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Quadratic Open Quantum Harmonic

Oscillator

Ameur Dhahri1, Franco Fagnola2 and Hyun Jae Yoo3

Abstract

We study the quantum open system evolution described by a Gorini-
Kossakowski-Sudarshan-Lindblad generator with creation and annihi-
lation operators arising in Fock representations of the sl2 Lie algebra.
We show that any initial density matrix evolves to a fully supported
density matrix and converges towards a unique equilibrium state. We
show that the convergence is exponentially fast and we exactly com-
pute the rate for a wide range of parameters. We also discuss the
connection with the two-photon absorption and emission process.

Keywords: quantum harmonic oscillator, quantum Markov semigroup, Fock
representations of the sl2 algebra, spectral gap.
Subject Classification: 46L55, 82C10, 60J27.

1 Introduction

Models of quantum harmonic oscillators are usually based on commutation
relations. The Heisenberg-Weyl algebra commutation relations [H,A] = −A,
[H,A+] = A+, [A,A+] = 1, or in terms of position Q = (A+ + A)/

√
2 and

momentum P = i(A+ − A)/
√
2, [H,Q] = −iP , [H,P ] = iQ, [Q,P ] = i

are the foundation at the best known one. This model arises, for instance,
replacing time derivatives in the classical equation q′′ = −q by commutators
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with the Hamiltonian operator H = (P 2 + Q2)/2 so that we can write it
as [H, [H,Q]] = Q. If we fix H and define P = i[H,Q], then the double
commutator equation reads as [H,P ] = iQ and if, moreover, we want H,P,Q
to be elements of a Lie algebra, the Jacobi identity [H, [P,Q]] + [P, [Q,H ]] +
[Q, [H,P ]] = 0 implies that [P,Q] commutes with H . The most natural
choice as −i1 corresponds to the commutation relations of the Heisenberg-
Weyl algebra.

Other choices lead to different models of quantum oscillators (see, for
instance, [6] and the references therein) and for some of them it is possible
to develop a complete theory describing explicitly spectra of observables,
eigenvectors, time evolution, etc. The choice [P,Q] = −2iH corresponds to
the commutation relations of the sl2 Lie algebra.

This is a three dimensional simple ∗-Lie algebra with basis {B+, B,M},
commutation relations [B,B+] = M , [M,B+] = 2B+, [M,B] = −2B and
involution B∗ = B+, M∗ = M . The construction of Fock representations of
sl2 Lie algebra and of the current algebra associated to its central extension
motivated a large number of papers extending it in different directions: see
Ref.[26] for the case of free white noise; [4] for the connection with quantum
Lévy processes; Refs.[1, 2, 10, 11] for the construction of the quadratic Fock
functor.

The weak coupling limit (see [5]) of an harmonic oscillator coupled with a
reservoir in equilibrium with inverse temperature β > 0 gives rise to a funda-
mental model of an open quantum system with a lot of deep properties and
quantities that can be computed explicitly called in the literature the open
quantum harmonic oscillator (see e.g. Ref.[21] and the references therein).
If we consider, instead, the formal Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) generator arising in the weak coupling limit of an oscillator based
on the Fock representations of sl2 commutation relations we find

L(x) = −λ
2

2

(

BB+x− 2BxB+ + xBB+
)

(1)

−µ
2

2

(

B+Bx− 2B+xB + xB+B
)

+ i[ζ+BB+ + ζ−B+B, x ]

where ζ±, λ, µ are real parameters and λ, µ > 0. This is called the quadratic
open quantum harmonic oscillator because the operators B,B+ are the an-
nihilation and creation operators arising in Fock representations of sl2 and
the action of BB+ and B+B (see formulae (2)) is quadratic with respect
to the level of the system while, for the open quantum harmonic oscillator,
it is linear. Constants λ2, µ2 are related with the inverse temperature β by
λ2µ−2 = e−sβ for some s > 0.

2



This is a simple and natural model, however, contrary to what happens
for the open quantum harmonic oscillator, it does not admit explicit solutions
except for the formula of the invariant state. As an example, if one looks at
the action on the abelian algebra of functions of the number operator, one
finds a birth-and-death process with quadratic jump rates for which explicit
representations for transition probabilities, to the best of our knowledge (see
Ref.[25]), are not known.

In this paper, we first show that the formal GKSL generator with un-
bounded operators B,B+ generates a unique quantum Markov semigroup
and we establish the existence of a unique explicit equilibrium state. Then,
we study the behaviour of the evolution of states and observables for all
values of parameters involved. We prove that any initial state converges to-
wards the unique equilibrium state for the trace norm (Theorem 1). We also
prove (Theorem 3) that any initial state ρ0, in particular also a pure state,
evolves to a faithful state ρt for all t > 0. Moreover, we show that, for some
special values of a parameter r determining the Fock representation of the sl2
commutation relations this model is intimately related with the two-photon
absorption and emission process studied in [8, 16]. Finally, we show that
convergence towards the unique invariant state is exponentially fast (with
respect to the Hilbert-Schmidt norm induced by the invariant state) and
we also compute the sharp exponential rate for a wide range of parameters
(Theorem 6). Our analysis shows, in particular, that the decay rate of off-
diagonal terms of density matrices is smaller than the rate of convergence of
the diagonal part towards the unique equilibrium state for more and more
values of the parameter r as the inverse temperature β becomes big, i.e. the
reservoir becomes cooler. In other words, at low temperatures, decoherence
is slower than relaxation for r away from 0.

The paper is organized as follows. In Section 2, we introduce the model of
the quadratic open quantum harmonic oscillator. The full characterization
of invariant states and the asymptotic behaviour of the associated quantum
Markov semigroup are studied in Section 3. The close relationship with two-
photon absorption and emission process is studied in Section 4. In Section
5, we show that for all initial state the support of the state evolved at any
time t > 0 is full. The rate of the exponentially fast convergence towards the
unique invariant state is studied in Section 6.

