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Self acceleration from spectral geometry in
dissipative quantum-walk dynamics

Peng Xue 1 , Quan Lin1, Kunkun Wang2, Lei Xiao1, Stefano Longhi 3,4 &
Wei Yi 5,6

The dynamic behavior of a physical system often originates from its spectral
properties. In open systems, where the effective non-Hermitian description
enables a wealth of spectral structures in the complex plane, the concomitant
dynamics are significantly enriched, whereas the identification and compre-
hension of the underlying connections are challenging. Here we experimen-
tally demonstrate the correspondence between the transient self-acceleration
of local excitations and the non-Hermitian spectral topology using lossy
photonic quantum walks. Focusing first on one-dimensional quantum walks,
we show that the measured short-time acceleration of the wave function is
proportional to the area enclosed by the eigenspectrum. We then reveal a
similar correspondence in two-dimension quantum walks, where the self-
acceleration is proportional to the volume enclosed by the eigenspectrum in
the complex parameter space. In both dimensions, the transient self-
acceleration crosses over to a long-time behavior dominated by a constant
flow at the drift velocity. Our results unveil the universal correspondence
between spectral topology and transient dynamics, and offer a sensitive probe
for phenomena in non-Hermitian systems that originate from spectral
geometry.

In both classical and quantummechanics, the dynamicsof a systemare
intimately connected with its spectral features through the equations
of motion1–4. Just as the energy of a celestial body impacts its
trajectory5, the energy quantization accounts for the spontaneous
collapse and revival in quantum models2. In solid materials, transport
of electrons depends on the lattice dispersion6–8, with strict connec-
tions between spectral and dynamical features of transport. For
example, in a clean lattice with absolutely continuous spectrum,
transport is ballistic, while in disordered lattices, the different nature
of the energy spectrum greatly impacts the spreading dynamics of the
wave function, leading to distinct behaviors ranging from the Ander-
son localization to diffusive and intermittent quantum dynamics9.
These examples, however, all concern isolated systems with

completely real energy spectra. For open systems that exchange
energy or particles with its environment, an effective non-Hermitian
description is often adopted, where the underpinning non-Hermitian
Hamiltonians feature complex eigenspectra10–12. This enables a rich
variety of spectral geometries in the complex plane, with non-trivial
consequences on the system behavior13–21. The dynamics generated by
non-Hermitian Hamiltonians are often less intuitive than those of
conventional Hermitian systems. For example, the semiclassical
equations of non-Hermitian Hamiltonians generalize the Ehrenfest
theorem in a nontrivial way22, leading to phase-space dynamics with a
changing metric structure22–24. Beyond the semiclassical models,
recent studies of non-Hermitian Hamiltonians with the non-Hermitian
skin effect17,25 unravelled that, spectral features such as the closing of
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the imaginary gap on the complex plane25–32, or the overall spectral
topology33–41, can have detectable dynamic consequences, including
anomalous relaxation dynamics42–44, boundary accumulations of loss
in the dynamics (known as the edge burst)30–32, and the persistent
directional flow which has served as an experimental signature for the
non-Hermitian skin effect18,19,45–55. However, as most of such dynamic
behaviors only dominate at long times and require post selection to
avoid quantum jumps, their experimental identification in genuinely
quantum systems may be challenging.

In this work, we experimentally reveal the impact of non-
Hermitian spectral topology in transient dynamics, by studying the
propagation of a local excitation along a dissipative lattice using
photonic quantumwalks. We show that the short-time, center-of-mass
acceleration of the wave function, dubbed self-acceleration56 because
of the absence of any external force, is proportional to the area
enclosed by the eigenenergy spectrum of the system on the complex
plane. While the direction of the propagation is given by the spectral
winding number, the self-acceleration vanishes at long times, giving
way to a directional flow with a constant drift velocity. The corre-
spondence between the spectral geometry and bulk dynamics also
persists in a wide class of two-dimensional systems, for which we
demonstrate that the self-acceleration becomes proportional to the
volume enclosed by the eigenspectrum in the complex parameter
space. Our experiment establishes a fundamental correspondence
between the spectral geometry and short-time dynamics in non-
Hermitian systems, complementing existing experiments on the long-
time dynamics and chiral amplification. As the spectral topology is
intimately connected with the non-Hermtian skin effect, self-
acceleration offers a practical and sensitive dynamic signal for its
detection, particularly in quantum systems where decoherence dom-
inates at long times.

Results
Time-multiplexed quantum walk
We simulate the dynamics of a local excitation along a dissipative lat-
tice using photonic quantum walks57–59 (see “Methods” and the Sup-
plementary Information Note 1). Taking the more general two-
dimensional quantum walk as an example, we implement the non-
unitary Floquet operator

U =MySyRðθ2ÞMxSxRðθ1Þ, ð1Þ

where shift operators are defined as Sj =
P

r ∣0i 0h ∣� ∣r � ej
E
rh ∣+ ∣1i 1h ∣�

∣r + ej
E
rh ∣ with r = ðx,yÞ 2 Z2 labeling the coordinates of the lattice sites,

j∈ {x,y}, and ex= (1,0) and ey= (0,1). The shift operatorsmove the walker
in the corresponding directions, depending on the walker’s internal
degrees of freedom in the basis of f∣0i,∣1ig (dubbed the coin states). The
coin operator acts in the subspace of coin states

Rðθ1,2Þ=
cosθ1,2 i sin θ1,2
i sinθ1,2 cosθ1,2

� �
� 1r , where 1r =

P
r ∣ri rh ∣. The gain-loss

operators are given by Mj =
eγj 0
0 e�γj

� �
� 1r , which make the

quantum walk non-unitary for finite γx or γy. For the momentum-
space Hamiltonian corresponding to U, see the Supplementary
Information Note 1.

In the experiment, we encode the internal coin states f∣0i,∣1ig in
the photon polarizations f∣Hi,∣V ig, and the external spatial modes
through the discretized temporal shifts. For the latter, we build path-
dependent time delays into the loop, so that the spatial superposition
of the photonic walker is translated to the temporal superposition of
multiple well-resolved pulses within each discrete time step60. To
encode spatial modes in two dimensions, the temporal modes are
further separated into two different time scales by the free-space

Mach–Zehnder interferometer: 80 ns in the x-dimension and 4.83 ns in
the y-dimension. For detection, we record the arrival time of the
photons using avalanche photodiodes with the help of an acoustic-
optical modulator serving as an optical switch to remove undesired
pulses61.

