
and classical computations, optimize them inde-
pendently and combine in the end.

3. P an
CPOST

: anticipative quantum measurement with
CPOST. In this scenario, quantum measurement
is optimized already having in mind the later ar-
rival of classical information. This scenario is our
main interest.

4. P an
0 : anticipative quantum measurement without

CPOST. This scenario is for comparison only. One
can think of it as a scenario where classical compu-
tation breaks down and does not give any informa-
tion even if we were waiting for it and hence chose
anticipative measurement instead of the standard
measurement.

In general, we have

P an
0 ≤ P st

0 ≤ P st
CPOST
≤ P an

CPOST
. (2)

The first and last inequalities follow from the definitions.
Indeed, the standard measurement means the optimal
measurement for the problem without CPOST and the
anticipative measurement means the optimal measure-
ment for the task with CPOST. The middle inequality is
true as posterior information cannot make the guessing
probability worse if properly optimized (optimal solution
must be at least as good as if one does not act based
on CPOST). Depending on the task in question, these
inequalities may be equalities, which would mean that
for that task posterior information or the anticipative
method do not help. Clearly, the anticipative method
becomes interesting in tasks where P st

CPOST
< P an

CPOST
. In Sec-

tion III, we demonstrate that this is actually the case
already in a simple class of tasks.

B. Mathematical framework for anticipative
measurements

We now present the mathematical framework for antic-
ipative measurements that is needed in the applications
to concrete problems.

We denote X = {1, . . . ,m}, Y = {1, . . . , n} and let
f : X × Y → {0, 1} be the function that defines the
computational task by determining the wanted and un-
wanted input-output pairs (x, y) ∈ X×Y . If each x ∈ X
is associated to only one correct answer g(x) ∈ Y , then
the wanted pairs constitute the set {(x, g(x)) : x ∈ X}
and the task is defined by the Kronecker delta function
f(x, y) = δg(x),y. More generally, an input x may have
several correct answers, which therefore constitute a sub-
set Gx ⊂ Y . In this case, we choose f(x, y) = 1Gx(y),
where 1Gx is the indicator function of the set Gx.

In the current setting, we do not separate the ini-
tial quantum state encoding and the quantum process
that transforms the states. This is due to the fact
that the anticipative method alters only the final mea-
surement and therefore only the form of the quantum
states just before the measurement matters. We denote
E(x) = (1/m) Φ(%x), so that the mapping x 7→ E(x) de-
scribes all what happens to the input x before the quan-
tum measurement is performed. We call E the state en-
semble of our computational task. The uniform sampling
of the inputs is included in the normalization constant
1/m of E . A quantum measurement is mathematically
described as a positive operator valued measure M. De-
noting by Z the outcome set of M, the probability of
choosing the input x ∈ X and getting the outcome z ∈ Z
is hence tr [E(x)M(z)].

On the classical side, we write α(S |x) = p(S |x) to
denote the conditional probability of getting S from the
classical computation when x ∈ X is the input. We say
that α is the partial information map of our quantum-
classical hybrid computation. Note that the formalism
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allows S can be any information about the task, not just
the exclusion of outcomes, but for simplicity we just deal
with the exclusion.

Finally, the combination of classical and quantum out-
comes is a post-processing that gives the final answer
y ∈ Y with probability νS(y | z) = p(y |S, z). We refer to
ν as the post-processing map. With these notations, the
probability of guessing a correct answer is

PCPOST =
∑

x,y,z,S

f(x, y) νS(y | z)α(S |x) tr [E(x)M(z)] .

(3)
We typically assume that the state ensemble E and the
partial information map α are fixed, but we need to find
a quantum measurement M and a post-processing map ν
performed after CPOST, so that the success probability
of Eq. (3) is as high as possible.

Note, that even though Eq. (3) describes the success
rate including the arrival of CPOST, its two extreme
cases also describe situations when no classical informa-
tion is provided, or when all wrong answers are excluded.
The latter case means that α(S |x) = 1 if S = Y \ Gx,
where Gx is the set of the correct answers for the in-
put x. The optimal post-processing map then necessar-
ily satisfies νY \Gx(y | z) = 0 for all y /∈ Gx, and the final
guess y can be chosen independently of the measurement
outcome z. In this way, when all wrong answers are ex-
cluded, we can trivially achieve the equality PCPOST = 1
for any measurement M. The former case of a situ-
ation with no CPOST, instead, corresponds to setting
α(S |x) = α(S) independently of the input x. In this
case, the summation over S can be carried out on the
post-processings νS and the right-hand side of Eq. (3)
becomes the probability

P0 =
∑
x,y,z

f(x, y) ν0(y | z) tr [E(x)M(z)] , (4)

where

ν0(y | z) =
∑
S

νS(y | z)α(S) . (5)

Different optimizations of the previous equations then
lead to the cases described above:

P an
CPOST

= max
M,ν

PCPOST

(
M, ν

)
, (6)

P st
0 = max

M,ν0
P0

(
M, ν0

)
, (7)

where in the right-hand side we have explicitely indicated
the dependence of the probabilities PCPOST and P0 on the
chosen measurement M and the post-processings ν and
ν0. If we label the respective optimized measurements as
Man and Mst, we further have

P an
0 = max

ν0
P0

(
Man, ν0

)
, (8)

P st
CPOST

= max
ν

PCPOST

(
Mst, ν

)
. (9)

C. Anticipative measurements with the exclusion
of k wrong answers

For simplicity, from now on we assume that the number
of wrong answers obtained by means of classical compu-
tation is fixed and we denote this number by k. Hence,
the set S of the excluded answers is an element of the set

T = {S ⊂ Y : |S| = k} , (10)

which in turn is a subset of the power set 2Y . We further
assume that S is drawn with uniform probability from
the subset of all the elements of T which are disjoint
from Gx.

Having written the computational tasks in Eq. (3), we
can interpret it as a quantum guessing game with pos-
terior information and apply the mathematical results
developed in [15, 16]. The same mathematical formalism
can be used to construct and study incompatibility wit-
nesses, but here our aim is different. One of the main
facts contained in the aforementioned works is that any
quantum guessing game with posterior information re-
duces to a usual state discrimination task for an aux-
iliary state ensemble. The reduction means that, even
if the tasks are different, the optimal measurements are
the same and the success probabilities are connected via
a simple formula. To see the reduction in practice, let us
first assume that k = 1, i.e., the classical computation
part is giving one wrong answer. Moreover, let us sup-
pose that each input x is associated to only one correct
answer g(x). In this case, we can identify the set T of
Eq. (10) with Y and write the partial information map
as α(t |x) = (1 − δg(x),t)/(n − 1). The auxiliary state

ensemble, denoted by Ē , is then defined on the Cartesian
product Y n and given as

Ē(y1, . . . , yn) =
1

|Y ||T |−1∆

∑
x,t

f(x, yt)α(t |x) E(x)

=
1

(n− 1)nn−1

∑
x

r(x) E(x) ,

(11)

where

∆ =
∑
x,y

f(x, y) tr [E(x)] = 1 , (12)

r(x) =
∣∣{t ∈ Y : yt = g(x) and t 6= g(x)}

∣∣ . (13)

With the known techniques of minimum-error state dis-
crimination [19, 20], one can then find the optimal mea-
surement M̄ that yields the largest success probability in
discriminating Ē . It turns out that the same measure-
ment M̄ is optimal also for the original guessing game.
Indeed, the interpretation of M̄ in the initial setting is
that we obtain a measurement outcome that is a tuple,
namely (y1, . . . , yn) ∈ Y n, and the wrong answer given
as the posterior information t from the classical compu-
tation refines this outcome to the final guess yt. The
success probabilities of the original task and of the auxil-
iary state discrimination task are not the same but have a
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simple relation: if the success probability in the auxiliary
state discrimination problem is P, then

P an
CPOST

= nn−1 P . (14)

The mathematical machinery works in the same way
also in the cases with k > 1. Only the form of the aux-
iliary state ensemble Ē is different and it can be be ob-
tained from [16, Sec. 4.4].

III. QUBIT APPLICATION

While the intention of the anticipative method is to
be used for hybrid computation tasks, in order to illus-
trate the method and test it in current quantum devices
we consider a simple example having no direct computa-
tional interest, but exhibiting the same quantum features
that may appear during quantum computations with a
NISQ device. In this example, two bits of information
are encoded into one qubit, hence the size of the quan-
tum device is smaller than one would need for perfect
encoding. After all quantum processing, we assume that
the final states are from two bases. The task is to in-
fer the values of the original bits with as high success
probability as possible.

Qubit states can be identified with vectors on the Bloch
sphere. The final states belong to two bases and the angle
between these bases in the Bloch sphere description is
parametrized by θ ∈ (0, π/2]. There is a global unitary
freedom to choose the directions, hence we can fix the
states corresponding to the Bloch vectors ±a and ±b
with

a = cos
(

1
2θ
)
i+ sin

(
1
2θ
)
j ,

b = cos
(

1
2θ
)
i− sin

(
1
2θ
)
j ,

(15)

where i and j are two orthogonal coordinate vectors.
The setting is depicted in Fig. 2. With respect to the
framework explained earlier, we have

X = {+a, −a, +b, −b} (16)

and the state ensemble E is

E(±a) = 1
8 (1± a · σ) ,

E(±b) = 1
8 (1± b · σ) .