2 The model

Let h be the Hilbert space h = ℓ2(N) ≃ Γ(C) with canonical orthonormal basis
(en)n≥0. We consider the operators B,B+,M of the Fock representation of
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the renormalized square of the white noise Lie algebra B, B+ and M with
domain

Dom(B) = Dom(B+) = Dom(M) =

{

u =
∑

n≥0

unen

∣

∣

∣

∑

n≥0

n2|un|2 <∞
}

defined, on vectors of the canonical orthonormal basis, by

Ben = ω1/2
n en−1, for n > 0, Be0 = 0,

B+en = ω
1/2
n+1en+1 (2)

Men = (2n+ r)en,

where r > 0 is a real parameter (see Ref.[4] Section 3.2 p. 134 for the
explanation why r must be non-negative) and

ωn = n(n+ r − 1)

which is strictly positive for all n ≥ 1 and satisfies ω0 = 0.
Note that the domain of B,B+ and M coincides with the domain of the

number operator N defined by Nen = nen for all n ≥ 0.
We consider the formal Lindblad generator (1) which is of weak coupling

limit type (see Refs.[3, 5]) since it arises in the weak coupling limit of a system
with Hilbert space ℓ2(N) and Hamiltonian HS given by the number operator
N coupled to a Boson reservoir in equilibrium with inverse temperature β > 0
and interaction operator

B ⊗A+(g) +B+ ⊗ A(g).

Constants λ2, µ2 satisfy λ2µ−2 = e−sβ for some s > 0.
Moreover (see Section 4) for r = 1/2 (resp. r = 3/2) and a suitable

choice of the real constants ζ−, ζ+ we find the even (resp. odd) part of the
two-photon absorption and emission generator studied in Refs.[8, 16].

Let G be the operator defined on the domain Dom(N) of the number
operator by

G = −λ
2

2
BB+ − µ2

2
B+B − i

(

ζ+BB+ + ζ−B+B
)

and let L1, L2 be the operators defined on Dom(N) by

L1 = µB, L2 = λB+.
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Clearly G is a function of the number operator N , defined on the same
domain of B,B+ and M , since

G = −
(

λ2

2
+ iζ+

)

ωN+1 −
(

µ2

2
+ iζ−

)

ωN

with negative real part hence generates a strongly continuous semigroup of
contractions (Pt)t≥0 on h explicitly given by

Pten = e
−t

(

(

λ2

2
+iζ+

)

ωn+1+

(

µ2

2
+iζ−

)

ωn

)

en.

For every x ∈ B(h) the formal generator is the sesquilinear form

L−(x)[u, v] = 〈Gu, xv〉+
2
∑

ℓ=1

〈Lℓu, xLℓv〉+ 〈u, xGv〉, (3)

for u, v ∈ Dom(G) = Dom(N2). One can easily check that conditions for
constructing the minimal quantum dynamical semigroup (QDS) associated
with the above G,L1, L2 ((H-min) in Ref.[12]) hold and this semigroup T =
(Tt)t≥0 satisfies the so-called Lindblad equation

〈v, Tt(x)u〉 = 〈v, P ∗
t xPtu〉+

2
∑

ℓ=1

∫ t

0

〈LℓPt−sv, Ts(x)LℓPt−su〉 ds, (4)

for all u, v ∈ Dom(G).
A straightforward computation using the CCR (it could be done consid-

ering quadratic forms on the linear manifold generated by vectors (en)n≥0

if one wants to cope with unboundedness of the involved operators but we
prefer to simplify the notation) shows that

L−(f(N)) = λ2(N + 1)(N + r) (f(N + 1)− f(N))

+ µ2N(N + r − 1) (f(N − 1)− f(N)) .

Taking f(n) = (n+ 1)2, for n ≥ 1− r we easily find

λ2(n+ 1)(n+ r) (f(n+ 1)− f(n)) + µ2n(n+ r − 1) (f(n− 1)− f(n))

= 2(λ2 − µ2)n3 + (λ2(2r + 3) + µ2(2r − 3)))n2

+ (λ2(3r + 1) + µ2(r − 1))n+ λ2r

and, for 0 ≤ n < 1− r, i.e. n = 0 we obviously find 0. Therefore, defining as
b the maximum of the three constants

∣

∣λ2(2r + 3) + µ2(2r − 3)
∣

∣ ,
|λ2(3r + 1) + µ2(r − 1)|

2
, λ2|r|,
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we have
L−((N + 1l)2) ≤ −2(µ2 − λ2)N3 + b(N + 1l)2.

As a consequence, if λ ≤ µ, L− satisfies a well known criterion for conser-
vativity (Ref.[12] Theorem 3.40). Moreover, for λ > µ the formal generator
satisfies a simple criterion for nonconservativity, see Ref.[19], Example 2.
Then the minimal QDS is Markov (or conservative) if and only if λ ≤ µ. It
follows from conservativity that the minimal QDS is the unique solution of
equation (4). Moreover an operator x ∈ B(h) belongs to the domain of the
generator L if and only if the sesquilinear form L−(x) is bounded (see Ref.[12]
Prop. 3.33 p.64).

The action of L on the linear manifold M = span{|ej〉〈ek| : j, k ≥ 0} of
finite range operators is given by

L(x) = i
∑

j,k

(ζ+(ωj+1 − ωk+1) + ζ−(ωj − ωk))xjk|ej〉〈ek| (5)

+
∑

j,k

(

µ2ω
1/2
k ω

1/2
j xj−1 k−1 −

µ2

2
(ωj + ωk)xjk

+ λ2ω
1/2
j+1ω

1/2
k+1xj+1 k+1 −

λ2

2
(ωj+1 + ωk+1)xjk

)

|ej〉〈ek|.

3 Invariant states and asymptotic behaviour

The behaviour of the quadratic open quantum harmonic oscillator and the
structure of its invariant states depends crucially upon the parameters λ and
µ. We begin by considering the case where µ > λ > 0.

Proposition 1 If ν = λ/µ < 1 then the normal state

ρ = (1− ν2)
∑

n≥0

ν2n|en〉〈en| (6)

is invariant.