In the quantum-walk dynamics, the time-evolved state at the end
of each discrete time step t is ∣ψðtÞ�=Ut ∣ψð0Þ�= e�iHt ∣ψð0Þ�, where we
define an effective Hamiltonian H. Apparently, the quantum walk
implements a stroboscopic simulation of the Hamiltonian H at integer
time steps (see the Supplementary Information Note 1). We measure
the center-of-mass position of the walker, defined through56

nCM ðtÞ=
P

r
hψðtÞjrjψðtÞiP
r
hψðtÞjψðtÞi : ð2Þ

As illustrated in Fig. 1, starting from a local excitation, the motion
of nCM= (xCM,yCM) is closely connected with the spectral geometry of
the effective Hamiltonian H on the complex plane. More explicitly,
transforming H to the momentum space, we have
HðkÞ∣ψ± ðkÞ

�
= E ± ðkÞ∣ψ± ðkÞ

�
, where k belongs to the first Brillouin

zone, and E±(k) and ∣ψ± ðkÞ
�
are respectively the eigenenergies and

eigenstates under the periodic boundary condition (PBC), with the
subscripts ± indicating the band index. For a local initial state that is an
equal-weight superposition of all eigenstates within a given band, for
instance, ∣ψð0Þ�=Pk ∣ψ+ ðkÞ

�� ∣k
�
, the short-time behavior of nCM

reads (see “Methods”)

xCM ðtÞ ’
1
2
axt

2 � 1
2
, yCM ðtÞ ’

1
2
ayt

2 +
1
2
, ð3Þ

where

ax =
1
π2

Z π

�π
dkxdkyEI

∂ER

∂kx
=
2
π

Z π

�π
d kyAxðkyÞ,

ay =
1
π2

Z π

�π
dkxdkyEI

∂ER

∂ky
=
2
π

Z π

�π
d kxAyðkxÞ:

ð4Þ

Here ER and EI are, respectively, the real and imaginary components of
E+. Importantly, ax and ay suggest that the short-time self-acceleration
rate is proportional to the volume enclosed by the eigenspectrum of
the corresponding band in the complex parameter space. An
alternative understanding is that the self-acceleration rate is propor-
tional to the averaged area enclosed by E+(kx,ky) on the complex plane
as ky traverses the Brillouin zone, as shown in Fig. 1. It should be
mentioned that, in non-Hermitian systems, self-acceleration of the
wave function in the absence of external forces is a universal
phenomenon observed for rather arbitrary excitations that are initially
localized (see “Methods”). However, it is only when the system is
initially prepared in an equal-weight superposition of all eigenstates
within a given band, that the ensuing self-acceleration relates to the
spectral geometry through ax and ay.

Simulating the one-dimensional dynamics
For our experimental demonstration, we first consider the case of one-
dimensional quantum walks. In one-dimensional lattices, a general
correspondence can be established between spectral geometry and
self-acceleration. Such a correspondence is grounded on a general
theorem given in the Supplementary Information Note 2, which
extends previous theoretical results56. Basically, for suitable initial
preparation of the system, the self-acceleration rate is proportional to
the area enclosed by the PBC eigenspectrum of a given lattice band on
the complex plane. Based on the general two-dimensional setup in
Fig. 1, one-dimensional quantum walks can be realized by simply
removing the free-space Mach–Zehnder interferometer within the
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loop. The resulting Floquet operator is given by

U = SxMxRðθÞ: ð5Þ

We focus on the parameter regime with θ being quite close to π/2 (we
chooseθ =0.45π for experiment), where the complex eigenenergies of
the effective Hamiltonian H are approximately (see “Methods”)

E ± ðkÞ≈± π
2 ∓ cosθ cosðk � iγxÞ, ð6Þ

the last termofEq. (6) corresponding to thoseofa typicalHatano–Nelson
model, i.e., HHN = ð1=2Þ cosðθÞeik�γx + ð1=2Þ cosðθÞe�ik + γx . We initialize
the system in the superposition state (representing a local excitation)
∣ψð0Þ�1 = eγx ∣0i � ∣x = � 1i+ ∣1i � ∣x =0i, which is an equal-weight
superposition of the Bloch states (in the first Brillouin zone) of H with
eigenenergy E+(k). The experimental implementation of such a local
initial state, which is pivotal to our measurement scheme, is discussed in
“Methods” and the Supplementary Information Note 3. The resulting
short-time dynamics of xCM then follows that in Eq. (3), with the self-
acceleration rate given by

ax =
2
π

R π
�π dkxEI

d
d k

ER : = 2
πA: ð7Þ

HereA corresponds to the area enclosed by the complex eigenenergy
E+(kx) in the complex plane, takenwith the appropriate sign depending
on the circulation direction of the PBC energy loop. Such a sign
naturally indicates the direction of self-acceleration.

In Fig. 2a–c, we show the measured spatial population evolution
of the dynamics under different gain-loss parameters γx. The wave-
function propagation becomes asymmetric when the gain-loss
parameter γx becomes finite. In Fig. 2d–f, we show the measured
xCM(t), which are quadratic in time when γx ≠0, consistent with the-
oretical predictions. By fitting the center-of-mass propagation of the
wave functions, we extract the quantity A from the self-acceleration
rate (see Fig. 2g), which agrees well with the numerically calculated
area enclosed by the eigenspectum E+(k) on the complex plane (see
Fig. 2h). The self-acceleration in the one-dimensional model is a clear
signature of the non-Hermitian skin effect under the open-boundary
condition. In fact, in systems that do not display the non-Hermitian
skin effects, the PBC energy spectrum collapses to an open arc
enclosing a vanishing area A=0, and thus acceleration vanishes
according to Eq. (7).

Simulating the two-dimensional dynamics
In two dimensions, we focus on the coin parameters close to
(θ1 = 0, θ2 =π/2), where the eigenenergies of the effectiveHamiltonians

x

y

CM

CM

Fig. 1 | Illustration of the connection between self-acceleration and spectral
geometry. a A schematic of the PBC energy spectra in a two-dimensional system
with ky (upper panel) and kx (lower panel) as a parameter.b The corresponding two
different volumes lead to distinct dynamic behaviors, i.e., different accelerated

speeds of the motion of the wave packets in two directions, and eventually
approach to a constant. c A schematic with a finite energy spectrum area in a one-
dimensional system. d The motion of the wave packet shifts from accelerated to
constant velocity as time increases.
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Fig. 2 | Self-acceleration in one-dimensional dynamics. a–c Dynamic evolutions
governed by the effective non-Hermitian Hamiltonian with parameters
γx =0, γx = −0.05 and γx =0.1, respectively. d–f Evolution of the center of mass
nCM(t) as a function of the discrete time step t corresponding to the dynamic

evolutions in (a–c), respectively. g Areas enclosed by E+(k) versus the gain-loss
parameter γ = γx. We take a local initial state ∣ψð0Þ�1 and the coin parameter
θ =0.45π. h PBC energy spectra for increasing values of γ.
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are

E ± ðkx ,kyÞ≈± π
2 ± ~Eðkx ,kyÞ: ð8Þ

Here ~Eðkx ,kyÞ=θ1 cosðky � iγy � kx + iγxÞ � ðπ=2� θ2Þ cosðkx �
iγx + ky � iγyÞ corresponds to single-band lattice on a two-
dimensional square lattice, i.e., Ĥ =

P
n,m,k,lHn,m,k,l ∣n,mi k,l

�
∣, with

matrix Hamiltonian

Hn,m,n�1,m+ 1 = θ1e
ðγy�γx Þ=2

Hn,m,n�1,m�1 = ðθ2 � π=2Þeð�γy�γx Þ=2

Hn,m,n+ 1,m�1 = θ1e
ðγx�γyÞ=2

Hn,m,n+ 1,m+ 1 = ðθ2 � π=2Þeðγy + γx Þ=2,

ð9Þ

corresponding to the hopping amplitudes in four different directions.
We initialize the system in the local state

∣ψð0Þ�2 = ∣0i � ∣x =0,y=0
�� eγx�γy ∣1i � ∣x = � 1,y= 1

�
, which is a

superposition of all the Bloch states corresponding to E+(kx,ky), again
facilitated by the choice of the coin parameters.