(17)

Although the states within each of the two bases
are orthogonal and hence perfectly distinguishable, the
four states together are not. We will look now on the
minimum-error discrimination schemes with or without
CPOST both for the standard measurements and the an-
ticipative measurements. In the following, we denote by
P st
k and P an

k the success probabilities when CPOST con-
sists of k wrong answers. This notation agrees also with
the previous case of no CPOST which corresponds to
k = 0. Furthermore, we take Y = X and f(x, y) = δx,y,
which stems from the definition of the problem and our
intention to identify the states with highest probability.

FIG. 2. Discrimination problem for four qubit states labelled
by ±a and ±b. The standard optimal measurement is a prob-
abilistic projective measurement in the two bases given by the
four states. The anticipative measurement is a probabilistic
projective measurement in the two bases given by the vectors
±m and ±n.

A. Standard measurement

One of the optimal quantum measurements to distin-
guish the four different inputs (without CPOST) is

Mst(±a) = 1
4 (1± a · σ) ,

Mst(±b) = 1
4 (1± b · σ) .

(18)

This measurement results from the maximization of
Eq. (4) with the fixed postprocessing ν0(y | z) = δy,z, as
can be checked e.g. by testing the optimality conditions
in [19, Eqs. (4)-(5)] (the latter choice of ν0 is not restric-
tive, since we can always include the post-processing in
the optimized measurement). For the forthcoming calcu-
lations we need all the input-output probabilities of the
Born rule tr [E(x)Mst(z)], which are given in the following
table:

input (x)
measurement outcome (z)

+a −a +b −b

+a 1
8 0 1

8 cos2 θ
2

1
8 sin2 θ

2

−a 0 1
8

1
8 sin2 θ

2
1
8 cos2 θ

2

+b 1
8 cos2 θ

2
1
8 sin2 θ

2
1
8 0

−b 1
8 sin2 θ

2
1
8 cos2 θ

2 0 1
8

The success probability for the standard measurement
without CPOST given by Eq. (7) simply reduces to

P st
0 =

∑
x

tr
[
E(x)Mst(x)

]
=

1

2
. (19)
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This is the sum of the probabilities from the diagonal of
the table.

By using Eq. (9), we can also infer the success probabil-
ities P st

k when k outcomes are excluded by CPOST. The
optimal strategy consists in guessing the non-excluded
input having the highest probability conditioned to the
outcome of the measurement Mst. For k = 1, 2 one then
obtains the best guess following the mapping rules of the
next table:

measurement
outcome (z)

relabeling priority (y)

1st 2nd 3rd 4th

+a +a +b −b −a

−a −a −b +b +a

+b +b +a −a −b

−b −b −a +a +b

This mapping is determined based on the mapping pri-
ority where only non-excluded outcomes from the lower
right corner of the table are used. For example, having
obtained the outcome +a and excluded the outcomes
{+a,−b}, the next available choice is +b. If {+a,+b}
are excluded, the next best choice is−b. This observation
has also a visual interpretation. Looking at the setting
from Fig. 2, we see that the mapping priority is ordered
from the closest state to the orthogonal one. Performing
the calculations we obtain

P st
1 =

1

6

(
3 + cos2 θ

2

)
, (20)

P st
2 =

1

6

(
4 + cos2 θ

2

)
. (21)

B. Anticipative measurement

As explained in Section II B, the anticipative measure-
ment strategy for the given qubit state ensemble with the
exclusion of one or two wrong answers can be calculated
with the mathematical framework developed in [16]. If
there is one excluded answer, then the problem is the
same as the quantum guessing game studied in [16, Sec.
7.4] and one of the corresponding anticipative quantum
measurement was found to be

Man(±m) = 1
4 (1±m · σ) ,

Man(±n) = 1
4 (1± n · σ) ,

(22)

where

m =
a+ 3b√

10 + 6 cos θ
,

n =
3a+ b√

10 + 6 cos θ
.

(23)

In Appendix A, we summarize that proof and, in addi-
tion, we show that the measurement of Eq. (22) is op-
timal also in the case with k = 2, i.e., when classical
information excludes two wrong answers. The Born rule
probabilities tr [E(x)Man(z)] are the following:

input (x)
measurement outcome (z)

+m −m +n −n

+a Q+ Q− P+ P−

−a Q− Q+ P− P+

+b P+ P− Q+ Q−

−b P− P+ Q− Q+

Here we have denoted

P± =
1

16

(
1± 1 + 3 cos θ√

10 + 6 cos θ

)
,

Q± =
1

16

(
1± cos θ + 3√

10 + 6 cos θ

)
.