Proof. Let L∗ be the generator of the predual semigroup T∗ = (T∗t)t≥0,
acting on the Banach space of trace class operators on h. Consider the
approximations ρn = (1− ν2)

∑2n
k=0 ν

2k|ek〉〈ek|, of ρ by finite rank operators.
The operators ρn belong to the domain of L∗ and we can write L∗(ρn) as
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(1− ν2) times

n
∑

k=0

λ2ν2kωk+1 (|ek+1〉〈ek+1| − |ek〉〈ek|) +
n
∑

k=1

µ2ν2kωk (|ek−1〉〈ek−1| − |ek〉〈ek|)

=

n
∑

k=1

(

λ2ν2(k−1) − µ2ν2k
)

ωk|ek〉〈ek|+
n−1
∑

k=0

(

µ2ν2(k+1) − λ2ν2k
)

|ek〉〈ek|

+λ2ν2n (ωn+1|en+1〉〈en+1| − ωn|en〉〈en|) .

Terms in the above summations vanish because µ2ν2(k+1) = λ2ν2k for all
k ≥ 0. Moreover

lim
n→∞

‖L∗(ρn)‖1 = lim
n→∞

λ2ν2n(ωn+1 + ωn) = 0

because λ < µ. Since the operator L∗ is closed, it follows that ρ belongs to
the domain of L∗ and L∗(ρ) = 0.

In order to show uniqueness of the invariant state (6) we begin by recalling
that the support projection p of an invariant state with density matrix ρ, i.e.
the orthogonal projection onto the range of ρ, satisfies Tt(p) ≥ p for all
t ≥ 0 (see e.g. [14] Theorem II.1). Such projections, called subharmonic, are
easily characterized in terms of invariant subspaces of operators Pt and L1, L2

considered in Section 2. A QMS is called irreducible if the only subharmonic
projections are the trivial ones 0, 1l. In this case, it is well-known (see Ref.[18]
Lemma 1) that a faithful invariant state, if it exists, is unique because the
set of fixed points for the QMS T is the trivial algebra C1l. In our framework
we can prove the following.

Proposition 2 The QMS T is irreducible for all λ ≤ µ. In particular, if
λ < µ, the state (6) is the unique T -invariant state.

Proof. The range of any non-trivial subharmonic projection determines an
invariant subspace for the operators Pt for all t > 0 (see Ref.[14] Theorem
III.1). Since these operators are normal and compact, these invariant sub-
spaces are generated by eigenvectors of Pt. Moreover, knowing the spectral
decomposition of Pt (it is a function of the number operator!) we infer that
they are generated by collections of vectors (en)n∈I for some subset I of N.
Invariance of these subspaces for B and B+ implies then that they must
coincide with the whole of h. This proves that the QMS is irreducible.

If λ < µ the QMS admits the faithful invariant state (6) and so the set
of fixed points for the QMS T is the trivial algebra C1l. It follows then from
Lemma 1 of Ref.[18] that (6) is the unique invariant state. �
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Applying the main result of Ref.[9] we can also show convergence to-
wards the invariant state in trace norm. As a preliminary step we prove the
following result which is interesting on its own

Proposition 3 If ν = λ/µ < 1 the decoherence free subalgebra

N (T ) = {x ∈ B(h) | Tt(x
∗x) = Tt(x

∗)Tt(x), Tt(xx
∗) = Tt(x)Tt(x

∗), ∀t ≥ 0} .

and the fixed point algebra F(T ) = {x ∈ B(h) | Tt(x) = x ∀t ≥ 0} are trivial.

Proof. It is well-known that N (T ) is a von Neumann subalgebra of B(h)
(see e.g. Proposition 2.1 (3) of Ref.[9]). Moreover, since the invariant state
ρ defined in (6) is faithful, also F(T ) is a von Neumann subalgebra of B(h).
Indeed, if x belongs to F(T ), then, by 2-positivity, Tt(x

∗x) ≥ Tt(x
∗)Tt(x) =

x∗x and tr(ρ(Tt(x
∗x) − x∗x)) = 0 because ρ is invariant. It follows that

Tt(x
∗x) = x∗x i.e. x∗x ∈ F(T ).
As a by product, if x ∈ F(T ), then

Tt(x
∗x) = x∗x = Tt(x

∗)Tt(x),

and the same identity holds exchanging x and x∗, i.e. F(T ) is contained in
N (T ).

Thus, it suffices to prove that N (T ) is trivial. To this end, we apply
Theorem 4.1 of Ref.[9] characterizing N (T ) as the generalized commutator
of the set of unbounded operators

D (T ) :=
{

e−itHLℓ e
itH , e−itHL∗

ℓ e
itH | ℓ ≥ 1, t ≥ 0

}

. (7)

where H = ζ+BB++ζ−B+B. The additional technical domain assumptions
that can be easily checked taking as D the linear manifold spanned by finite
linear combinations of vectors en of the orthonormal basis and as operator
C the number operator or (N + 1)2.

If X is an operator in the generalized commutator of (7), then it is, by
definition of generalized commutator, bounded and, in particular, it satisfies

XB ⊆ BX, XB+ ⊆ B+X

(meaning that BX is an ampliation of XB and B+X is an ampliation of
XB+). It follows that

XB+B ⊆ B+XB ⊆ B+BX, XBB+ ⊆ BXB+ ⊆ BB+X,

and so, since the difference BB+ − B+B is 2N + r1l, NX is an ampliation
of XN and

X(s+N) ⊆ (s+N)X

8



for all s > 0. Left and right multiplying by the resolvent (s+N)−1, since the
operators (s+N)−1X and X(s+N)−1 are bounded, we find (s+N)−1X =
X(s+N)−1 for all s > 0. This shows that X commutes with every spectral
projection |en〉〈en| of the number operator and so it is a function f(N) of
the number operator itself. However, since ωn+1 > 0 for all n ≥ 0 if r > 0

f(N)B+en −B+f(N)en = ω
1/2
n+1(f(n+ 1)− f(n))en

vanishes if and only if f is constant and so the generalized commutator of
(7) is trivial. �

We are now in a position to prove the following.