In Fig. 3a, we show the time evolution of (xCM, yCM) under different
gain-loss parameters γx and γy, which are parameterized through

γx = γ cosφ and γy = γ sinφ. Consistent with a previous study59, the
tuning of the parameters gives rise to directional propagation in
the two-dimensional plane (x- and y-direction), which underlies the
emergence of the non-Hermitian skin effectwhen open boundaries are
enforced. An example of the full population evolution is illustrated in
Fig. 3b. Apparently, for finite γx or γy, the corresponding xCM or yCM
exhibits quadratic behavior at early times, consistent with the pre-
dicted self-acceleration.

In Fig. 4, we explicitly demonstrate the correspondence between
the spectral volume and the self-acceleration. For convenience, we
focus on the case γx = γy, where the dynamics along the x and y
directions are symmetric. Both the spectral volume and the fitted self-
acceleration increase linearly with increasing ∣γx(y)∣, consistent with the
theoretical analysis. Similar to one-dimensional quantum walks, the
self-acceleration is a precursor of persistent drift (or current) at long
times and thus indicates the accumulation of excitation at the edges or
corners of a finite two-dimensional domain (or equivalently, the
appearance of the so-called non-reciprocal skin effect16). It should be
mentioned that, in two-dimensional systems, the skin effect is a uni-
versal phenomenon that appears under rather arbitrary boundary
shapes16, and thus it persists even when the self-acceleration vanishes
(see “Methods”).
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Fig. 3 | Self-acceleration in two-dimensional dynamics. aWave packet center of
mass xCM(t) (yCM(t)) as a functionof thediscrete time step t. The gain-loss parameter
is taken as γ =0.08. b Probability distribution of the 24-time-step quantum walk
with φ =π/5. We mark the position occupied by the initial state as the red square.

c,dThewave packet center ofmass xCM(t) (yCM(t)) as a functionof the discrete time
step twithφ =π/5. The other parameters are θ1 = 0.12, θ2 =π/2−0.12, and the initial
state ∣ψð0Þ�2.
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Crossover between short- and long-time dynamics
In the presence of a non-trivial spectral point-gap topology, it is well-
established that the long-time dynamics of a local excitation is a
directional propagation with a constant drift velocity55,57,58, indicating
that the self-acceleration ceases in the long-time evolution. The
asymptotic drift velocities for two-dimensional dynamics are defined
as the group velocity at the quasimomentum ðkmx

,kmy
Þ, with

vmx,y
=

dERðkmx
,kmy

Þ
d kx,y

ð10Þ

where the eigenenergy E+(kx = kmx, ky = kmy) corresponds to the largest
imaginary part of E+(kx,ky) (whose corresponding eigenmode survives
at long times). As such, the combination of drift velocity at long times
and self-acceleration at short times provides a complete correspon-
dence between the spectral geometry and bulk dynamics of a local
excitation.

In Fig. 5, we experimentally characterize the crossover from self-
acceleration-dominated dynamics at short times (cyan dashed curves),
to a flow at the drift velocity (purple dashed curves) at long times. This
is achieved by choosing parameters such that the difference between
self-acceleration and constant motion is appreciable at the experi-
mentally accessible time steps.

Discussion
Unveiling the correspondence between dynamical and spectral prop-
erties of classical and quantum systems is a fundamental problem and

a major challenge in different areas of physics. While such a corre-
spondence is quite well understood in closed systems described by
Hermitian Hamiltonians, it remains largely unexplored for open sys-
tems. Using dissipative photonic quantum walks, here we have
experimentally demonstrated a fundamental correspondence
between the spectral geometry and thedynamics of local excitations in
open systems described by effective non-Hermitian Hamiltonians,
showing that a non-trivial spectral topology generally corresponds to a
transient self-acceleration of the wave function. Our results provide
major advancements in the understanding of the correspondence
between spectral geometry and dynamics beyond the Hermitian
paradigm and could stimulate further studies on an emergent area of
research.

Methods
Self-acceleration for one-dimensional quantum walks
In the one-dimensional quantum walk, the Floquet operator reads
U = SxMxR(θ), where Sx =

P
x ∣0i 0h ∣� ∣x � 1i xh ∣+ ∣1i 1h ∣� ∣x + 1i xh ∣ is the

spatial shift operator, Mx =
P

x
eγx 0
0 e�γx

� �
� ∣xi xh ∣ is the gain-loss

operator with the gain-loss parameter γx, and

RðθÞ=Px
cosθ i sin θ
i sin θ cosθ

� �
� ∣xi xh ∣ is the coin operator. In the

momentum space, the Floquet operator U takes the form

UðkÞ=d0σ0 + idxσx + idyσy + idzσz , ð11Þ
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where the expressions for dx,y,z are given in the Supplementary Infor-
mation Note 1, and σx,y,z are the Pauli matrices. Defining the
momentum-space Hamiltonian Hk through UðkÞ= e�iHk (see the
Supplementary Information Note 1), its quasienergies are given by

E ± ðkÞ= ± arccos cosθ cosðk � iγxÞ
� �

, ð12Þ

with corresponding eigenstates (in the coin-state basis)

ψ± ðkÞ
�� �

=
dz ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
x +d

2
y +d

2
z

p
dx + idy

1

0
@

1
A: ð13Þ

In the experiment we set θ ≈π/2, so that one has

E ± ðkÞ ’±
π
2
∓~EðkÞ

= ±
π
2
∓ cos θ cosðk � iγxÞ,

ð14Þ

and

ψ± ðkÞ
�� � ’ ± eγx + ik

1

 !
: ð15Þ

Notice that ~EðkÞ coincides with the dispersion of the Hatano–Nelson
model with asymmetric nearest-neighbor hopping amplitudes
ð1=2Þ cosðθÞe�γx and ð1=2Þ cosðθÞeγx .

