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INTRODUCTION
The word teleoperation, which in general means “working
at a distance” is typically used in robotics when a human
operator commands a remote agent. A teleoperated robot
is often employed to substitute human beings in conditions
where the latter cannot operate. A possible reason for it is
the need to be in contact with dangerous substances, and
indeed the first robot teleoperation system was designed
in the 1940’s for handling nuclear and chemical materials
[1]. Other reasons can be the difficulty in bringing actual
people in missions to explore deep waters or the space
[2], [3], or the need to work at micro-scales, for example
during a surgery [4], [5].

In certain cases, the reference provided by the human
operator is not directly passed to the robot, but is instead
used to generate an adaptive motion. This approach is
known as semi-autonomous teleoperation or shared control [6],
and its main aim is to reduce the workload of the human
operator while this performs a difficult task that involves
controlling a robotic system. The survey paper [7] provides
an historical perspective of bilateral teleoperation, in which
the controlled robot, which possesses force sensors, can
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transmit reaction forces from the task that is being per-
formed back to the human operator via a haptic device
(for the role of haptics in teleoperation and shared control,
the reader is also referred to [8], [9] and the references
therein). A review of control sharing methodologies is
provided in [10] within the broader field of human-robot
team interaction, highlighting aspects such as modeling of
human behavior and human-machine interfaces. Shared
control has been used in the past years in a number of
different application domains, including unmanned aerial
vehicles [11], walking-assistant robots [12], brain-actuated
wheelchairs, [13], mobile robots [14], bimanual manipu-
lation [15], human-robot interaction [16], robotic surgery
[17], and snake robots [18].

A possible aim of shared control is that of automatically
avoiding obstacles in the robot workspace. An example
of such an application of shared control for robot ma-
nipulators is [19], in which a large-scale manipulator was
controlled by mixing two velocity references, one provided
by the operator and the other pre-planned by the control
system, so as to “avoid risk-full actions” and to “adjust
for variable or uncertain position of targets and obstacles”
[19]. A different approach was presented in [20], where a
shared control method based on artificial potential fields
was used to avoid collisions of the teleoperated underwa-
ter manipulator Ocean One with obstacles such as rocks on
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the sea bed. A different method for shared control relies
on haptic force cues; in this case, a haptic device provides
a force feedback aimed at preventing the operator from
causing the robot to violate joint limits or to collide with
obstacles (see, for instance, [21], [22] and the references
therein cited).

The work presented in this paper considers a shared
control problem to enforce obstacle avoidance for a teleop-
erated manipulator via deep reinforcement learning (DRL).
The operator provides the position reference for the robot
end effector, and the robot motion is generated in order
to remain as close as possible to this reference, while
satisfying joint limits and avoiding obstacles. Differently
from [21], [22], the modification of the robot motion as
compared to the reference happens without providing
haptic feedback to the operator.

Thanks to the increased availability of computational
power, and to the development of more efficient machine
learning methods, DRL has seen a tremendous develop-
ment in recent years [23]–[25]. In DRL, an agent (such as
the software that controls a robotic manipulator) learns
how to perform the best possible actions in a given envi-
ronment, combining reinforcement learning (RL), which is
based on mapping state-action pairs to corresponding ex-
pected rewards, with the powerful function approximation
capabilities of deep neural networks (DNNs). In simple
terms, a DNN acts as closed-loop controller, acquiring the
system state as input and generating the action (control
input) as its output. The DNN initially contains random
weights. During the training phase, these weights are
iteratively modified so that, when an action is generated,
the given reward function is ideally maximized. In this
way, the DNN “learns” to generate an optimal control law.
DRL is thus a data-driven (or model-free) method, an approach
in which the data are used directly to train the control law
without using a process model, obtained either from first
principles or via system identification. A more detailed
overview of DRL, with specific focus on the Q-learning
approach that will be used in this work, is provided in
the Sidebar “Overview of Deep Reinforcement Learning”.
Among other fields, DRL has seen several interesting
applications to the control of robot manipulators. As an
example, the authors of [26] used a DRL algorithm to
solve complex manipulation tasks, such as opening a door,
without providing any prior demonstrations to the robot.
The authors of [27] studied how to learn vision-based
dynamic manipulation skills (in particular, grasping) by
using a scalable DRL approach. In [28], two DRL algo-
rithms were proposed and applied to a robot manipulator
that executed real-world cloth manipulation tasks. Finally,
in [29], a new model-based DRL algorithm was described,
which focused on learning efficiently while imposing the
satisfaction of complex constraints; the proposed method
was then experimentally applied to a knot-tying task on a

surgical robot.
DRL and teleoperation were already combined in [30],

in which complex dexterous manipulation tasks were
learned by a robot manipulator by using human demon-
stration to accelerate the convergence rate of a DRL al-
gorithm. Also, in [31], an open-source framework was
proposed for the control of robot manipulators based
on state-of-the-art distributed reinforcement learning algo-
rithms: among other features, the framework allowed the
use of 3D motion devices to teleoperate the manipulators
and collect human demonstrations. On the other hand,
DRL has been used, outside the teleoperation domain, for
the motion planning of robot manipulators with obstacle
avoidance. For example, the authors of [32] studied the
application of maximum entropy policies to robotic ma-
nipulation, including obstacle avoidance. In [33] and [34],
collision avoidance problems for a robot manipulator in
the presence of moving obstacles were solved via DRL.
Also, the authors of [35] proposed a DRL-based non-
prehensile rearrangement strategy for rearranging objects
on a tabletop surface, including obstacle avoidance.