Theorem 1 If 0 < ν = λ/µ < 1 then (6) is the unique invariant state and

lim
t→∞

T∗t(η) = ρ

in trace norm for all initial state η.

Proof. Since F(T ) = N (T ) = C1 by Proposition 3, the conclusion is
immediate from Theorem 3.3 of Ref.[9]. �

We complete the study of the asymptotic behaviour by the following.

Proposition 4 If λ = µ > 0 the QMS is transient. In particular, it has no
invariant state.

Proof. By Theorem 5 Ref. [15], it suffices to find a strictly positive bounded
operatorX such that Tt(X) ≤ X for all t ≥ 0. Inspired by a result on classical
birth and death processes ([22] Theorem 2 and Lemma 1), we consider the
operator

X =

(

∑

k≥n

(k + 1)−1(k + r)−1

)

|en〉〈en|

which is clearly bounded since
∑

k≥0(k+1)−1(k+r)−1 <∞ and is a function
of the number operator. A straightforward computation shows that

L−(X) = −|e0〉〈e0| ≤ 0.

It follows that X belongs to the domain of L ([12] Prop. 3.33 p.64) and

d

dt
Tt(X) = −Tt(|e0〉〈e0|) ≤ 0

so that Tt(X) ≤ X for all t ≥ 0. Since the QMS T is transient, it has no
invariant state by Proposition 6 of Ref.[15]. �

In the case where there is a faithful invariant state, it is not difficult to
show that the quantum detailed balance condition (in most of its quantum
formulations as in [17]) holds.

9



4 Relationship with the two-photon absorp-

tion and emission process

The two-photon absorption and emission process quantumMarkov semigroup
is generated by

Ltp(x) = i [ξ−a+2a2 + ξ+a2a+2, x]

− λ2

2

(

a2a+2x− 2a2xa+2 + xa2a+2
)

− µ2

2

(

a+2a2x− 2a+2xa2 + xa+2a2
)

where a, a+ are the usual annihilation and creation operators in h, λ, µ, ξ+, ξ− ∈
R, λ ≤ µ.

This generator has been studied in Ref.[16] for ξ+ = 0, however, this does
not change any result of that paper. In particular, it has been proved that
the even and odd projections

pe =
∑

k≥0

|e2k〉〈e2k|, po =
∑

k≥0

|e2k+1〉〈e2k+1|

are harmonic (i.e. invariant) for the QMS generated by Ltp. As a consequence
we can consider the restricted semigroups T e and T o on the von Neumann
subalgebras peB(h)pe and poB(h)po, identified respectively with B(peh) and
B(poh).

Let Ue, Uo be the unitary operators

Ue : h → peh, Ueek = e2k, Uo : h → poh, Uoek = e2k+1

A straightforward computation shows that, if r = 1/2,

UeBU
∗
e e2k = 2 a2e2k, UeB

+U∗
e e2k = 2 a+2e2k

and, if r = 3/2, similarly

UoBU
∗
o e2k+1 = 2 a2e2k+1, UoB

+U∗
o e2k+1 = 2 a+2e2k+1,

so that, in both cases,

Ue

(

ζ+BB+ + ζ−B+B
)

U∗
e = 4

(

ζ+a2a+2 + ζ−a+2a2
)

As a consequence, the quadratic open quantum harmonic oscillator generator
L, for ξ± = 4ζ±, satisfies

UeL(U∗
e xUe)U

∗
e = 4Ltp(pexpe) for r = 1/2

UoL(U∗
oxUo)U

∗
o = 4Ltp(poxpo) for r = 3/2

10



This shows that the QMS of the quadratic open quantum harmonic oscil-
lator is unitarily equivalent (up to the multiplicative constant 4) to the QMS
obtained by restriction of the two-photon absorption and emission process
to the even (resp. odd) states of the number operator for r = 1/2 (resp.
r = 3/2), for a suitable choice of the parameters ξ±, ζ±. This analogy will
serve as an inspiration to study the exponential speed of convergence towards
the equilibrium state.

5 Instantaneous spread of state supports

In this section we will show that for all initial state η the support of the state
T∗t(η) at any time t > 0 is the whole of h.

This property follows from a recent result by Hachicha, Nasroui and
Gliouez [20] Theorem 3.3 for QMSs associated with operators G,Lℓ (in our
case L1 = λB+, L2 = µB) constructed form generators.

Theorem 2 Suppose that G generates an analytic semigroup in a sector
∆ = {z ∈ C | |arg z| < θ} with θ ∈]0, π

2
] and, moreover, that

Lℓ(Dom(Gk)) ⊆ Dom(Gk−1) (8)

for all k > 0. For all state ω =
∑

j∈J ωj|ψj〉〈ψj |, with ωj > 0 for all j ∈ J
and all t ≥ 0, the support projection St(ω) of the state T∗t(ω) is the closure
of linear manifold generated by vectors

Ptψj , δ
m1

G (Lℓ1)δ
m2

G (Lℓ2) · · · δmn

G (Lℓn)Ptψj (9)

for all j ∈ J , n ≥ 1, m1, · · · , mn ≥ 0 and ℓ1, · · · , ℓn ≥ 1 where δmG denotes
the m-th iterated commutator with G and δ0G(Lℓ) = Lℓ.

In our framework the operator G can be written as

G = −
(

λ2 + µ2

2
+ i
(

ζ+ + ζ−
)

)

N2 +

(

λ2

2
+ iζ+

)

r

−
((

λ2 + µ2

2
+ i
(

ζ+ + ζ−
)

)

r +

(

λ2 − µ2

2
+ i
(

ζ+ − ζ−
)

))

N.