In our experiment, the quasi-local initial state can be expressed as

∣ψð0Þ�1 = eγx ∣0i � ∣x = � 1i + ∣1i � ∣x =0i

=
1
2π

Z π

�π
d k∣ψ+ ðkÞ

�� ∣k
�
:

ð16Þ

Note that the sum over k is approximated by integral at finite system
size. The time-evolved state is then

ψðtÞ
�� �

=
ð�iÞt
2π

Z π

�π
d k

eγx + ik

1

 !
ei

~EðkÞt � k
�� �, ð17Þ

and the center-of-mass of the normalized wave function is defined
through56

nCMðtÞ : =
hψðtÞjxjψðtÞi
hψðtÞjψðtÞi : ð18Þ

For short-time dynamics, making use of the truncated expansion
e2~EI ðkÞt≈1 + 2~EIðkÞt, where ~EðkÞ= ~ERðkÞ+ i~EI ðkÞ, after some straightfor-
ward calculations one obtains

nCMðtÞ=
A
π
t2 � 1

2
: ð19Þ

Here A : =
R π
�π dkxEI

d
d k

ER is the area enclosed by the complex qua-

sienergy dispersion E+(k) in the complex plane.

In the long-time limit, the dynamics would be dominated by the
Blochmode kmwhere EI(k) is the globalmaximum.This corresponds to

the conditions dEI ðkmÞ
d k


 �
=0 and d2

EI ðkmÞ
d k2

� �
<0. Defining ξ = k − km, we

expand the quasienergy around km, where the leading orders give

EðkÞ ’ EðkmÞ+ dEðkmÞ
d k


 �
ξ + 1

2
d2

EðkmÞ
d k2

� �
ξ2. It follows that

nCMðtÞ≈
2πt dERðkmÞ

dk


 �
e2EI ðkmÞt

R1
�1 d ξ e

tξ2
d2

EI ðkm Þ

dk2

� �

2πe2EI ðkmÞt
R1
�1 d ξ e

tξ2
d2

EI ðkm Þ

dk2

� �

= vmt,

ð20Þ

where vm = dERðkmÞ
d k


 �
is identified as the drift velocity.

Self-acceleration for two-dimensional quantum walks
Following a similar procedure outlined in the previous section, we
derive the center-of-mass motion of the wave functions for two-
dimensional quantum walks.

We start from the Floquet operator U in Eq. (1) and focus on the
parameter regimes θ1 ≈0 and θ2 ≈π/2. Under these conditions, the

a b
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+
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Measured

Theoretical

Theoretical for long time

Fig. 5 | Connecting the short- and long-time dynamics. a Evolution of the center
of mass nCM(t) as a function of the discrete-time step t in the one-dimensional
quantum walks with θ =0.41π and γx =0.15. We take a local initial state ∣ψð0Þ�1.

bWave packet center ofmass xCM(t) (yCM(t)) as a function of the discrete time step t
in the two-dimensional quantum walks with γx = γy =0.26, θ1 = 0.12, θ2 =π/2−0.12
the initial state ∣ψð0Þ�2.
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momentum-space quasienergies are approximately
E ± kx ,ky


 �
’ ± π

2 ± ~E kx ,ky


 �
, where

~E kx ,ky


 �
=θ1 cos ky � iγy � kx + iγx


 �
� π

2
� θ2


 �
cos kx � iγx + ky � iγy

 �

:
ð21Þ

The corresponding eigenstates are

ψ ± ðkÞ
�� � ’ 1

∓eiðkx�iγx�ky + iγyÞ

� �
: ð22Þ

The local initial state is the uniform superposition of Bloch states
in the upper band

∣ψð0Þ�2 = ∣0i � ∣x =0,y=0
�� eγx�γy ∣1i � ∣x = � 1,y= 1

�
=

1
4π2

Z π

�π

Z π

�π
dkxd ky∣ψ+ ðkÞ

�� ∣k
�
:

ð23Þ

We further write the time-evolved wave function at time t as

∣ψðtÞ�=X
x,y

ð�iÞt ~ψx,yðtÞ
�ð�iÞt ~ψx + 1,y�1ðtÞ

 !
� ∣x,y

�
, ð24Þ

where

~ψx,yðtÞ=
1

ð2πÞ2
Z π

�π

Z π

�π
dkxd kye

ikxx + ikyy�i~E kx ,kyð Þ: ð25Þ

Defining the center-of-mass positions of the wave function as in
Eq. (2), we have xCM ðtÞ ’ 1

2axt
2 � 1

2 and yCMðtÞ ’ 1
2ayt

2 + 1
2 for short-

time dynamics, where the self-accelerations are given by
ax =

1
π2

R π
�π dkxd kyEI

∂ER
∂kx

and ay =
1
π2

R π
�π dkxd kyEI

∂ER
∂ky

. Here we defined
E+(kx, ky) = ER + iEI.

Apparently, the self-accelerations have a simple geometric inter-
pretation in terms of the energy spectrum E+(kx,ky) in the complex
plane. For instance, the acceleration along the x direction can be
written as

ax =
2
π

Z π

�π
d kyAx ky


 �
, ð26Þ

where

Ax ky


 �
: =

1
2π

Z π

�π
d kxEI

∂ER

∂kx
: ð27Þ

For a fixed value of ky (taken as a parameter), the expressionR π
�π d kxEI

∂ER
∂kx

is the area enclosed by the spectrum E kx ,ky


 �
in the

complex plane as kx traverses Brillouin zone. Alternatively, taking the
integration over ky into account, ax is proportional to the volume
enclosed by 2πAx ky


 �
in the parameter space, as ky traverses the

Brillouin zone.
Finally, for the long-time dynamics, we have

xCMðtÞ∼ vmx
t, yCMðtÞ∼ vmy

t, ð28Þ

where vmx
and vmy

in Eq. (10) are the drift velocities, corresponding to
the location of the global maximum of EI(kx,ky).

Experimental scheme
We implement both one- and two-dimensional quantum walks by
employing a time-multiplexed configuration, sending attenuated
single-photon pulses (with a wavelength of 808 nm and a pulse width

of 88 ps) through afiber network.While each full cycle around thefiber
loop represents a discrete time step, the built-in optical elements
within the loop, such as the half-wave plates, polarization beam split-
ters, quarter-wave plates, realize the time-evolution operator U within
each step. We encode external spatial modes through discretized
temporal shifts, while internal coin-state degrees of freedom are
encoded using photonic polarizations. With this experimental
arrangement, we successfully carried out one-dimensional and two-
dimensional quantum walks in the same experimental platform under
various configurations (see the Supplementary Information Note 3).

In the scenario of initial state preparation, as detailed in themain
manuscript, achieving the required initial excitation involves estab-
lishing an equally weighted superposition of Bloch eigenstates within
a specific lattice band. However, our experimental constraints pre-
vent the direct encoding of such a state, given its inclusion of exci-
tations on both odd and even lattice sites beyond the capabilities of
our setup. To address this limitation, it is crucial to recognize that
during the evolution process, wave packets characterized by odd or
even positions in the initial state do not interfere at each step.
Leveraging this key property, we strategically divide our experiment
into two distinct steps. In the first step, the initial excitation exclu-
sively occupies either the even or odd lattice sites. Subsequently, we
reconstruct the dynamics of the wave packet by capitalizing on the
linearity inherent in the system (see the Supplementary Informa-
tion Note 4).