Summary

The recent surge of interest in the application of learning-
based methods to control systems spurs this work to

investigate how a purely model-free and a purely model-
based method compare when applied to a shared control
problem for a robot manipulator. Specifically, we propose a
method based on model-free deep reinforcement learning
(DRL) for tracking the position of an operator’s hand with the
end-effector of a manipulator, while automatically avoiding
obstacles in the workspace with the whole robot frame. The
obtained control strategy generates joint reference velocities
via a deep neural network trained using Q-learning. The
method is tested in simulation and experimentally on a UR5
manipulator, and compared with a model predictive control
(MPC) approach for solving the same problem. It is observed
that DRL presents a better performance than MPC, but only
if the provided reference falls within the distribution of the
DRL algorithm policy. As one can expect, the model-based
nature of MPC allows it to cope with unforeseen situations,
as long as these are compatible with its process model. This
is not the case for DRL, for which an unexpected (not seen
during the training process) human hand reference would
lead to an extremely poor performance.

Despite the many opportunities that the use of data-
driven methods presents, model-based approaches should
also be taken into account, when possible, as viable so-
lutions. For this reason, model predictive control (MPC)
is here considered as an alternative approach. Similarly
to DRL, MPC has also benefited from the increase in
computational power that has taken place in the last
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decades, but for different reasons. Indeed, with MPC,
this power is used to solve an optimization problem at
each sampling instant, rather than for offline computations
aimed at training the control law, as it is the case with
DRL. MPC is typically based on the minimization of a
cost function (which is equivalent to maximizing rewards),
and this constitutes a similarity with DRL. However, the
reward maximization is not obtained via a learning pro-
cess, but rather by minimizing the cost function based on
the model-based time evolution of the system state over a
given prediction horizon. This is achieved by solving an
optimal control problem online, applying only the first of
the computed control moves, and then re-solving the same
optimal control problem based on the newly achieved state
value [36]–[38]. The use of MPC has also been facilitated
by the availability of various toolboxes such as ACADO
[39], CVXGEN [40], and PANOC [41].

MPC has been applied to robot teleoperation in various
scenarios, with the main aim of coping with communica-
tion delays [42], [43]. It has also been recently applied to
various online motion planning for robot manipulators, for
instance, in [44]–[46].

The difference between the design processes of DRL
and MPC laws is shown in the flow diagram of Fig. 1. Both
methods share their optimal control nature, since they can
be both seen as approximate solutions of an ideal optimal
control problem, and both will have to be tested first in
simulation and then on the actual robot. However, on the
one hand, MPC requires to define the mathematical models
to predict the motions of robot and human before the
controller is designed and tuned. On the other hand, DRL
requires the definition of the hyperparameters that define
the DNN (for example, number of layers and neurons per
layer) and the learning algorithm, and the DNN will then
learn to optimize the reward function without models of
either robot or human motion.

The main innovative contribution of this work is the de-
sign and experimental testing of a DRL strategy, based on
the model-free DRL approach proposed in [47], for teleop-
erating a robot manipulator while automatically avoiding
collisions with obstacles in the robot workspace. Since an
alternative method for solving the same type of problem
using MPC was proposed in [48], a second contribution
is the comparison of the proposed DRL strategy with that
of [48], showing (based on simulation and experimental
data) that it can provide improved performance under
certain conditions. Our aim is to provide an answer, for
robot shared control applications, to the more general
question “To learn or not to learn?”, which is a hot topic in
the present control systems research. The considered case
study is aimed at presenting an application example of
advantages and disadvantages of DRL and MPC, which
can be of interest for future applications.

DRL and MPC have already been compared (though

FIGURE 1 Flow diagram of the design processes of model predic-
tive control (MPC) and deep reinforcement learning (DRL).

only in simulation) in a few recent papers, which did not
deal with robot manipulators, but rather with distributed
wildfire surveillance control of a team of unmanned aerial
vehicles [49], autonomous driving for merging into dense
traffic [50], and adaptive cruise control [51]. These papers
present some common conclusions with our work and
some differences, which are discussed in the remainder
of our paper.

It is important to highlight that the shared control
approach presented in this work can be seen as a particular
case of a robot motion planning problem with obstacle
avoidance. An overview of these problems is provided in
the Sidebar “Motion Planning With Obstacle Avoidance”.

DEEP REINFORCEMENT LEARNING APPROACH
In this section, some concepts of reinforcement learning
(RL) are recalled, and recast in the considered robot tele-
operation framework.

Background on reinforcement learning
As illustrated in Figure 2, the key idea of RL is that, having
learned from past experience, it is possible to understand
which actions lead to maximize a reward function in a given
time horizon, for any given environment condition (state).
In fact, the aim of RL problems is to maximize not only the
current reward, but also the future ones, achieved as the
result of actions influencing states. The element gathering
information about states and performing actions trying to
reach one or more goals related to the accomplishment of
a predefined task is called agent. The design procedure for
DRL in case of robot teleoperation is hereafter described,
while further preliminaries on DRL are reported in the
Sidebar “Overview of Deep Reinforcement Learning”.
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Overview of Deep Reinforcement Learning
MACHINE LEARNING

In computer science, machine learning (ML), as introduced in
[S1], is the field that gives computers the ability to learn and

accomplish a task without being explicitly programmed to do
so, by the construction of algorithms that can learn from and
make predictions on data. Thanks to increased computational
power and availability of massive quantities of data, machine
learning today finds application in many different domains, such
as computer vision, natural language processing, identification,
marketing analysis, and robotics. Its popularity is mostly due
to its appealing property of being able to encode solutions for
problems that are difficult to program explicitly. Furthermore, the
same models can be adapted to different domains to solve other
problems, with minimal hand-engineering. Nevertheless, one of
the main drawbacks of machine learning is that it mostly works
as a black box, meaning that, given its probabilistic nature, it
is hard to interpret its results, which may lead to unexpected
outcomes. Furthermore, the quality of a ML model greatly
depends on the quality of the data used for training, which
may not always be available: one of the most critical features
of machine learning is indeed that of generalization, that is,
the ability to perform with acceptable results even on data that
were never explored during training, which is only possible if a
proper data selection was made a-priori. Therefore, despite its
promising potential, great care must be taken before applying
machine learning to more critical domains.