(24)

It is easy to check that Q+ ≥ P+ ≥ P− ≥ Q−.
Similarly as for the standard measurements, we can vi-

sualize the assignment of the measured results to the final
guess as a table. Since the input-output probabilities are
ordered in the same way as in the standard measurement
case and differ only in their magnitude, the mapping fol-
lows the same ordering:

measurement
outcome (z)

relabeling priority (y)

1st 2nd 3rd 4th

+n +a +b −b −a

−n −a −b +b +a

+m +b +a −a −b

−m −b −a +a +b

This yields the following expressions for the success prob-
abilities defined in Eq. (6):

P an
1 =

1

12

(
4 +
√

10 + 6 cos θ
)
, (25)

P an
2 =

1

12

(
6 +
√

10 + 6 cos θ
)
. (26)

Finally, to calculate the success probability P an
0 de-

fined in Eq. (8), we observe that the optimal assignment
without CPOST is ±m 7→ ±b and ±n 7→ ±a, which
again consists in guessing the non-excluded input having
the highest probability conditioned on the outcome of the
measurement Man. In this way, we get

P an
0 = 4Q+ =

1

4

(
1 +

cos θ + 3√
10 + 6 cos θ

)
. (27)
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FIG. 3. Success probabilities of the discrimination task for four qubit states from two bases spanning the angle θ. The
comparison is made between standard (blue) and anticipative (orange) measurements for different posterior information —
k = 0 for measurements without CPOST, k = 1 for CPOST excluding one wrong answer and k = 2 for CPOST excluding two
wrong answers. Solid lines correspond to the theoretical predictons and dashed lines are results from the ibmq manila.

All the studied situations are depicted for different θ
angles in Fig. 3 (solid lines). We can notice that while
for the case without CPOST (k = 0) the anticipative
measurement operates worse than the standard measure-
ment, with CPOST (k = 1, 2) the anticipative measure-
ment improves the success probability.

C. Demonstrations

The investigated state discrimination problem can be
easily applied to current quantum devices. The possibil-
ity to do so comes from the fact that the measurements
involved, whether standard or anticipative, are proba-
bilistic projective measurements. These measurements,
a subclass of projective simulable measurements [21, 22],
are implementable as a random choice from the set of
projective measurements [23]. In the qubit case, this re-
lates to a random choice of a base change prior to the
standard z-measurement. For example, the statistics of
the measurement Man can be obtained as a union of the
statistics of the projective measurement in the direction
±m and the projective measurement in the direction ±n
with equal number of runs. If the measurements would
not belong to the subclass of projective simulable mea-
surements, we could still implement them but that would
require ancillary dimensions.

Using IBMQ device ibmq manila, we implemented the

measurements in Qiskit, where for the rotations we used
only RY gates (more information in Appendix B). Since
the native gate set does not contain the RY gate, prior to
the computation it needs to be decomposed using the SX
and RZ native gates. This was automatically performed
by the transpiler.

For the standard measurement in the basis ±a we used
the angle +θ/2, while for the measurement in the basis
±b we used the angle −θ/2. For the anticipative mea-
surement we needed to rotate the basis either to the ±n
direction by the angle +ω/2 or to the ±m direction by
the angle −ω/2. The angle ω is obtained from the dot
product of the vectors m and n defined in Eq. (23):

cosω = m · n =
3 + 5 cos θ

5 + 3 cos θ
. (28)

As explained earlier, this angle remains the same in both
cases with k = 1 and k = 2.

The submissions to ibmq manila contained circuits
with 25 different choices for the parameter θ, 4 choices
of the initial state (±a or ±b), 2 choices for the mea-
surement (anticipative / standard), and 2 choices for the
measurement basis (a or b for standard and m or n for
anticipative), thus leading to 400 circuits, which were run
for 20,000 repetitions each. The preparation scheme of
these circuits is illustrated in Fig. 4.

All computations were performed on qubit 0 with ap-
plied optimization for the circuits, possibly combining
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FIG. 4. Diagram of circuit preparation for the data collection phase. For each choice of the angle θ, the prepared state and the
measurement direction, one circuit was constructed and executed 20,000 times.

preparation and measurement rotations into a more con-
venient form. Collected data were then post-processed to
obtain the probabilities. The post-processings were not
simulated any more but were computed from obtained
data — each datapoint (executed circuit) was used to
obtain the success probability for all allowed exclusions
(those not containing the prepared state) and, therefore,
it was used multiple times. The number of repetitions
was high enough to make variances minimal and so there
was no need to keep track of the precise number of shots
for each measurement and post-processing, allowing us
to extract probabilities this way.

Data obtained in the demonstration is depicted in
Fig. 3 as dashed lines. We can observe the general be-
havior that was theoretically described above — the an-
ticipative measurement is worse than the standard mea-
surement in the absence of CPOST, but it shows im-
provement over the standard measurement with CPOST
at hand. An interesting point is the region close to π/2,
where we can not only see that the anticipative mea-
surement is better than the standard measurement (for
k = 1 and k = 2) but, even more, the results of the
demonstration show an improvement over the theoreti-
cally best standard measurement.