Origin of self-acceleration in non-Hermitian dynamics
In an Hermitian system, according to the Ehrenfest theorem, a wave
packet cannot accelerate in the absence of any external force. How-
ever, this is not the case for non-Hermitian systems13,22. To illustrate
this point, let us consider for example the single-particle dynamicson a
one-dimensional lattice with Hamiltonian in the physical space
Ĥ = T̂ +V ðxÞ, where x is the lattice site position, V(x) is the external
potential, T̂ =Tðp̂xÞ is the kinetic energy operator, p̂x = � i∂x is the
momentum operator, and T(px) is the energy dispersion curve of a
given lattice band. For the standard Hatano–Nelson model, for
instance, one has TðpxÞ= J expðipx + γÞ+ J expð�ipx � γÞ, where
J expð± γÞ are the asymmetric left/right hopping amplitudes.

For a given initial excitation of the system ∣ψ0

�
at time t =0, with

〈ψ0∣ψ0〉 = 1, the evolved wave function for early times is given by

∣ψt

�
= expð�iĤtÞ∣ψ0

� ’ 1� itĤ � t2

2
Ĥ

2
� �

∣ψ0

�
: ð29Þ

From this equation, one can readily calculate the time evolution of the
mean position 〈x〉 = 〈ψt∣x∣ψt〉/〈ψt∣ψt〉, up to the order ~t2, and the corre-
sponding initial acceleration,ax = ðd2hxi=dt2Þt =0, which reads explicitly

ax = h2Ĥ
y
xĤ � xĤ

2 � Ĥ
y2
xi0 + 2hĤ

y � Ĥi0hĤ
y
x � xĤi0: ð30Þ

In the above equation, hÂi0 � hψ0jÂψ0i denotes themean value of any
operator Â over the initial state ∣ψ0

�
. Let us now assume that there is

not any external force, V(x) = 0, so that the Hamiltonian contains the
kinetic energy term solely, Ĥ = T̂ . Using the generalized commutation
relation ½x,Fðp̂xÞ�= iðdF=dpxÞ for any function F(px) of the momentum
operator, one obtains

ax = hxð2T̂
y
T̂ � T̂

2 � T̂
y2Þi0 + 2ih

∂T̂
y

∂px
ðT̂y � T̂Þi

0
+

+ 2hT̂y � T̂i0hT̂
y
x � xT̂i0:

ð31Þ

Clearly, in any Hermitian system T̂
y
= T̂ , we necessarily have ax =0.

Conversely, in a non-Hermitian systemwhere T̂
y
≠T̂ , the accelerationax
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is non-vanishing for rather arbitrary initial states ∣ψ0

�
, with its value

dependent on the specific initial excitation.

Self-acceleration and the non-Hermitian skin effect
In one-dimensional models, there is a one-to-one correspondence
between the transient self-acceleration, under suitable initial excita-
tion of the lattice, and the non-Hermitian skin effect. In fact, the skin
effect, that is, the localization of a macroscopic number of eigen-
states near the boundaries, appears rather generally whenever the
Hamiltonian displays a point-gap topology in the PBC energy
spectrum14,15. In the presence of the point-gap topology, the area A,
which is proportional to the self-acceleration, is necessarily non-
vanishing. Additionally, we can have an intuitive explanation for self-
acceleration from the skin effect. Let us consider a single-band sys-
tem and single-site initial excitation of the lattice at t = 0. Clearly, the
initial mean speed of the wave packet is zero, as all momenta kwithin
the Brillouin zone are equally excited. Owing to the non-Hermitian
skin effect, Bloch modes displaying opposite group velocities are
differently damped or amplified, and their unbalanced interference
yields a deformation of the wave packet spreading and a directed
transport at long times, characterized by a non-vanishing drift velo-
city vm. This implies that the wave packet must necessarily undergo
acceleration to attain a final non-zero speed. The resulting self-
acceleration can be thus explained as an unbalanced interference
effects between spectral wave packet components displaying oppo-
site group velocities.

In two-dimensional systems, the non-Hermitian skin effect can
depend on the geometry of the boundaries, and it is thus clear that
the bulk dynamics of a wave packet alone (including transient self-
acceleration and long-time drift motion), cannot uniquely determine
the behavior of these boundary-dependent systems. Indeed, a recent
work proved that, in higher dimensions, the non-Hermitian skin effect
is a universal phenomenon observed for almost every local non-
Hermitian Hamiltonian that displays a finite spectral area under the
PBC, and when the shape of the open boundaries are taken without
any special symmetries16. A distinction between generalized recipro-
cal and non-reciprocal skin effect has also been introduced16,
depending on whether the current in the system is vanishing or not,
respectively.

In our two-dimensional non-Hermitian quantum walk, the non-
vanishing self-acceleration clearly corresponds to a non-vanishing
current, and thus the skin effect is of the latter type and is observable
for arbitrary boundary shapes. The vanishing of the self-acceleration in
a two-dimensional system does not necessarily imply the absence of
the non-Hermitian skin effect under arbitrary shape of the boundaries,
albeit it can disappear for a specific shape of the boundaries. To clarify
this point, let us consider for example the two-dimensional square
lattice described by the Bloch Hamiltonian

Hðkx ,kyÞ= Jx cos kx + iJy cos ky, ð32Þ

with real (Hermitian) hopping amplitude Jx along the x direction, and
imaginary (non-Hermitian) hopping amplitude iJy along the ydirection.
Note that in this non-Hermitian model, the hopping amplitudes are
reciprocal, and from the formulas of ax and ay, it readily follows that
ax = ay =0, that is, transient self-acceleration in the bulk is absent. In
this model, the non-Hermitian skin effect disappears for a square
geometry of the boundaries due to the existence of two mirror
symmetries. However, skin modes appear under different boundaries
which break these mirror symmetries16.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon requests.

Code availability
The codes that support the findings of this study are available from the
corresponding authors upon requests.
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1

SUPPLEMENTARY INFORMATION FOR “SELF ACCELERATION FROM SPECTRAL GEOMETRY IN
DISSIPATIVE QUANTUM-WALK DYNAMICS”

In this Supplementary Information, we provide some technical and experimental details.

Supplementary Note 1 - Derivation of the Floquet operator U and the effective Hamiltonian

As mentioned in the main text, in the one-dimensional quantum walk, the Floquet operator reads U = SxMxR(θ).
As all the operators can be expressed by Pauli matrices, the time-evolution operator can be also written as

U(k) = d0(k)σ0 + idxσx + idy(k)σy + idz(k)σz

d0(k) = cos(θ) cos(−iγx + k),

dx(k) = sin(θ) cos(−iγx + k),

dy(k) = − sin(θ) sin(−iγx + k),

dz(k) = cos(θ) sin(−iγx + k).