In general, the goal of a ML model M is to represent the
relation between some input data x and an output y , by means
of a parametric function

Mθ(x ) = y . (S1)

The process of training is then the computation of the param-
eters θ of M in order to steer the output of the ML model as
close as possible to the desired outcome. Usually, this happens
through a loss function, used to quantify such divergence. ML
can then be divided into three main categories. Specifically,
the first one is the so-called “supervised learning”, which is
obtained by training the model using labeled data, meaning
that, at each learning iteration, the output of the model is
compared against the actual expected output, using some pre-
defined metric; parameters are then updated and the procedure
repeated until satisfactory results are obtained, and the model
can correctly predict results for new data. The main applications
of supervised learning are classification and data regression for
model identification. The so-called “unsupervised learning”, as
the name suggests, is instead obtained by training the model
with unlabeled data. Its main goal is to find common structures
and repeated patterns in the input data, and it finds application
in clustering, density estimation, and anomaly detection. Finally,
“reinforcement learning” (RL) is a type of machine learning in
which, differently from the previous two, usually no dataset is

built a-priori, meaning that the model autonomously collects
its data for training by interacting with the environment and
observing the outcome of its action.

REINFORCEMENT LEARNING
RL [S2], is a branch of machine learning that, inspired by
behavioral psychology, does not need a supervisor or a pre-built
dataset in order to autonomously discover an optimal outcome
for a specific task. The training process can be summarized
as “learning by doing”, and the results are achieved through
iterative trial and error while interacting with an environment.
Specifically, the RL framework relies on the concept that an
agent, at any given time t , observes the environment, repre-
sented by a certain state xt ∈ X , with X being the state space,
and according to a certain policy π(u|x ) performs a certain
action ut ∈ U , with U being the action space, thus changing
the state. When entering a new state, the agent receives a
reward rt , that is a scalar indicator on “how well” the agent has
performed.

The framework is abstract and flexible: the action space
and the state space are entirely arbitrary to the designer’s
discretion and can take a variety of forms with different degrees
of complexity. The policy π, which serves as a mapping from
states to action, can be either deterministic or probabilistic.
For a given control task, the learning process is divided into
episodes, where the agent interacts with the environment for
either a complete attempt to perform a goal task or a fixed
number of time-steps before being reset. The whole training
process includes a typically large number of such episodes, up
to a predefined maximum.

Reward
A reward rt is a scalar feedback signal that indicates “how well”
an agent has done at step t . The agent’s goal is to maximize the
(expected) cumulative reward it receives in the long run. In case
of episodic tasks with finite horizon T , the expected cumulative
reward Rt is defined as

Rt =
T

∑
k=0

γk rt+k+1 , (S2)

where the term 0 ≤ γ ≤ 1, known as discount rate, is used
to prioritize earlier rewards over later ones: if γ is close to 0,
the agent preferably chooses actions that maximize immediate
rewards, while a value of γ close to 1 more likely results
in the selection of a sequence of actions that leads to long-
term maximization, despite possible immediate drawbacks. The
reward function is perhaps the most crucial design element
when setting a reinforcement learning framework, since it is the
only form of “supervision” in the training process: therefore, it
must be designed with great care in order to properly represent
the desired behavior that the agent must accomplish.
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Markov Decision Process
In order to better understand the RL principles, the concept
of Markov Decision Process (MDP) needs to be introduced.
Specifically, a MDP is defined by the state and action sets, and
by the transition probability matrix of the environment. Given any
state x and action u, the transition probability (or model) of the
process is the distribution of each possible successive state x ′

and reward r , that is

p(x ′, r |x , u) = P(x ′, r |x , u) , (S3)

with p denoting the dynamics of the process and P(·) being the
probability function. Given any time t , a process is referred to
as Markov process if and only if it satisfies the so-called Markov
property

P(xt+1, rt+1|xt , ut ) = P(xt+1, rt+1|xt , ut , xt−1, ut−1, ..., x0, u0) ,
(S4)

meaning that the state at time t + 1 depends only on the current
state and action (“memorylessness" property). In RL, a task in
which the transition probability of the environment satisfies the
Markov property (S4) is called a MDP

< X ,U , r , p, γ > . (S5)

Therefore, given the current state x , action u and the next state
x ′, the expected value of the reward is defined as

r (x , u, x ′) = E [ri+1|xt , ut , xt+1] . (S6)

Policy
The policy π(u|x ) defines the agent’s behavior in the envi-
ronment, and is the probability that the agent performs an
action u while in state x . Depending on the task, the policy
can be represented as a simple function or look-up table, or
as a more complex deterministic or probabilistic function that
requires extensive computation.