Note that the self-adjoint operator N2 generates a semigroup (ezN
2

)z∈C−R+

defined on the complex plane without the positive real half axis which is an
analytic semigroup in the half plane {z ∈ C | ℜ(z) < 0}. Thus, by a change
of variable, the operator

G0 = −
(

λ2 + µ2

2
+ i
(

ζ+ + ζ−
)

)

N2 (10)
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generates an analytic semigroup in the sector

ℜ
((

λ2 + µ2

2
+ i
(

ζ+ + ζ−
)

)

z

)

> 0,

which is equivalent to ℜ(z) > 0 for ζ+ + ζ− = 0 and

ℑ(z) < λ2+µ2

2(ζ++ζ−)
ℜ(z), if ζ+ + ζ− > 0,

ℑ(z) > λ2+µ2

2(ζ++ζ−)
ℜ(z), if ζ+ + ζ− < 0.

In any case the semigroup generated by the operator G0 in (10) is analytic
in the sector

{

z ∈ C | |arg (z)| < arctan
(

(λ2 + µ2)/(2
∣

∣ζ+ + ζ−
∣

∣

)}

(11)

with the convention arctan(+∞) = π/2. Clearly Dom(G) = Dom(G0) =
Dom(N2) and G is the sum of G0 and an operator with domain Dom(N) =

Dom(G
1/2
0 ) where G

1/2
0 is defined as N times a square root of the complex

number (λ2 + µ2)/2 + i(ζ+ + ζ−). It follows then from Corollary 2.4 p.81 of
[24] that G generates an analytic semigroup in the sector (11).

We can now prove the following.

Theorem 3 For all initial state η the support of the state T∗t(η) at any time
t > 0 is the whole of h.

Proof. The assumption (8) obviously holds because Dom(Gk) = Dom(N2k)
and B,B+ map Dom(Nh) in Dom(Nh−1) for all h so that

B±(Dom(Gk)) ⊆ Dom(N2k−1) ⊆ Dom(N2k−2) = Dom(Gk−1).

For all state ω we can write its spectral decomposition ω =
∑

j∈J ωj|ψj〉〈ψj|,
for a collection (ψj)j∈J of orthonormal vectors and ωj > 0 for all j ∈ J and J
non-empty. Since L1 = λB+, L2 = µB−, δ0G(B

±) = B± and [B,B+]− r 1 =
2N , by Theorem 2, all vectors

NnPtψj = 2−n
(

[B,B+]− r1
)n
Ptψj (12)

belong to the support of T∗t(ω). Write Ptψj =
∑

k≥0 zjk(t)ek and let mj be

the minimum k for which zjk(t) 6= 0. Since the function z → e−zN is analytic
for ℜz > 0, and Ptψj belongs to the support of T∗t(ω), for all real number
s > 0

∑

n≥0

(−s)n
n!

(N −mj1)
nPtψj = e−s(N−mj1)Ptψj

= zjmj
(t)emj

+
∑

k>mj

zjk(t)e
−s(k−mj)ek

12



belongs to the support of T∗t(ω) by (12) for all s > 0. Taking the limit as s
tends to infinity, we conclude that emj

belongs to the support of T∗t(η). In
the same way, starting from either

BkPtψj = (δ0G(B))kPtψj or B+kPtψj = (δ0G(B
+))kPtψj ,

we can conclude that

Bkemj
and B+kemj

belong to the support of T∗t(ω) for t > 0 for all k. As a consequence, the
support of T∗t(ω) is the whole of h for all t > 0.

6 Spectral gap

In this section we discuss the spectral gap of the generator of the semigroup
of the quadratic harmonic oscillator. For the purpose we will follow the
methods developed in Refs. [7, 8].

6.1 Dirichlet form and spectral gap

Recall the invariant state ρ in (6). Let L2(h) be the space of Hilbert-Schmidt
operators on h with inner product 〈x, y〉 = tr(x∗y). Consider the embedding

ι : B(h) → L2(h), ι(x) = ρ1/4xρ1/4.

Let T = (Tt)t≥0 be the strongly continuous contraction semigroup on L2(h)
defined by

Tt(ι(x)) = ι(Tt(x)).

Let L be the generator of the semigoup (Tt)t≥0. We can check that

L(ρ1/4xρ1/4) = ρ1/4L(x)ρ1/4, for x ∈ D(L).

Lemma 1 For x =
∑

j,k xjk|ej〉〈ek| ∈ M,

L(x) = i
∑

j,k≥0

(ζ+(ωj+1 − ωk+1) + ζ−(ωj − ωk))xjk|ej〉〈ek| (13)

+
∑

j,k≥0

(

µλ(ωkωj)
1/2xj−1 k−1 −

µ2

2
(ωj + ωk)xjk

+µλ(ωj+1ωk+1)
1/2xj+1k+1 −

λ2

2
(ωj+1 + ωk+1)xjk

)

|ej〉〈ek|.

13



with the convention xj−1 k−1 = 0 if j = 0 or k = 0.
The Dirichlet form, defined for ξ ∈ D(L), is the quadratic form E

E(ξ) = −Re〈ξ, L(ξ)〉.

The spectral gap of the operator L is the nonnegative number

gapL := inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ (KerL)⊥}.

Lemma 2 For ξ ∈ D(L) with ξ =
∑

j,k ξjk|ej〉〈ek|

E(ξ) =
1

2
µ2

(

∑

k≥1

ωk|ξ0k|2 +
∑

j≥1

ωj |ξj0|2
)

+
1

2

∑

j,k≥0

(

∣

∣

∣
µω

1/2
j+1ξj+1k+1 − λω

1/2
k+1ξjk

∣

∣

∣

2

+
∣

∣

∣
µω

1/2
k+1ξj+1k+1 − λω

1/2
j+1ξjk

∣

∣

∣

2
)

.

In particular, E(ξ) = E(ξ∗), where ξ∗ is the adjoint operator of ξ.

Proof. By Lemma 1 we get

E(ξ) = −Re 〈ξ, L(ξ)〉
= −Re

∑

j,k

[

µλ(ωjωk)
1/2ξjkξj−1k−1 −

1

2
µ2(ωj + ωk)|ξjk|2

+µλ(ωj+1ωk+1)
1/2ξjkξj+1k+1 −

1

2
λ2(ωj+1 + ωk+1)|ξjk|2

]

Rearranging the terms we get the desired expression. �

Proposition 5 If W = {ξ ∈ D(L) : E(ξ) = 0} then

span{ρ1/2} = ι(KerL) = KerL =W.