(1)

The effective Hamiltonian is defined through the relation U = e−iH , which in the quasi-momentum space takes the
form

H =

∫ π

−π
dk [E(k)n(k) · σ]⊗ |k〉〈k|, (2)

with

n(k) =
1

sinE(k)

− sin(θ) cos(k − iγx)
sin(θ) sin(k − iγx)
− cos(θ) sin(k − iγx)

 . (3)

Here the quasienergies are given by E±(k) = ± arccos [cos θ cos(k − iγx)], which are the eigenvalues of H.
Similarly, for the two-dimensional case, we have

n(k) = n(kx, ky) (4)

=
1

sinE(kx, ky)

− cos(kx + ky − iγx − iγy) cos(θ2) sin(θ1)− cos(kx + ky − iγx + iγy) cos(θ1) sin(θ2)
sin(kx + ky − iγx − iγy) cos(θ2) sin(θ1)− sin(kx + ky − iγx + iγy) cos(θ1) sin(θ2)
− sin(kx + ky − iγx − iγy) cos(θ2) cos(θ1)− sin(kx + ky − iγx + iγy) sin(θ1) sin(θ2)

 ,

where the quasienergy is

E(kx, ky) = ± arccos
[
θ1 cos (ky − iγy − kx + iγx)−

(π
2
− θ2

)
cos (kx − iγx + ky − iγy)

]
. (5)

Supplementary Note 2 - Correspondence between spectral topology and self-acceleration in one-dimensional
lattices

1. Single-band lattice models

For the most exemplary class of NH lattice models, namely those featuring a single band with a point gap and no
symmetry (see for example [1]), there is a one-to-one correspondence between non-trivial spectral point gap topology
and self-acceleration, namely the following theorem 1 holds:
In any single-band NH lattice model, the early-time acceleration ax of the center-of-mass wave packet under initial
single-site excitation of the lattice is proportional to the spectral area A enclosed by the complex PBC energy spectrum
H(k) in the complex plane, namely

ax =
2

π
A. (6)
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The proof of such a general theorem was given in the earlier theoretical paper [2] and it is therefore not repeated here.
Note that the above result clearly provides a universal correspondence between self-acceleration and spectral topology
in generic one-band NH lattice systems without any special symmetry. Note also that, since the initial excitation
condition is independent of the Hamiltonian H(k), the dynamical probing method provides a universal tool for testing
the spectral topology of the system that does not require any a priori knowledge of the system Hamiltonian.

2. Many-band lattice models

The photonic quantum walk setup used in our experiments is inherently a two-band system, and thus it is important
to extend theorem 1 above to the multiband case. To this aim, let us consider an M -band NH lattice system, so that
each unit cell of the lattice comprises M sublattice sites. Let us indicate by an(t), bn(t), cn(t), ... the amplitudes of
the wave function at the M sites in the n-th unit celll of the lattice. Let H(k) be the M×M Bloch Hamiltonian of the
system, and let us indicate by Eβ(k) and (Aβ(k), Bβ(k), Cβ(k), ...)T , the eigenvalues and corresponding eigenvectors
of H(k) (β = 1, 2, ...,M), respectively. Specifically, we have

Eβ(k)


Aβ(k)
Bβ(k)
Cβ(k)
...

 = H(k)


Aβ(k)
Bβ(k)
Cβ(k)
...

 (7)

with β = 1, 2, ...,M . Clearly, there is some arbitrariness in the choice of Aβ(k), Bβ(k), ..., since they are defined
up to an arbitrary complex factor that may depend on the Bloch wave number k. After a suitable choice of such
a multiplication factor, it can be readily shown that the amplitudes Aβk), Bβ(k), ... can be chosen to satisfy the
following conditions

|Aβ(k)|2 + |Bβ(k)|2 + |Cβ(k)|2 + ... = 1 , A∗l (k)
dAβ
dk

+B∗β(k)
dBβ
dk

+ ... = 0. (8)

for any β = 1, 2, 3, ...,M . The first condition in Eq.(8) corresponds to wave function normalization, whereas the
second condition in Eq.(8) corresponds to the gauge choice such that the diagonal elements of Berry connection
vanish. Since the Hamiltonian H(k) is non-Hermitian, the eigeneneriges Eβ(k) and the corresponding eigenvectors
are not necessarily single-valued functions of the Bloch wave number k, i.e., if we continuously follow the change of
the eigenvalue Eβ(k), as k continuously changes from k = −π to k = π along the Brillouin zone, we can have a flip
of eigenvalues and eigenvectors at the end of the cycle. Only after M cycles are the initial eigenenergy and eigenstate
retrieved. The nontrivial energy-surface topology is typically associated with the fact that the cycle encloses one
or more exceptional points (see for instance [3–6]). We say that the multi-band system has a trivial energy-surface
topology whenever there is no eigenenergies and eigenevector flipping after one cycle (when k continuously change
from k = −π to k = π along the Brillouin zone).

The mean position of a wave packet at time t in the physical space is given by

〈n(t)〉 =

∑
n n(|an(t)|2 + |bn(t)|2 + |cn(t)|2 + ...)∑
n(|an(t)|2 + |bn(t)|2 + |cn(t)|2 + ...)

. (9)

The following theorem 2 can be stated:
For a given band index α of the lattice (α = 1, 2, ...,M), let us prepare the system at the initial time t = 0 in the state

an(0) =
1

2π

∫ π

−π
Aα(k) exp(ikn) , bn(0) =

1

2π

∫ π

−π
Bα(k) exp(ikn) , cn(0) =

1

2π

∫ π

−π
Cα(k) exp(ikn) ... (10)

where the Bloch eigenevector amplitudes Aα(k), Bα(k), ... are assumed to satisfy Eq. (8). Then, if the system has a
trivial energy-surface topology, the early-time acceleration ax of the wave packet center of mass is given by

ax =
2

π
Aα, (11)

where Aα is the area enclosed by the curve Eα(k) in the complex plane.
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Proof. To prove theorem 2, let us first observe that the most general solution to the time-dependent Schrödinger
equation in the multi-band lattice system reads

an(t)
bn(t)
cn(t)
...

 =

M∑
β=1

∫ π

−π
dkFβ(k)


Aβ(k)
Bβ(k)
Cβ(k)
...

 exp[ikn− iEβ(k)], (12)

where the spectral amplitudes Fβ(k) are determined by the initial excitation of the system at time t = 0. Let us
assume that the initial state is the one defined by Eq.(10), which corresponds to the choice Fβ(k) = (1/2π)δα,β for
the spectral amplitude. Hence one has

an(t)
bn(t)
cn(t)
...