Value function
A value function V π is an estimate of the value of moving
into a certain state following an action provided by the policy
π. Specifically, the value of a state is the expected cumulative
reward the agent can gain over time, starting from that state and
following the policy π thereafter, that is

V π(x ) = Eπ

[
T

∑
k=0

γk rt+k+1|xt = x

]
. (S7)

V π(x ) is the state-value function for the policy π. Furthermore,
the value of a given state can be expressed in relation to the
subsequent states by the so-called Bellman equation

V π(x ) = Eπ [Rt |xt = x ] . (S8)

In a similar manner to the value function (S7), one can define
the action-value function Qπ (also known as Q-function) as

Qπ(x , u) = Eπ

[
T

∑
k=0

γk rt+k+1|xt = x , ut = u

]
, (S9)

representing the expected cumulative reward of taking action
u while in state x , and following π thereon. Since the goal

of reinforcement learning is to find an optimal policy that can
maximize the cumulative reward, let us define π∗ such that

π∗(x ) = argmaxπ V π ∀x ∈ X . (S10)

Therefore, one can define the optimal value function as

V ∗(x ) = max
π

V π(x ) , (S11)

and, recalling the expression of the action-value function, one
can express the Bellman equation for V ∗ as

V π(x ) = max
u∈U

Qπ∗ (x , u) . (S12)

Intuitively, the Bellman optimality equation for Q∗ is obtained
by substituting V ∗(x ′) with Q∗(x ′, u ′). This equation expresses
that, under an optimal policy, the value of the state is equal to the
expected reward obtained after performing the best action from
thereon. Furthermore, since (S12) is a system of N equations in
N unknowns, given an environment with known dynamics, one
can solve the value of V ∗ for each state, and then determine
the optimal policy π∗ to solve a task. However, the model of the
environment is not always available upfront.

Q-learning
When dealing with complex systems, such as those found in
robotics applications, the complete transition probability of the
environment may not be available, requiring the use of model-
free learning approaches. One way to achieve this is through
Q-learning, introduced in [S3], which enables the direct approx-
imation of the optimal action-value function Q∗ independently of
the policy being applied. Specifically, the algorithm performs a
step-wise update of the approximator Q̂, by computing a tempo-
ral difference between two consecutive values and updating the
value of Q̂ according to a learning rate α ∈ [0, 1]. Furthermore,
under the assumption of performing each action infinitely often,
and visiting each state infinitely often, with α→ 0, then

Q̂(x , u)→ Q∗(x , u) (S13)

with probability 1.
Now, let us introduce the concepts of “exploration and “ex-

ploitation” in reinforcement learning. Exploration during training
means that the agent tends to transition to other states regard-
less of policy optimization. Exploration is usually achieved by
either randomizing actions entirely or by adding noise to the
selected action u. This enables the agent to explore states that
would otherwise risk never getting evaluated, thus preventing
finding a possible better policy. In case of exploitation, on the
contrary, the agent uses already acquired data in order to
make decisions. Although this may lead to finding a policy
faster, it usually results in suboptimal outcomes, since the
agent does not know of other possibly better solutions. A policy
that only uses exploitation is called “greedy”. Typically, one
design element in a reinforcement learning framework is the
balance between exploration and exploitation, in order to ensure
fast convergence and fair coverage of all actions, states, and
rewards of the environment.
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Hyperparameters
Finally, in ML there are predefined parameters, called hyper-
parameters, whose values are not learned during the training
process but rather decided upfront during the design phase.
In practice, these values are determined through a preliminary
search activity aiming to identify the most effective combination.

DEEP REINFORCEMENT LEARNING
In case of problems with an overwhelmingly large (possibly
infinite) number of possible states, one way to overcome the
issue of mapping the relationships between states and actions
is to use Deep Neural Networks (DNNs) to build a parametric
approximator of the Q-function. The most notable example of
DNNs being used to solve reinforcement learning problems is
the work [52], where superhuman performances were achieved
when training an agent to play Atari videogames. DNNs are
powerful parametric functions capable of modeling complex
nonlinear relationships between inputs and outputs by means of
neurons, to which certain weights w are assigned, connected in
k layers; the term “deep” refers to the level of composition of the
parameters and the use of multiple “hidden” layers between the
input and output ones. Let us assume to have a generic target
function

y = f (x ), x ∈ Rn . (S14)

Then, a parametric representation of the function with a DNN is
expressed as

ŷ = W · g(W (1) · g(W (2)·

g(...g(W (k ) · x + b(k ))...) + b(2)) + b(1)) + b , (S15)

where W (k ) is the set of weights associated with neurons of
the k -th layer, g is an activation function, and b(k ) is the set of
biases associated with the output of the k -th layer. Generally
speaking, the aim of training a DNN is that of updating the set
of parameters θ (that is the weights and bias) so that the output
of the network matches the desired one.

Making now reference to Q-learning, let us consider a
parametrized Q-function Q̂(x , u|θQ ). Then, let us impose a
stochastic behavior policy β such that ut = β(xt ), with a state
visitation frequency ρβ (that is the number of times a state is
visited using stochastic policy β). Under these assumptions, the
goal is now to minimize a loss function

L(θQ ) = E
[(

Q̂(xt , ut |θQ )− yt

)2
]

, (S16)

where the term yt is the target function such that

yt = r (xt , ut ) + γQ̂(xt+1, µ̂(xt+1)|θQ ) (S17)

and
µ̂(xt ) = argmaxut

Q̂(xt , ut |θQ ). (S18)

Several algorithms have been proposed with promising re-
sults for solving (S18), such as deep deterministic policy gra-
dients (DDPG) [S5], twin delayed DDPG (T3D) [S6], and soft

actor-critic [S7]. Nevertheless, when dealing with a very large
number of continuous states and actions, it is especially useful
to be able to rephrase the optimization problem so that the
computation of the policy can be performed more efficiently.
This can be achieved by the Normalized Advantage Function
(NAF) algorithm, introduced in [47].