Proof. Since 1 ∈ KerL, ρ1/2 = ι(1) ∈ KerL. It is obvious that KerL ⊂W .
Suppose ξ =

∑

j,k ξjk|ej〉〈ek| ∈ W . By Lemma 2

ξj+1k+1 = ν

√

ωk+1

ωj+1
ξjk = ν

√

ωj+1

ωk+1
ξjk (14)

and
ξ0k = ξk0 = 0, for k ≥ 1.

14



Thus ξ must be diagonal and by (14), ξk+1k+1 = νξkk. Hence for k ≥ 0,
ξkk = νkξ00, i.e., ξ = const.ρ1/2. This completes the proof. �

Like the model of two-photon absorption and emission process discussed
in [8], there are invariant subspaces for the process of quadratic open quantum
harmonic oscillator. For m ∈ Z, define

Gm := span{|ek〉〈ek+m| : k ≥ max{0,−m}}.
One can easily check the following properties.

(1) ξ ∈ Gm ⇔ ξ∗ ∈ G−m.

(2) The linear spaces Gm are orthogonal in L2(h), and

L2(h) = ⊕{Gm : m ∈ Z}.

(3) Each Gm is invariant for the generator L and so also for the semigroup
T .

(4) Each Gm is isometrically isomorphic to the space l2(N) of square summable
sequences.

By mimicking the proof of [8, Proposition 4], we can show the following.

Proposition 6

gapL = inf
m≥0

Am,

where Am =

{

inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ Gm}, for m 6= 0

inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ G0, ξ ⊥ ρ1/2}, for m = 0
.

We will now study separately off-diagonal and diagonal minima.

6.2 Off-diagonal minimum problems

Fix m > 0. For ξ ∈ Gm we can write for some sequence y = (yj)j≥0 in l2(N),

ξ =
∑

j

yj |ej〉〈ej+m|,

where yj = ξj j+m. Then

E(ξ) =
1

2
µ2ωm|y0|2 +

1

2

∑

j

(

|µ√ωj+1yj+1 − λ
√
ωj+m+1yj|2

+|µ√ωj+m+1yj+1 − λ
√
ωj+1yj|2

)

. (15)
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Proposition 7 For any m ≥ 1,

Am ≥ µ2m

2

(

(m+ r − 1) + ν2(m− r + 1)
)

(16)

The lower bound is attained by E(ξ) for

y2j = ν2(j+1)

(

j +m

m

)

Γ(m+ r)Γ(j + r)

Γ(r)Γ(j +m+ r)
y20

and y0 ≥ 0 such that ‖ξ‖2 = 1.

Proof. We fix m ≥ 1 and ξ ∈ Gm. From the formula (15), without loss of
generality we may assume yj ≥ 0 for all j ≥ 0 because |a− b| ≥ ||a| − |b|| for
any complex numbers a and b. Then we can rewrite

E(ξ) =
1

2
µ2ωmy

2
0 +

1

2

∑

j≥0

(

(ωj+1 + ωj+m+1)(µ
2y2j+1 + λ2y2j )

−4µλ
√
ωj+1ωj+m+1yj+1yj

)

. (17)

Since

2λµ yj+1yj ≤ µ2θjy
2
j+1 +

λ2

θj
y2j (18)

where θj > 0 is such that

ωj+m+1 + ωj+1 − 2θj
√
ωj+m+1ωj+1 = ωm

i.e.

θj =
ωj+m+1 + ωj+1 − ωm

2
√
ωj+m+1ωj+1

.

In this way, we get the inequality

E(ξ) ≥ µ2

2
ωmy

2
0 +

µ2

2

∑

j≥0

ωmy
2
j+1 +

λ2

2

∑

j≥0

(

ωj+m+1 + ωj+1 −
2
√
ωj+m+1ωj+1

θj

)

y2j

=
µ2

2
ωm‖y‖2 +

λ2

2

∑

j≥0

(

ωj+m+1 + ωj+1 −
4ωj+m+1ωj+1

ωj+m+1 + ωj+1 − ωm

)

y2j

=
µ2

2
ωm‖y‖2 +

λ2

2

∑

j≥0

m(m− r + 1)(j + 1)(j +m+ r)

(1 + j)(j +m+ r)
y2j

=
µ2

2
ωm‖y‖2 +

λ2

2

∑

j≥0

m(m− r + 1)y2j .

16



It follows that

Am ≥ µ2ωm

2
+
λ2m(m− r + 1)

2
=
µ2m

2

(

(m+ r − 1) + ν2(m− r + 1)
)

The above lower bound for the Dirichlet form is attained if and only if the
Schwarz inequalities (18) are equalities namely µθ

1/2
j yj+1 = λθ

−1/2
j yj so that

yj+1 =
ν

θj
yj

for all j ≥ 1. Iterating we find

yj+1 =
νj+1

θj · · · θ0
y0 = νj+1y0

j
∏

i=0

2
√
ωi+m+1ωi+1

ωi+m+1 + ωi+1 − ωm
.

Since

lim
j→∞

y2j+1

y2j
= ν2 lim

j→∞

4ωj+m+1ωj+1

(ωj+m+1 + ωj+1 − ωm)2
= ν2 < 1,

we find
∑

j≥0 y
2
j <∞ and so the lower bound is a minimum.

Minimizers can be written in an explicit form. First note that

y2j+1 = ν2
4(j +m+ 1)(j +m+ r)(j + 1)(j + r)

4(j + 1)2(j +m+ r)2
y2j = ν2

(j +m+ 1)(j + r)

(j +m+ r)(j + 1)
y2j .

Iterating

y2j+1 = ν2(j+1) (j +m+ 1) · · · (m+ 1)

(j +m+ r) · · · (m+ r)

(j + r) · · · r
(j + 1)!

y20

= ν2(j+1) (j +m+ 1)!

m!(j + 1)!