IV. DISCUSSION

In this paper we have investigated a specific type of hy-
brid quantum-classical computation — parallel quantum-
classical computation where one performs quantum and
classical computations simultaneously and combines the
results in the end. Quantum computation necessarily
ends with a quantum measurement and we have focused
on this particular part of the process. We have intro-
duced a method of anticipative quantum measurements,
where the quantum measurement is optimized not in iso-
lation but taking into account that there will be classi-
cal supplementing information later. Crucially, the op-

timization does not depend on the actual outcome of
the classical information but just on the general form of
it. As an exemplary case we highlighted classical poste-
rior information that rules out some wrong answers. We
demonstrated that the method works even with a noisy
real quantum device.

The success of the anticipative method raises some
immediate thoughts and questions. Firstly, the scaling
properties of the approach are not studied in this pa-
per, but are important for further considerations. With
the scaled dimensions and scaled number of outcomes, we
generally observe scaling of the algorithmic time. This in
turn provides space for additional (time) resources of the
parallel classical computation that shall provide a more
informative posterior information. It remains for further
research to ascertain to what extent a measurable ad-
vantage is retained. It might well be that this question is
even specific to the chosen task. Still, in the worst case,
anticipative measurements might find their place in com-
putations on current NISQ devices with limited resources
and small tasks.

Secondly, one could possibly anticipate the classical
posterior information not only in the last step of the
quantum computation, namely in the quantum measure-
ment, but also in the earlier steps of it. This would mean
that one would modify the quantum process as a whole,
allowing for more freedom in the optimization and thus
potentially leading even to higher success rates. A draw-
back is that the method cannot then anymore be devel-
oped in the general form as we have done here, but it
should take into account the actual computational task.

Finally, we have observed several peculiar properties in
the specific exemplary qubit task. Namely, we saw that
the anticipative measurement is the same for the cases
of excluding one wrong answer and two wrong answers
although in general every type of CPOST can lead to a
different solution. Further, in these cases the anticipative
measurement has only four outcomes that are nonzero.
As explained in Section II C the anticipative measure-
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ment is optimal also with respect to the auxiliary state
ensemble discrimination, hence in both cases one would
have expected more outcomes than four. A further in-
vestigation will show to what extent these observations
are general and to what extent they are specific to the
task.
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Appendix A: Anticipative qubit measurements

We fix the set of inputs X and the state ensemble
E as in Eqs. (16) and (17), respectively. Our task is
to discriminate any given input x ∈ X, so we let the
output and input sets coincide, Y = X, and we choose
f(x,y) = δx,y following the notations of Section II B (we
use the bold symbols x, y in place of x, y to stress that
we deal with vectors in R3). We consider the parallel
quantum-classical computation in which CPOST consists
in excluding k wrong answers with either k = 1 or k = 2.
The set S of the excluded answers is thus an element of
the collection of sets T defined in Eq. (10). More pre-
cisely, for any fixed value of the input x the set S is
drawn from the subcollection

Tx = {S ⊂ Y : |S| = k and x /∈ S} . (A1)

We further assume that S is randomly picked with uni-
form probability within Tx, which means that the partial
information map α is

α(S |x) = 1
3 1X\S(x) ∀S ∈ T . (A2)

In the particular case with k = 1, we can canonically
identify T ' X and Tx ' X \ {x}, so that the partial
information map is α(t |x) = (1 − δx,t)/(m − 1) as de-
scribed in Section II C.

If we perform a measurement M with the outcome set
Z and we post-process its outcome by means of a post-
processing map ν, we guess a correct answer with the
probability PCPOST of Eq. (3). As we did in Eqs. (6) and
(9), we rewrite such probability as PCPOST(M, ν) in order
to stress its dependence on M and ν. Further, following
Eqs. (6), we denote by P an

CPOST
the value of PCPOST(M, ν) op-

timized over all measurements M and all post-processing
maps ν. The aim of this appendix is then to deter-
mine the maximum P an

CPOST
, find the measurements Man at

which it is attained and describe the corresponding opti-
mal post-processings. The essential tool is the following
relation proved in [16, Prop. 2]:

P an
CPOST

= max
M̄

PCPOST(M̄, π) . (A3)

In this expression, the maximum on the right-hand side
ranges over all measurements M̄ with the outcome set
XT , where XT is the set of all functions φ : T → X.
Moreover, π denotes the post-processing map

πS(x |φ) = δx,φ(S) . (A4)

Note that the outcome set XT of M̄ and the post-
processing map π are fixed in the right-hand side of
Eq. (A3). This compares with the definition of P an

CPOST
,

which in principle would require to optimize PCPOST over
both M and ν, also allowing the outcome set of M to
vary among all finite sets.