Normalized Advantage Function
Making reference to the Q-learning problem as in [47] (see also
[53] for further theoretical details), let us consider a parameter-
ized Q-function Q̂

(
xt , ut |θQ) such that

Q̂
(

x , u|θQ
)
= Â

(
x , u|θA

)
+ V̂

(
x |θV

)
, (S19)

where Â and V̂ are DNN approximators of the so-called advan-
tage function Aπ(xt , ut ) = Qπ(xt , ut ) − V π(xt ) and the value
function V π(xt ), respectively. Specifically, the advantage term
is expressed as the quadratic function

Â
(

x , u|θA
)
= −1

2
(u − µ̂(x |θµ)>P(x |θP )(u − µ̂(x |θµ) . (S20)

The function P(x |θP ) is a positive-definite square matrix de-
fined such that

P(x |θP ) = L(x |θP )L(x |θP )> , (S21)

with L(x ) lower triangular and with entries derived from the
outer layer of the dedicated neural network. The policy (S18)
can then be computed as

∂

∂u
Q̂
(

x , u|θQ
)
= −(u − µ̂(x |θµ))>P(x |θP ) . (S22)

By imposing equality to 0, one gets
∂

∂u
Q̂
(

x , u|θQ
)
= 0 , (S23)

that is u = µ̂(x |θµ). Therefore, the action maximizing the Q-
function is always u = µ̂(x |θµ).
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FIGURE 2 Block diagram of robot/environment interaction concept
behind reinforcement learning (RL).

Deep reinforcement learning robot setting
The proposed framework is now formulated making ref-
erence to Figure 2, with xt ∈ X being the state at time t,
and the state space X given by

X , {q, pe, pd,O} , (24)

where q ∈ Rnq is the vector of measured robot joint
positions, pe ∈ R3 is the end-effector position, pd ∈ R3 is
the corresponding reference position, and finally O ∈ RnO

represents the information about the position of one or
more obstacles in the robot workspace. The value of nO
represents the number of scalars needed to store a rep-
resentation of the obstacle (for instance, the coordinates
of its vertices for a polygonal obstacle). Let the vector of
reference joint velocities at each joint q̇d ∈ Rnq correspond
to the action ut performed by the robot given a certain
state at time t, and let U be the action space, that is

U , {q̇d} . (25)

An action issued at time t − 1 influences the state space
starting from time t. Thus, a transition to state xt triggered
by an action ut−1 yields a reward r that is a scalar feedback
signal expressing “how well” the robot has done at step t.
In the considered case, the reward function is given by

r(xt, ut−1) , −c1rT − c2rU − c3rO , (26)

in which c1, c2, c3 ∈ R>0 are tuning parameters, while the
meaning of rT , rU , and rO is explained in the following.
The term rT in (26) is related to the distance between the
end effector and the reference trajectory, and is computed
relying on the so-called Huber-loss function, that is

rT ,


1
2 d2 for d < δT

δT

(
d− 1

2 δT

)
otherwise

, (27)

where d is the Euclidean distance between the end-effector
and the reference, while δT is a threshold that determines
the transition between the quadratic and the linear parts of
rT . The second term rU is a regularization term, computed
as

rU , ‖u‖2 , (28)

which has the purpose of encouraging smaller control
actions. Finally, rO defines the penalty for being too close
to obstacles, and is computed as

rO ,
(

δO
δO + dO

)g
, (29)

where dO is the minimum distance between the robot
frame and the obstacles, while δO ∈ R>0 is a constant
parameter ensuring that 0 < rO < 1, and g ∈ R>0 is
a hyperparameter aimed at increasing the decay rate of
the reward component when the robot is far from the
obstacles. Since the DRL algorithm is usually trained in
simulation, the value of dO can typically be extracted
from the specific simulator without the need to know the
algorithm used for computing it (see, for instance, [54]).
Notice that rO(dO) is a monotonically decreasing function,
with rO(0) = 1, and limdO→∞ rO(dO) = 0.

For episodic tasks involving a sequence of n actions, we
define the cumulative reward as

Rn ,
n

∑
k=0

γkrt+k+1 , (30)

where the term 0 ≤ γ ≤ 1 is the discount rate, used to
prioritize earlier costs over later ones.

Considered continuous Q-learning approach
A Q-learning approach is adopted in this paper. This relies
on the definition of the so-called action-value function, or
Q-function, namely Qπ(x, u), corresponding to the policy
π : X 7→ U . The aim of Q-learning is to determine
the optimal policy π∗, that is the one that maximizes the
expected cumulative cost, starting from any given state.
To do this, we use a DNN as parametric approximator
of the Q-function, and we refer to this approximation
as Q̃. We introduce the value function Vπ : X 7→ R,
defined as the expected cumulative reward accumulated
by the robot by adopting π from a given state on, and
the advantage function Aπ(xt, ut) , Qπ(xt, ut) − Vπ(xt).
The DNN defining Q̃ is trained by incrementally updating
its parameters, and ideally converging to the optimal Q-
function. The approximator is chosen for instance as

Q̃
(

x, u|θQ
)
, Ã

(
x, u|θA

)
+ Ṽ

(
x|θV

)
, (31)

where Ã and Ṽ are parametric approximators of Aπ and
Vπ , respectively, and θA and θV the corresponding vec-
tors of parameters. The aim of the learning process thus
becomes that of learning a greedy deterministic policy
π(ut|xt) = δ(ut = µ̃(xt)), with µ̃(xt) = argmaxu Q̃(xt, ut),
by minimizing a loss function given by

L(θQ) , Er,ρβ ,β

[(
Q̃
(

xt, ut|θQ
)
− yt

)2
]

, (32)

where the term yt is the target

yt = r(xt, ut) + γQ̃
(

xt+1, µ̃(xt+1)|θQ
)

, (33)
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Our aim is to provide an answer, for robot shared control applications, to
the more general question “To learn or not to learn?”

with θQ containing the parameters of the action-value
function approximation, β being a stochastic behavior pol-
icy such that ut = β(xt), and ρβ being the state visitation
frequency with policy β.