(j + r) · · · r
(j +m+ r) · · · (j + 1 + r)

y20

= ν2(j+1)

(

j +m+ 1

m

)

Γ(m+ r)Γ(j + r + 1)

Γ(r)Γ(j +m+ r + 1)
y20.

�

The function m → (m+ r − 1) + ν2(m− r + 1) is a positive and increasing
function of m for m ≥ 1 and so we have

Theorem 4 The off-diagonal gap is

inf
m≥1

µ2m

2

(

(m+ r − 1) + ν2(m− r + 1)
)

=
µ2

2

(

2ν2 + (1− ν2)r
)

.
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6.3 Diagonal minima

For any f in l2(N), let us denote by Mf ∈ B(h) the multiplication operator
by f , Mf =

∑

j fj |ej〉〈ej |. Then we get

L(Mf ) =MAf for f ∈ D(A) := {f ∈ l∞ : Mf ∈ D(L)}.

The (formal) explicit expression for A is given by

Af =
∑

j

(

λ2ωj+1(fj+1 − fj) + µ2ωj(fj−1 − fj)
)

ej.

The invariant measure for this classical birth and death process is

π = (πu)u≥0 with πu = (1− ν2)ν2u.

From now on, whenever there is no confusion we write simply f for Mf ∈
B(h). By Lemma 2 we can compute

E(π1/2f) =
∑

j

λ2ωj+1|fj+1 − fj |2πj .

Proposition 8 For any positive sequence (an)n, define the (strictly positive)
constant

B(ν) := sup
u≥0

(µ2(1− ν2))−1

auωu+1

{

∑

v≤u

(1− ν2(v+1))av + (ν−2(u+1) − 1)
∑

v>u

ν2(v+1)av

}

.

Then gap(A) ≥ B(ν)−1.

Proof. We follow the proof of [8, Proposition 7] with a change (2u+1)(2u+2)
by ωu+1, which amounts to consider the birth rate bj = λ2ωj+1 instead of
bj = λ2(2j + 1)(2j + 2). �

The following was proven in [8, Lemma 8].

Lemma 3 Take a positive summable sequence (an)n≥0 and define the positive
decreasing tail sequence (Ak)k≥0 by Ak =

∑

n≥k ak. Then

B(ν) = sup
u≥0

1

µ2auωu+1

∑

k≥0

ν2k(Ak − Ak+u+1).

Thus the computation of the spectral gap relies on how we choose the se-
quence (an)n. Here we propose the following choice. (cf. [8, Lemma 9])
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Lemma 4 Let an = 1
(n+r+1)(n+r)

. Then the following properties hold.

(i) Ak =
∑

n≥k an = 1
k+r

.

(ii)
∑

k≥0 ν
2kak = 2ν−2(r+1)

∫ ν

0
s2r−1

1−s2
(ν2 − s2)ds.

(iii)
∑

k≥0 ν
2kAk = 2ν−2r

∫ ν

0
s2r−1

1−s2
ds.

Proof. The item (i) is trivial. To prove (ii), we write

∑

k≥0

ν2kak =
∑

k≥0

ν2k
(

1

k + r
− 1

k + r + 1

)

.

Let

a(ν) :=
∑

k≥0

ν2k
1

k + r
.

Then, b(ν) := a(ν)ν2r satisfies

b′(ν) = 2
ν2r−1

1− ν2
.

Since b(0) = 0, we get

b(ν) = 2

∫ ν

0

s2r−1

1− s2
ds.

From this we easily get the desired expression. For (iii), we see by (i) that
the value we are looking for is a(ν), which we computed in the above. �

We can now find a lower bound for the diagonal minimum of the Dirichlet
form on vectors ξ orthogonal to ρ1/2.

Theorem 5

gap(A) ≥ µ2

(

∑

k≥0

ν2k
1

k + r

)−1

= µ2ν2r
(

2

∫ ν

0

s2r−1

1− s2
ds

)−1

.

Proof. We choose the sequence (an)n as in Lemma 4. Let us define a function
V : N → R by

V (u) :=
1

auωu+1

∑

k≥0

ν2k(Ak − Ak+u+1)

=
u+ r + 1

u+ 1

∑

k≥0

ν2k
(

1

k + r
− 1

k + u+ 1 + r

)

.
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We can see that the function V (u) is increasing. In fact, regarding V (u) as a
function on the interval [0,∞), we differentiate it. With a little computation
we see that

V ′(u) =
∑

k≥0

ν2k
k

(k + u+ 1 + r)2(k + r)
> 0.

Therefore we get by using Lemma 4 (iii)

µ2B(ν) = sup
u≥0

V (u) =
∑

k≥0

ν2k
1

k + r
= 2ν−2r

∫ ν

0

s2r−1

1− s2
ds.

The result now follows by Proposition 8. �

Remark. The lower bound of theorem 5 can be written in a closed form
by introducing the Lerch function Φ : { z ∈ C | |z| < 1 } × N×]0,+∞[→ C

Φ(z, n, r) =
∑

k≥0

zk

(k + r)n
.

By Theorem 5, we have gap(A) ≥ µ2 (Φ(ν2, 1, r))
−1
. Moreover, by comparing

the off-diagonal explicit minimum and the diagonal lower bound we find the
following.

Theorem 6 For all ν, r such that (2ν2 + r(1− ν2))Φ(ν2, 1, r) ≤ 2 we have

gapL =
µ2

2

(

2ν2 + r(1− ν2)
)

. (19)

In particular, if r ≥ 2ν2/(1− ν2) the above identity holds.