 =
1

2π

∫ π

−π
dk


Aα(k)
Bα(k)
Cα(k)
...

 exp[ikn− iEα(k)]. (13)

From Eq.(13), one can calculate the terms
∑
n |an(t)|2,

∑
n |bn(t)|2,

∑
n |cn(t)|2,.. and

∑
n n|an(t)|2,

∑
n n|bn(t)|2,∑

n n|cn(t)|2,... . For example, one has

∑
n

|an(t)|2 =
1

4π2

∫ π

−π
dk

∫ π

−π
dk′Aα(k)A∗α(k′)S(k − k′) exp [−itEα(k)t+ iE∗α(k′)t] , (14)

where we set

S(k − k′) =
∑
n

exp[i(k − k′)n]. (15)

It follows that, in the range of variability of k and k′,

S(k − k′) = 2πδ(k − k′), (16)

and thus ∑
n

|an(t)|2 =
1

2π

∫ π

−π
dk|Aα(k)|2 exp[2EIα(k)t], (17)

where EIα(k) is the imaginary part of the complex energy Eα(k). Similar expressions are found for
∑
n |bn(t)|2,∑

n |cn(t)|2, ..., namely

∑
n

|bn(t)|2 =
1

2π

∫ π

−π
dk|Bα(k)|2 exp[2EIα(k)t] ,

∑
n

|cn(t)|2 =
1

2π

∫ π

−π
dk|Cα(k)|2 exp[2EIα(k)t] , ... (18)

Taking Eq. (8) into account, from Eqs. (17) and (18), one then obtains∑
n

(|an(t)|2 + |bn(t)|2 + |cn(t)|2 + ...) =
1

2π

∫ π

−π
dk exp[2EIα(k)t]. (19)

Let us now calculate
∑
n n|an(t)|2. One has

∑
n

n|an(t)|2 = −i 1

4π2

∫ π

−π
dk′
∫ π

−π
dkAα(k)A∗α(k′) exp [−itEα(k)t+ iE∗α(k′)t] .

∂S(k − k′)
∂k

(20)

After integration by parts and taking into account that Eα(π) = Eα(−π) and Aα(π) = Aα(−π) owing to the trivial
energy surface topology, one readily obtains∑

n

n|an(t)|2 =
i

2π

∫ π

−π
dk

(
A∗α

dAα
dk
− it|Aα(k)|2 dEα

dk

)
exp[2EIα(k)t]. (21)
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Similar expressions are found for
∑
n n|bn(t)|2,

∑
n n|cn(t)|2, ..., namely∑

n

n|bn(t)|2 =
i

2π

∫ π

−π
dk

(
B∗α

dBα
dk
− it|Bα(k)|2 dEα

dk

)
exp[2EIα(k)t],

∑
n

n|cn(t)|2 =
i

2π

∫ π

−π
dk

(
C∗α

dCα
dk
− it|Cα(k)|2 dEα

dk

)
exp[2EIα(k)t], (22)

... ...

Taking into account of Eq. (8), from Eqs.(21) and (22) one obtains∑
n

n(|an(t)|2 + |bn(t)|2 + |cn(t)|2 + ...) =
t

2π

∫ π

−π
dk
dEα
dk

exp[2EIα(k)t]. (23)

Using Eqs. (19) and (23), the evolution of the wave packet center of mass [Eq.(9)] finally reads

〈n(t)〉 =
t
∫ π
−π dk

dEα
dk exp[2EIα(k)t]∫ π

−π dk exp[2EIα(k)t]
, (24)

which holds at any given instant t. In particular, in the early time dynamics with t→ 0, the above expression can be
written as a series expansion in powers of t. At the lowest order, one obtains

〈n(t)〉 ' t2

π
Aα, (25)

where we have set

Aα =

∫ π

−π
dk
dERα
dk

EIα(k), (26)

and ERα(k), EIα(k) are the real and imaginary parts of the energy Eα(k), respectively. Clearly, Aα corresponds to
the area enclosed by the energy Eα(k) in the complex plane as k traverses the Brillouin zone. Equation (25) shows
that, at early time, the wave packet center of mass displays an accelerated motion with an acceleration ax = 2Aα/π,
which thus provides a dynamical measure of the spectral geometry of the α-th lattice band. This concludes the proof
of theorem 2.

It should be mentioned that, as compared to the single-band case, in multi-band lattices the initial state preparation
of the system [Eq.(10)] requires some knowledge of the Hamiltonian and can be in practice challenging. However, for
narrow-band systems where the bands are spaced in complex energy plane by wide gaps, such as when the detuning
of the on-site potentials at sites a, b, c, ... are much larger than the hopping amplitudes, in the appropriate basis
the required initial excitation basically reduces to single-site excitation as in the single-band case, thus relaxing the
condition of prior knowledge of the Hamiltonian. In our experiment, we are dealing with a two-band system and the
narrow-band regime is attained for a coin angle θ close to π/2. The corresponding initial excitation of the system is
very simple, as discussed in the Method section, and we can accurately estimate the spectral areas from wave-packet
self-acceleration measurements.

Supplementary Note 3 - Experimental scheme

We implement quantum walks by employing a time-multiplexed configuration, where the external spatial modes
are encoded through discretized temporal shifts, and the internal coin-state degrees of freedom are encoded using
photonic polarizations (Fig. 1). With this experimental arrangement, we successfully carried out one-dimensional and
two-dimensional quantum walks in the same experimental platform under various configurations, as demonstrated in
the following.

The overall architecture is that of a fiber network, through which attenuated single-photon pulses with a wavelength
of 808 nm and a pulse width of 88ps are sent, with each full cycle around the network representing a discrete time
step. Laser pulses are attenuated by neutral density filters, which effectively reduce the energy of the laser pulses to
the single-photon level at the detection stage. This step aims to maintain an average photon number per pulse below
2.6 × 10−4 to minimize the probability of multi-photon events. The input intensity of the initial laser pulse can be
increased when we aim to obtain amplitude distribution of quantum walks after larger numbers of steps.
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Supplementary Figure 1. A time-multiplexed implementation of the two-dimensional photonic quan-
tum walk. The process involves splitting photonic wave packets using a polarizing beam splitter (PBS) and
guiding them through a pair of single-mode fibers (SMF) to achieve a temporal step in the x direction. Sim-
ilarly, a temporal step in the y direction is achieved using another two-PBS loop in free space. At each step,
partial photons are coupled out and directed towards avalanche photodiodes (APDs) for polarization resolv-
ing detection of their arrival times. ND: neutral density filter; AOM: optical switch acousto-optic modulator.

The coin states {|0〉, |1〉} are encoded in the photon polarizations {|H〉, |V 〉}. The single-photon pulse act as the
walker, exhibiting distribution across multiple temporal modes. This is achieved by building path-dependent time
delays into the four different paths (labeled x ± 1 and y ± 1) in Fig. 1 within the network. Specifically, for two-
dimensional quantum walks, the temporal modes were separated by two different time scales: 80ns in the x-dimension
and 4.83ns in the y-dimension. For the one-dimensional quantum walk, the temporal modes were solely distributed
along the x-dimension.