Due to the continuous nature of the robot teleoperation
problem, the approach based on the so-called normalized
advantage function (NAF) [47] is finally used to find the
optimal policy [53]. The conceptual idea is that NAF
adopts a quadratic Q-function approximator such that
argmaxu Q̃(xt, ut) can be efficiently computed during each
update. More specifically, the algorithm uses a DNN to
separately output the terms Ã and Ṽ, where the advantage
term is parametrized as a quadratic function, that is

Ã
(

x, u|θA
)
= −1

2
(u− µ̃(x|θµ))′ P(x|θP) (u− µ̃(x|θµ)) ,

(34)
in which the term P

(
x|θP) is a state dependent, positive-

definite square matrix. The Q-function is quadratic in the
action and, by computing the maximum, one has

∂

∂u
Q̃(x, u|θQ) = (µ̃(x|θµ)− u)′ P(x|θP) = 0 . (35)

Therefore, the action u that maximizes Q(x, u) is always
given by u = µ̃(x|θµ).

Note that, apart from the weights, the tuning of the
proposed DRL is performed via a set of hyperparame-
ters, which are defined upfront during the design phase.
The hyperparameters involved in the performance of the
experiments are summarized for the specific case study
considered in this paper in the following sections. Further-
more, in order to achieve the best policy, extensive training
needs to be performed. Typically and in practice, any
such training process includes a large number of episodes,
up to a predefined maximum. During each episode the
robot interacts with the environment for either a complete
attempt to perform a goal task or a fixed number of
time-steps before being reset. Finally, after training, the
performance is evaluated in terms of a cumulative reward
function computed over reference trajectories that were not
considered during the training phase.

MODEL PREDICTIVE CONTROL APPROACH
This section summarizes a variation of the MPC approach
described in [48] for solving the same teleoperation prob-
lem here considered, by using the RL jargon (for example,
reward functions are used instead of cost functions) in
order to highlight the commonalities with the proposed
DRL approach. To approximate the optimal policy π∗,

instead of defining a deterministic policy µ̃(x|θµ) based on
machine learning, a finite-horizon optimal control problem
(FHOCP) is solved online to directly determine a different
deterministic policy µ̂(x|θMPC), where θMPC is the set of
MPC tuning parameters, as detailed in the remainder
of this section. At any given time instant t, the reward
function is defined as

r̂(xt, ut) , −c1r̂T − c2rU , (36)

in which r̂T is a purely quadratic function (needed to be
able to efficiently determine µ̂(x|θMPC) online), defined as
r̂T , 1

2 d2. Notice that the penalty for obstacle collisions
is not inserted in the reward function, as an explicit
constraint on obstacle avoidance can be instead directly
inserted in the FHOCP. The cumulative reward for MPC
is thus defined as

R̂t ,
N−1

∑
k=0

r̂t+k+1|t , (37)

where N ∈ R>0 is the so-called prediction horizon, while
r̂t+k+1|t is the forecast of r̂ at time t + k + 1, predicted
at time t. The FHOCP aims at determining the optimal
realization of the control sequence

ut , {ut|t, ut+1|t, . . . , ut+N−1|t} ,

namely u∗t , based on a prediction of the evolution of the
obstacle configuration

Ot ,
{
Ot+1|t,Ot+2|t, . . . ,Ot+N|t

}
and of the reference

pd,t ,
{

pd,t+1|t, pd,t+2|t, . . . , pd,t+N|t
}

from the human operator, both predefined at time t. In
the considered case study, the obstacles are assumed to
maintain a given constant position. Also, in order to obtain
a completely model-based MPC law, and independent
from any learning data, the prediction of the reference
value pd,t is obtained extrapolating the hand motion based
on the current direction and speed, both estimated from
the last measured samples. In order to generate the value
of pd,t for the whole prediction horizon, it is assumed
that the hand motion will be rectilinear (maintaining the
current direction) and with a constant speed (equal to the
currently observed one). On the other hand, the prediction
of the robot configuration, namely

qt ,
{

qt|t, qt+1|t, . . . , qt+N|t
}

,
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is determined by the predicted realization of the control
sequence. We can finally provide the FHOCP formulation

u∗t = argmaxqt ,Ot ,pd,t ,ut
R̂t(qt, pd,t, ut) (38a)

s.t. qt|t = qt (38b)

qt+k+1|t = qt+k|t + τsut+k|t, k = 0, . . . , N − 1, (38c)

d̂O(qt+k|t,Ot+k|t) ≥ 0, k = 1, . . . , N , (38d)

where (38b) imposes that the sequence of predicted joint
variables qt+k|t starts from the currently measured value
qt, (38c) determines a simplified system dynamics (by
assuming that the desired joint velocity, instead of the
actual joint velocity, directly influences the joint position)
where τs ∈ R>0 is the sampling interval, while (38d)
imposes obstacle avoidance. More specifically, d̂O(q,O)
represents a conservative estimate of the distance between
robot and obstacles based on an over-approximation of
their space occupancy. Indeed, contrary to the calculation
of the distance dO used in DRL, which can be done through
a simulator, an explicit formula is needed to insert this
distance inside the FHOCP. As an example, test points
can be defined on the robot frame and on the obstacles,
each of them being at the center of a sphere with given
radius; if the union of the spheres on the robot includes
the whole robot frame, and analogously for the obstacle,
then condition (38d) can be imposed by requesting that all
distances between each test point on the robot and each
test point on the obstacle are greater or equal than the
sum of the corresponding sphere radii.