Proof. The first claim follows immediately by comparing the diagonal lower
bound of Theorem 5 and the off-diagonal minimum of Theorem 4. By the
elementary inequality,

∞
∑

k=0

ν2k

k + r
=

1

r

∞
∑

k=0

rν2k

k + r
≤ 1

r

∞
∑

k=0

ν2k =
(

r(1− ν2)
)−1

we have Φ(ν2, 1, r) ≤ (r(1− ν2))
−1

and so the identity (19) holds, in partic-
ular, if (r(1− ν2))

−1
(2ν2 + r(1− ν2)) ≤ 2, i.e. r ≥ 2ν2/(1− ν2). �

The graph in Figure 1 shows the values of ν, r for which the identity
(2ν2 + r(1− ν2)) Φ(ν2, 1, r) = 2 holds. Clearly, for pairs (ν, r) lying above
(or on) the graph the spectral gap is given by (19). The exact value of
the spectral gap, for pairs (ν, r) lying below the graph, could be also the
diagonal minimum whose exact value is not known and we are unable to
compute. This will be clear studying upper bounds for the diagonal spectral
gap.
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Figure 1: gap(L) = µ2(2ν2 + r(1 − ν2))/2, off-diagonal minimum, for (ν, r)
above the curve.

6.4 Upper bound

In this section we discuss the upper bound of the diagonal spectral gap. By
definition, any value E(ξ) with ‖ξ‖ = 1, with ξ orthogonal to ρ1/2 is an upper
bound for the gap. Thus to get a good upper bound we need to choose a
vector ξ cleverly.

Looking at the explicit form of the off-diagonal minimizer that we get
for m = 1, we consider the first order polynomial fj = j − c where c is

a constant chosen in such a way that j → π
1/2
j fj is orthogonal to π

1/2
j i.e.

∑

j πj(j− c) = 0. It is worth noticing here that this choice yields the desired

minimizer of the Dirichlet form on vectors orthogonal to ρ1/2 for the usual
harmonic oscillator (see [7]). Using the identities

(1− ν2)
∑

k≥0

kν2k =
ν2

1− ν2
, (1− ν2)

∑

k≥0

k2ν2k =
ν2(1 + ν2)

(1− ν2)2
,

one computes c = ν2/(1− ν2). Then, considering ξj = π
1/2
j (j − c), one finds

‖ξ‖2 = (1− ν2)
∑

k≥0

(k − c)2ν2k =
ν2

(1− ν2)2

E(ξ) = λ2
∑

j≥0

(fj+1 − fj)
2(j + 1)(j + r)πj = λ2

2ν2 + r(1− ν2)

(1− ν2)2
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and so
E(ξ)
‖ξ‖2 = µ2(2ν2 + r(1− ν2)).

As a consequence, one has the explicit upper bound

gap(L) ≤ µ2(2ν2 + r(1− ν2))

which is twice the spectral gap in good cases by Theorem 6.

In order to show that the spectral gap converges to 0 as r → 0, we find
another upper bound computing the value of the Dirichlet form for another
vector ξ suggested by our choice of the sequence (Ak)k in Lemma 4.

Theorem 7

gapL ≤ λ2
∑

j
j+1

(j+r+1)2(j+r)
ν2j

∑

j

(

1
j+r

− c(ν, r)
)2

ν2j
,

where c(ν, r) = (1− ν2)
∑∞

j=0
ν2j

j+r
= (1− ν2)Φ(ν2, 1, r). In particular, for all

ν > 0 fixed, gapL tends to 0 as r → 0.

Proof. We consider Ak = (k+r)−1 as in Lemma 4, and define fk = Ak−c =
(k+r)−1−c(ν, r), where the constant c is such that

∑

j πjfj = 0. We compute

E(π1/2h) =
∑

j≥0

λ2ωj+1|fj+1 − fj|2πj

= (1− ν2)λ2
∑

j≥0

j + 1

(j + r + 1)2(j + r)
ν2j .

On the other hand, ‖f‖2π = (1−ν2)∑j≥0 ((j + r)−1 − c(ν, r))
2
ν2j . Therefore,

E(ξ)/‖ξ‖2 ≤ λ2
∑

j
j+1

(j+r+1)2(j+r)
ν2j

∑

j

(

1
j+r

− c
)2

ν2j
(20)

We now check that the above upper bound tends to 0 as r → 0. To this end
note that we can write the denominator as

∑

j≥0

ν2j

(j + r)2
− (1− ν2)

(

∑

j≥0

ν2j

j + r

)2

=
1

r2

(

1 +
∑

j≥1

r2ν2j

(j + r)2

)

+ (1− ν2)

(

1

r
+
∑

j≥1

ν2j

j + r

)2
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It follows that, if we multiply the denominator by r2 in the limit as r → 0 we
get 1− (1− ν2) = ν2. On the other hand, if we multiply also the numerator
by r2 we get

lim
r→0

∑

j≥0

r2(j + 1)ν2j

(j + r + 1)2(j + r)
≤ lim

r→0

∑

j≥0

rν2j

(j + r + 1)
≤ lim

r→0
r
∑

j≥0

ν2j

(j + 1)
= 0.

This completes the proof. �

Conclusion. Theorem 7 shows that, for r near 0, gapL is the diagonal
gap whose exact value is not known. Moreover, it tends to 0 as r → 0.
The exact result of Theorem 6 holds in the white region above the graph in
Figure 1. It is worth noticing here that the range of values of r for which
our exact result holds becomes closer and closer to the half-line (0,+∞) as
ν2 = e−sβ goes to 0, namely the inverse temperature β goes to +∞. This
confirms the intuition that quantum (off-diagonal) effects prevail over the
classical (diagonal) ones when the temperature is small.
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classical Lévy-Austin-Ornstein theorem. Open. Sys. Inf. Dyn. to appear.

[21] A. Isar and W. Scheid, Uncertainty functions of the open quantum har-
monic oscillator in the Lindblad theory Phys. Rev. A 66 042117, 2002.

[22] S. Karlin and J. McGregor, The Classification of Birth and Death Pro-
cesses, Trans. Amer. Math. Soc., 86, No. 2 (1957), pp. 366–400.

[23] T. Liggett, Exponential L2 convergence of attractive reversible nearest
particle systems, Ann. Prob. 17(2), 403-432 (1989).

[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Equations, Springer, New-York 1983.

[25] M. Simon, G. Valent, Spectral analysis of birth-and-death processes with
and without killing via perturbation, Methods Appl. Anal. 16 (1) 055–
068, 2009
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