Theorem 1. For j ∈ {+,−}, let φa,bj be element of XT

defined as follows:

- if k = 1,

φa,bj (S) =

{
ja if ja /∈ S
jb if ja ∈ S

, (A5a)

- if k = 2,

φa,bj (S) =


ja if ja /∈ S
jb if ja ∈ S and jb /∈ S
−jb if ja ∈ S and jb ∈ S

. (A5b)

Then, a measurement attaining the maximum in
Eq. (A3) is the measurement M̄ = M̄a,b given by

M̄a,b(φ) = 0 for φ /∈ {φa,b+ , φa,b− } ,

M̄a,b(φa,bj ) = 1
2

(
1+ j

3a+ b

‖3a+ b‖
· σ
)
.

(A6)

Moreover, we have

P an
CPOST

=
1

12

(
2 + 2r +

√
10 + 6a · b

)
.

By exchanging the vectors a and b in Eqs. (A5) and
(A6), we also obtain the optimal measurement

M̄b,a(φ) = 0 for φ /∈ {φb,a+ , φb,a− } ,

M̄b,a(φb,aj ) =
1

2

(
1 + j

a+ 3b

‖a+ 3b‖
· σ
)
,

(A7)

and any convex combination of M̄a,b and M̄b,a is still a
measurement attaining the maximum in Eq. (A3). As
an example, the optimal measurement for the case with
k = 1 that was derived in [16, Equations (65) and (66)]
coincides with the sum (1/2) M̄a,b + (1/2) M̄b,a. In the
particular case with a · b = 0, Theorem 1 yields two ad-
ditional optimal measurements besides M̄a,b and M̄b,a,
namely the measurements M̄−a,b and M̄b,−a that are ob-
tained by replacing a with −a in (A6) and (A7), re-
spectively. The supports of the four measurements M̄a,b,
M̄b,a, M̄−a,b and M̄b,−a are mutually disjoint subsets of
XT , and each of them contains two elements. By restrict-
ing the convex sum (1/2) M̄a,b + (1/2) M̄b,a to its sup-

port {φa,b+ , φa,b− , φb,a+ , φb,a− }, evaluating the correspond-
ing restriction of the post-processing map π and rela-

beling φa,bj → jn and φb,aj → jm, we reduce the sum

(1/2) M̄a,b + (1/2) M̄b,a to the anticipative measurement
Man of Eq. (22), while π becomes the post-processing
map ν with

- if k = 1,

νS(x | jn) = δx,ja 1X\S(ja) + δx,jb 1S(ja) ,

νS(x | jm) = δx,jb 1X\S(jb) + δx,ja 1S(jb) ,

- if k = 2,

νS(x | jn) = δx,ja 1X\S(ja) + δx,jb 1S(ja) 1X\S(jb)

+ δx,−jb 1S(ja) 1S(jb) ,

νS(x | jm) = δx,jb 1X\S(jb) + δx,ja 1X\S(ja) 1S(jb)

+ δx,−ja 1S(ja) 1S(jb) .
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We observe that ν coincides with the relabeling priority
described in the second table of Section III B for both
cases with k = 1 and k = 2.

Proof of Theorem 1. By [16, Eq. (25)], we have

P(M̄, π) = C PĒ(M̄) ,

where Ē : XT → L(C2) is an auxiliary state ensemble
associated with E and defined as

Ē(φ) =
1

24C

∑
x

∣∣φ−1(x) ∩ Tx
∣∣ (1+ x · σ) ,

the scalar C > 0 is a suitable normalization constant,
and

PĒ(M̄) =
∑
φ

tr
[
Ē(φ)M̄(φ)

]
is the success probability of the usual state discrimina-
tion task for the auxiliary state ensemble Ē and the mea-
surement M̄. In particular, the measurements M̄ which
maximize the probabilities PCPOST(M̄, π) and PĒ(M̄) coin-
cide. Thus, optimizing the state discrimination task with
posterior information for the original ensemble E reduces
to a standard state discrimination problem for the auxil-
iary ensemble Ē . To solve the latter problem, we denote
by Λ(Ē) the largest eigenvalue of all the operators Ē(φ),
φ ∈ XT , and we observe that any measurement M̄ satis-
fies the inequality

PĒ(M̄) ≤ 2 Λ(Ē) .

As a consequence of [16, Proposition 1], the above bound
is attained if and only if M̄ satisfies the relation

Ē(φ) M̄(φ) = Λ(Ē) M̄(φ)

for all φ ∈ XT . We will show that this is actually the
case for the measurement M̄a,b of (A6), and therefore

PCPOST(M̄
a,b, π) = max

M̄
PCPOST(M̄, π) = 2C Λ(Ē)

for the value of Λ(Ē) that we will explicitly determine
below.
For notational convenience, for all φ ∈ XT and j ∈
{+,−}, we introduce the nonnegative integer numbers

αφj =
∣∣φ−1(ja) ∩ Tja

∣∣ , βφj =
∣∣φ−1(jb) ∩ Tjb

∣∣ ,
so that the auxiliary state ensemble rewrites

Ē(φ) =
1

24C

{(
αφ+ + αφ− + βφ+ + βφ−

)
1

+
[(
αφ+ − α

φ
−
)
a+

(
βφ+ − β

φ
−
)
b
]
· σ
}
.