To implement the two-dimensional quantum walk, we rewrite the time-evolution operator as U t = eγxγytU tE , where

U tE = M
′

ySyR(θ2)M
′

xSxR(θ1) (27)

with M
′

i = e−|γi|Mi, i = x, y.
The coin state is initialized after single-photon pulses pass through a polarizing beam splitter (PBS) and a half-wave

plate (HWP). Subsequently, the photons are coupled in and out from a time-multiplexed configuration via a beam
splitter (BS) with a reflectivity of 3%. The coin operator R(θ1(2)) is implemented by the sandwich-type set of wave
plates (QWP-HWP-QWP), where QWP is the abbreviation of quarter-wave plate. To implement the shift operators,
PBSs separate the photons with different polarizations and direct them into the two-fiber loop (Sx) or the free-space
Mach-Zehnder interferometer (Sy). Specifically, the difference between two distinct fiber lengths (270m and 287.03m)
are used to realize the polarization-dependent time delay 80ns in the x-dimension. The corresponding time difference
in the y direction is 4.83ns, which is introduced by a 1.61m free space path difference of the free-space Mach-Zehnder
interferometer. Importantly, the coherence of single-photon pulses is inherently preserved by the interference condition
required for the single-particle quantum walk.

To implement the loss operation M
′

x, two HWPs are introduced into each fiber loop. The ones at the input and
output ends of the fiber are also used to keep the polarizations of the single-photon pulses unchanged. For γx > 0, we
adjust the angle of the HWP in the x+ 1 path satisfying cos θ2 = e−2γx , the part of photons 1− e−4γx are transmitted
by the second PBS, and leak out of the setup. For γx < 0, we set the angle of the HWP on the x− 1 path to satisfy
cos θ2 = e2γx and the part of photons 1 − e4γx subsequently leak out of the setup. The loss operator M

′

y is realized
with the same method.

Arrival time is recorded by avalanche photodiodes (APDs), aided by an acoustic-optical modulator (AOM) that
functions as an optical switch to eliminate unwanted pulses. The time-resolved pulses within the window are recorded
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and translated to the corresponding spatial position of the walker. We measure the probability distribution of quantum
walks

P (x, y, t) =
|〈ψ(x, y, t)|ψ(x, y, t)〉|∑
x,y |〈ψ(x, y, t)|ψ(x, y, t)〉|

=
N(x, y, t)∑
x,y N(x, y, t)

, (28)

where N(x, y, t) is the total photon number at the position (x, y) after a t-step evolution.
In our experimental setup, the loss of photons is primarily attributed to losses incurred by various optical elements.

Even in the case of a unitary quantum walk, the overall efficiency of our round-trip single-loop is approximately 0.71.
The overall efficiency is derived by multiplying the transmission rates of each optical component employed in the
round trip, which include the transmission rate of the beam splitter (∼ 0.97), the efficiency of collecting photons
from free space to fiber (∼ 0.80), and the transmission rates of all other optical components (∼ 0.91). Thus, we have
0.71 ' 0.97 × 0.80 × 0.91. Besides, the measurement duration for a specific time step is approximately one hour,
limited by the stability of our experimental setup.

Supplementary Note 4 - Initial state preparation and reconstruction of the center-of-mass motion

As discussed in the main manuscript, the initial excitation of the system should correspond to an equally-weighted
superposition of Bloch eigenstates in a given lattice band. In our experiment, we cannot directly encode such an
initial state since it contains excitation of both odd and even lattice sites, which is unfeasible with our setup. To
overcome such a limitation, it is important to note that at each step, wave packets characterized by odd or even
positions in the initial state do not interfere during the evolution process. This occurs because the evolved state
exclusively occupy either even or odd positions when progressing to step t. We can take advantage of such a major
property to split our experiment in two steps, where the initial excitation occupies either the even or odd lattice sites,
and then reconstructing the wave packet dynamics exploiting the linearity of the system. To illustrate our strategy,
let us consider the two-dimensional quantum walk as an example. We divided the experiment into two distinct parts,
and we rewrite the initial state as

|ψ(0)〉 =
∣∣ψ1(0)

〉
+ eγx−γy

∣∣ψ2(0)
〉
, (29)

where ∣∣ψ1(0)
〉

= |1〉 ⊗ |0, 0〉,
∣∣ψ2(0)

〉
= |0〉 ⊗ | − 1, 1〉.

The evolved state is then |ψ(t)〉 = U t|ψ(0)〉 = U t
∣∣ψ1(0)

〉
+ eγxt−γytU t

∣∣ψ2(0)
〉
. Thus, the wave packet center of mass

is given by

xCM (t) =

∑
x,y

[
x
∣∣〈ψ1(x, y, t)|ψ1(x, y, t)〉

∣∣+ e2t(γx−γy)x
∣∣〈ψ2(x, y, t)|ψ2(x, y, t)〉

∣∣]∑
x,y

[
|〈ψ1(x, y, t)|ψ1(x, y, t)〉|+ e2t(γx−γy) |〈ψ2(x, y, t)|ψ2(x, y, t)〉|

] (30)

and

yCM (t) =

∑
x,y

[
y
∣∣〈ψ1(x, y, t)|ψ1(x, y, t)〉

∣∣+ e2t(γx−γy)y
∣∣〈ψ2(x, y, t)|ψ2(x, y, t)〉

∣∣]∑
x,y

[
|〈ψ1(x, y, t)|ψ1(x, y, t)〉|+ e2t(γx−γy) |〈ψ2(x, y, t)|ψ2(x, y, t)〉|

] . (31)

One-dimensional quantum walks can also be realized with our setup by simply removing the free-space Mach-
Zehnder interferometer. The probability distribution is obtained

P (x, t) =
|〈ψ(x, t)|ψ(x, t)〉|∑
x |〈ψ(x, t)|ψ(x, t)〉|

=
N(x, t)∑
xN(x, t)

, (32)

where N(x, t) is the total photon number at the position x after a t-step evolution.
Similarly, the chosen initial state can be written as

|ψ(0)〉 = eγx
∣∣ψ1(0)

〉
+
∣∣ψ2(0)

〉
, (33)

where ∣∣ψ1(0)
〉

= |1〉 ⊗ |−1〉 ,
∣∣ψ2(0)

〉
= |0〉 ⊗ |0〉 . (34)
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The center of mass of the normalized involved state is

nCM (t) =

∑
x

(
e2tγxx

∣∣〈ψ1(x, t)|ψ1(x, t)〉
∣∣+ x

∣∣〈ψ2(x, t)|ψ2(x, t)〉
∣∣)∑

x (e2tγx |〈ψ1(x, t)|ψ1(x, t)〉|+ |〈ψ2(x, t)|ψ2(x, t)〉|)
. (35)

Therefore, we perform two individual evolutions with different initial states, which finally enable us to reconstruct
xCM (t), yCM (t), and nCM (t).
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