Once the FHOCP (38a)-(38d) is solved at time t, only
the first element of the control sequence determines the
MPC policy µ̂(x|θMPC) = u∗t|t, and the FHOCP is then
solved at time t+ 1, after new measurements are available.
The set of MPC parameters θMPC includes c1 and c2, the
parameters of the method used to formulate (38d), and
those of the method used to predict future obstacle and
reference positions.

MAIN DIFFERENCES BETWEEN DRL AND MPC
Compared to DRL, the MPC approach presents the fol-
lowing main differences. First, MPC aims at tracking the
reference while avoiding the obstacles based on an ex-
plicit model-based prediction of the robot motion on a
limited time horizon, while DRL learns its behavior via
trial and error (during training). Second, MPC is based
on a simplified system dynamics in order to limit the
computational complexity of the FHOCP, while DRL can
be trained on a sophisticated robot simulator, which repli-
cates the dynamics of the manipulator and the behavior
of its internal controllers. Third, MPC uses a conservative
evaluation of the distance with the obstacles (again, to limit
computational complexity), while DRL can rely on precise
distances calculated by the employed simulator during

FIGURE 3 Experimental setup used in the case study. The setup
consists of a UR5 manipulator and obstacles (top), while the virtual
reconstruction of the same setup is done in the CoppeliaSim
simulator (bottom).

training (although the presence of the penalty term −c3rO
in the reward function, rather than a hard constraint as
in MPC, can introduce some conservativity in DRL too).
Fourth, MPC does not need training data, and is therefore
much more robust towards managing unforeseen events,
such as a reference motion never seen before; DRL might
instead show an unexpected behavior should this happen.
Fifth, the DRL training might fail for certain values of the
hyperparameters. More in general, teleoperation is often
used to work in unstructured or safety-critical remote
environments, where machine learning algorithms tun-
ing (for instance, weights, hyperparameters) or extensive
training (especially with a large number of episodes) and
evaluation are not easily carried out. In such environments,
if the DRL training fails, then model-based approaches
such as MPC or methods based on haptic force cues such
as [21], [22] would constitute a better solution.

CASE STUDY
The scenario on which the proposed methodologies were
applied involved an UR5 6-axis robot manipulator tasked
with the tracking, with its end-effector, of a reference
position generated online by an operator; while doing so,
the robot had to avoid collisions with a box placed on a
table, and with the table itself. The considered scenario,
including the obstacles, is represented in Figure 3 (top).

The operator’s hand motion was converted into a suit-
able reference signal pd for the robot via a custom-made 7-
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DOF human arm motion tracker system [55]. The recorded
motions consisted of movements of the arm from the left to
the right of the operator, and vice versa, while varying the
height of the hand. In the robot reference frame O− xyz,
the values of the xyz components of pd varied, respectively,
within [−0.57,+0.53] × [−0.15,+0.60] × [−0.23,+0.72] m.
Most of the trajectories generated for either training or
testing were such that, if the robot had to perfectly follow
the provided end-effector reference, a collision with the
obstacles would happen at a certain point in time.

Deep reinforcement learning design and training
The training of the DRL agent was performed in simu-
lation by interfacing the NAF algorithm with the Cop-
peliaSim simulator (see the bottom part of Figure 3),
encapsulating the environment, via the PyRep [56] plugin.
Synchronous simulations were run with a sampling inter-
val τs = 50 ms and had a duration of 18 s (360 time steps),
in which the simulated UR5 received values of pd from
the training data set recorded with the above-mentioned
arm motion tracking system, performed the actions pro-
vided by the policy, and observed the environment as it
changed, collecting experience. The employed trajectories
were sampled from the training set (consisting of a total
of 447500 data points) at the beginning of each episode.
Before evolving with time, the reference idled for 5 seconds
in order to allow the robot to reach the selected starting
point of the randomly chosen trajectory segment. After
each episode, both the trajectory and its starting point
were reset, and the robot was re-initialized at its home
configuration.

It is worth noticing that, according to (24), the currently
measured obstacle position should in general be an input
for the DRL control law. As a consequence, it was decided
to keep providing the coordinates of the obstacle center
to the DRL controller, even if, given the fact that in
the considered scenario the obstacle was static, this was
redundant information. However, the same DNN can be
in principle trained also for scenarios in which the given
obstacle changes its position with time.

The training was executed for 700 episodes: the corre-
sponding learning curve is reported in Figure 4 (red line),
in which we can notice that, for episodes with duration
of 18 s, the total reward Jn, evaluated a posteriori without
discount factor, that is

Jn ,
n

∑
t=1

rt , (39)

appears to converge to a value of −104. Making refer-
ence to the DRL framework and the NAF algorithm as
discussed in [47], the hyperparameters used during the
training phase are summarized in Table 1.

After completing the training phase, the DRL algorithm
was tested in simulation using the dynamics model also

FIGURE 4 Deep reinforcement learning (DRL) learning curves for
the UR5 case study.

TABLE 1 Deep reinforcement learning (DRL) hyperpa-
rameter values.