The largest eigenvalue of the operator Ē(φ) is

λ(φ) =
1

24C

{
αφ+ + αφ− + βφ+ + βφ−

+
∥∥∥(αφ+ − αφ−)a+

(
βφ+ − β

φ
−
)
b
∥∥∥}

=
1

24C
γ
(
αφ+, α

φ
−, β

φ
+, β

φ
−
)
,

where γ is the function

γ
(
α+, α−, β+, β−

)
= α+ + α− + β+ + β−

+
[(
α+ − α−

)2
+
(
β+ − β−

)2
+ 2

(
α+ − α−

)(
β+ − β−

)
a · b

] 1
2 .

If αφ+ 6= αφ− or βφ+ 6= βφ−, the projection onto the λ(φ)-

eigenspace of Ē(φ) is the rank-1 operator

Π(φ) =
1

2

1+

(
αφ+ − α

φ
−
)
a+

(
βφ+ − β

φ
−
)
b∥∥∥(αφ+ − αφ−)a+

(
βφ+ − β

φ
−
)
b
∥∥∥ · σ

 .

We now proceed to separately evaluate

Λ(Ē) = max
φ

λ(φ) =
1

24C
max
φ

γ
(
αφ+, α

φ
−, β

φ
+, β

φ
−
)

in the two cases with k = 1 and k = 2.

- Case k = 1. Since |Tx| = 3 for all x ∈ X and∑
x

∣∣φ−1(x)
∣∣ = |T | = 4, the numbers αφ+, αφ−, βφ+ and

βφ− satisfy the constraints

αφ+, α
φ
−, β

φ
+, β

φ
− ∈ {0, 1, 2, 3} ,

αφ+ + αφ− + βφ+ + βφ− ≤ 4 .

For a · b > 0, the constrained maximum

max γ
(
α+, α−, β+, β−

)
subject to

α+, α−, β+, β− ∈ {0, 1, 2, 3} ,
α+ + α− + β+ + β− ≤ 4

(∗)

was evaluated in [16, Appendix A] and found to be
equal to 4 +

√
10 + 6a · b. By an easy continuity argu-

ment, this result extends also to the case with a ·b = 0.
We have(

αφ+, α
φ
−, β

φ
+, β

φ
−
)

=

{
(3, 0, 1, 0) if φ = φa,b+

(0, 3, 0, 1) if φ = φa,b−
,

which are two feasible points attaining the maximum
(∗). Therefore,

Λ(Ē) =
1

24C

(
4 +
√

10 + 6a · b
)
.

- Case k = 2. We still have |Tx| = 3 for all x ∈ X, but
now

∑
x

∣∣φ−1(x)
∣∣ = |T | = 6. Moreover, if x 6= y, we

have {x,y} /∈ Tx ∪ Ty and φ−1(x)∩ φ−1(y) = ∅, hence
it must be

∣∣φ−1(x)∩Tx
∣∣+ ∣∣φ−1(y)∩Ty

∣∣ ≤ |T |− 1 = 5.

It follows that the numbers αφ+, αφ−, βφ+ and βφ− now
satisfy the constraints

αφ+, α
φ
−, β

φ
+, β

φ
− ∈ {0, 1, 2, 3} ,

αφ+ + αφ− + βφ+ + βφ− ≤ 6 ,

αφ+ + βφ+ ≤ 5 ,

αφ− + βφ− ≤ 5 .
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As in the previous case, we first evaluate the con-
strained maximum

max γ
(
α+, α−, β+, β−

)
subject to

α+, α−, β+, β− ∈ {0, 1, 2, 3} ,
α+ + α− + β+ + β− ≤ 6 ,

α+ + β+ ≤ 5 ,

α− + β− ≤ 5 ,

(∗∗)

and next we prove that
(
αφ+, α

φ
−, β

φ
+, β

φ
−
)

is an optimal

point for all φ ∈ {φa,b+ , φa,b− }. To this aim, we fix a fea-

sible point
(
α+, α−, β+, β−

)
and we start by assuming

that αj−αh = 3 for some j, h ∈ {+,−}. It follows that
αj = 3, αh = 0 and

γ
(
α+, α−, β+, β−

)
= 3 + β+ + β−

+
[
9 +

(
β+ − β−

)2
+ 6

(
βj − βh

)
a · b

] 1
2

because α+, α− ∈ {0, 1, 2, 3}. If (α+, α−, β+, β−
)

is a

feasible point with βj ≤ βk, then (α′+, α
′
−, β

′
+, β

′
−
)

=

(α+, α−, β−, β+

)
is a feasible point such that

γ(α′+, α
′
−, β

′
+, β

′
−
)
≥ γ(α+, α−, β+, β−

)
and β′j ≥ β′k.

Therefore, in order to find the constrained maximum
(∗∗), we can restrict to the feasible points which satisfy
βj ≥ βk. For any such point, the relation αj + βj ≤ 5
requires that βj ≤ 2. The possibility β+ = β− = 2 is
excluded by the inequality α+ + α− + β+ + β− ≤ 6.
Therefore, the only remaining possibilities are

•
(
βj , βk) = (2, 1), and then

γ
(
α+, α−, β+, β−

)
= 6 +

√
10 + 6a · b ;

•
(
βj , βk) = (2, 0), and then

γ
(
α+, α−, β+, β−

)
= 5 +

√
13 + 12a · b

≤ 6 +
√

10 + 6a · b ;

•
(
βj , βk) = (1, 0), and then

γ
(
α+, α−, β+, β−

)
= 4 +

√
10 + 6a · b

< 6 +
√

10 + 6a · b ;

•
(
βj , βk) = (1, 1) or

(
βj , βk) = (0, 0), and then

γ
(
α+, α−, β+, β−

)
= 6 + β+ + β− ≤ 8

< 6 +
√

10 + 6a · b .

Next, we consider the case with βj − βh = 3, and we
observe that it is similar to the previous case with αj−
αh = 3. In particular,

γ
(
α+, α−, β+, β−

)
≤ 6 +

√
10 + 6a · b ;

also in this case. Finally, since the constraint
α+, α−, β+, β− ∈ {0, 1, 2, 3} requires that max{|α+ −

α−|, |β+ − β−|} ≤ 3, the only remaining possibility is
max{|α+ − α−|, |β+ − β−|} ≤ 2, which implies

γ
(
α+, α−, β+, β−

)
≤ 6 +

√
8 + 8a · b

≤ 6 +
√

10 + 6a · b .

In summary, the constrained maximum (∗∗) is 6 +√
10 + 6a · b, and it is attained e.g. at the feasible

points

(
αφ+, α

φ
−, β

φ
+, β

φ
−
)

=

{
(3, 0, 2, 1) if φ = φa,b+

(0, 3, 1, 2) if φ = φa,b−
.

Similarly to the case with k = 1, it then follows that

Λ(Ē) =
1

24C

(
6 +
√

10 + 6a · b
)
.

In both cases with k = 1 and k = 2, the measurement
(A6) satisfies the equality

M̄a,b(φ) =

{
Π(φ) if φ ∈ {φa,b+ , φa,b− }
0 otherwise

,

hence Ē(φ) M̄a,b(φ) = Λ(Ē) M̄a,b(φ) for all φ ∈ XT . The
relation (A3) and the optimality of M̄a,b then follow from
the previous discussion.

Appendix B: IBMQ Manila specifications

Our demonstrations were performed on ibmq manila,
which is one of the 5-qubit IBM Quantum Falcon Proces-
sors, r5.11L (linearly coupled qubits), at that time having
backend version 1.0.17 (dated 9. November 2021). Even
though we performed computations on qubit 0 only, we
present data for all qubits in the table, where we list
qubit frequencies f , T1 and T2 times, single qubit errors
ε1 and z-measurement errors εM .

The native gate set is CX (controlled X), ID (identity),
IF ELSE (classical dynamical coditioning), RZ (paramet-
ric z-rotation), SX (square root of X), X (bit flip / NOT
operation in the computational z-basis).

For completeness we describe also some of the oper-
ations. The gate X can be represented by the Pauli σx
matrix and as a result SX performs a unitary rotation
described by the matrix

√
σx =

1

2

(
1 + i 1− i
1− i 1 + i

)
.

The gate RZ performs a parametric unitary rotation given
by the matrix

Rz(θ) =

(
e−i

θ
2 0

0 e+i θ2

)
.
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Finally, we have used the gate RY which performs the
parametric rotation

Ry(θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
.

Since this gate does not belong to the native gate set of
ibmq manila, it needs to be further decomposed. One
can use the identity

Ry(θ) = i
√
σxRz(π − θ)

√
σxRz(π).

As we used automatic regime of Qiskit transpiler, the

actual decomposition might vary and is possibly further
optimized by the transpiler together with the rest of the
optimized circuit.

qubit f [GHz] T1 [µs] T2 [µs] ε1 εM

0 4.96(3) 208 116 2.06× 10−4 2.30× 10−2

1 4.83(8) 227 86 2.46× 10−4 2.80× 10−2

2 5.03(7) 179 25 2.41× 10−4 2.27× 10−2

3 4.95(1) 134 62 1.69× 10−4 2.14× 10−2

4 5.06(6) 147 41 3.13× 10−4 2.29× 10−2
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