Parameters Value

number of time steps 360
time step 50 ms
c1 1000
c2 200
c3 60
δT 0.1
g 8
δO 0.1
discount factor γ 0.99
update factor τ 0.001
learning rate 0.001
noise type N Ornstein–Uhlenbeck
noise decay factor 0.01
noise scale 1

used for training and implemented in CoppeliaSim, on a
test set consisting of 500 new reference trajectories, span-
ning the same range of values used during training, each
of them with a total duration of 40 s (that is 800 steps). As
a result, an average value of Jn = −1.69 · 104 was obtained,
with a standard deviation of 2.70 · 103. In order to compare
these results with those represented in the training curve,
the same metrics have been evaluated in the first 18 s of the
simulations in the test set, obtaining an average value of
Jn = −8.26 · 103, with a standard deviation of 1.10 · 103. The
result is in line with the final value of Jn = −104 shown
in the learning curve, even though it presents a slight
improvement. Also, no collisions were observed between
the robot and the obstacles for this test set.

As already mentioned when explaining the main dif-
ferences between the DRL and MPC approaches, one
advantage of DRL is the ability of using precise distances
between robot and obstacle, obtained during the training
phase using the employed simulator. MPC, instead, has to
rely on a conservative evaluation of such distance: more
precisely, in the MPC approach that will be explained in
the following, the space occupied by the box will be over-
approximated by an ellipsoid, which will force the robot to
move farther from the actual obstacle. In order to show that
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this constitutes an additional layer of conservativity for
MPC (partially compensated by the fact that MPC can im-
pose hard constraints on obstacle avoidance in the FHOCP
(38)), we trained the same DRL algorithm described above
so as to avoid the over-approximating ellipsoid rather than
the box itself. The result in terms of learning curve can be
observed in Figure 4 (blue line), where one can see that the
newly-defined DRL algorithm converges to a worst value
than the original DRL case. Also, the new algorithm was
tested on the same set of 500 reference trajectories used for
testing the original DRL case, obtaining an average value
of Jn = −2.34 · 104, with a standard deviation of 3 · 103.
As the original DRL algorithm had, as expected, a better
performance, the newly-defined DRL algorithm will not
be considered in the remainder of the paper.

Model predictive control design
In order to provide a comparison, an MPC strategy was
designed using, to define the reward in (36), the same
parameters c1 and c2 as in Table 1, and a prediction horizon
N = 20, corresponding to a total prediction time of 1 s.
As already mentioned above, the prediction of the end-
effector position reference pd was obtained by linearly
extrapolating the current value of pd based on an estimate
of its current speed ṗd, as in [48]. Also, the avoidance of box
and table was obtained similarly to the description pro-
vided before, by defining 7 test points on the manipulator,
and the same number of spheres that cover the whole robot
frame (this is a less conservative approach as compared
to [48], in which only 3 spheres, with larger radii, were
defined on the robot). The space occupied by the box
was covered by the above-mentioned ellipsoid, and the
condition for imposing absence of intersections between
the spheres on the robot and the ellipsoid was imposed
as described in [48, Sec. II.C]. Finally, the avoidance of the
table was also imposed as described in [48, Sec. II.C], by
requiring that all spheres on the robot remained entirely
above the horizontal plane that defined the table surface.

EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the experimental results for the consid-
ered UR5 case study are presented and discussed. Both
controllers were implemented in Robot Operating System
(ROS) and ran on an Acer laptop with a 2.6GHz Intel Core
i7-9750H CPU with 16GB RAM. The UR5 robot provided,
every 50 ms, joint positions and position of the end effector
to the controllers via TCP/IP communication, and the
controllers transmitted the control inputs (coinciding with
the joint speed references for the internal control loops)
over the same connection as URScript language com-
mands. The optimization solver for MPC was generated
using the ACADO Toolkit [39], [58], [59], which includes a
code generation tool. The FHOCP (38) was formulated via
multiple shooting with a discretization interval coinciding

with the sampling interval of 50 ms. A Gauss-Newton
approximation was used to define the Hessian of the
Lagrangian, and the problem was solved via sequential
quadratic programming, with each (condensed) quadratic
program solved using the dual active set method imple-
mented by the qpOASES solver [60]. On the other hand,
the DRL controller was written as ROS integrated Python 3
program. Through ROS communication topics, the DRL
controller received both the UR5 joint positions and the
references from the arm tracker system on the human
operator. The experimental procedure was approved by
the Nazarbayev University Institutional Research Ethics
Committee (NU-IREC).

Offline reference tracking: execution time and
performance
As a first result, we show the data summarizing 25 ex-
perimental trials, each with a duration of 40 s. In order to
obtain a fair comparison, the same arm tracking data were
provided to both DRL and MPC, by recording the time
evolution of the reference position pd, end then providing
it to both control schemes. In none of the 25 experiments
collisions were observed, as it was the case for the DRL
simulations: this confirms the collision avoidance ability
of both schemes.

In terms of execution time, DRL showed an average
value of 28 µs and a worst-case value of 386 µs; on the
other hand, MPC had an average execution time of 18.3 ms,
which increased to 73 ms in the worst case. Since MPC had
to solve the FHOCP (38) at each sampling instant, while
the DRL controller only had to evaluate the output of a
DNN for a specific input, the better performance of DRL on
this metric could be expected. The execution time of MPC
exceeded the sampling interval of 50 ms in very few cases:
when this happened, a time delay larger than the sampling
interval was introduced into the system, which could lead
to a slight loss of performance. Even if the execution time
for MPC was mostly lower than the sampling interval, and
thus both DRL and MPC could be executed in the setup,
the low execution time of DRL would allow one to execute
it on less expensive hardware, and/or together with other
(concurrent) processes.

In terms of cumulative reward, we first compared the
two methods on the average value of Jn for the 25 exper-
iments. As one can notice in Table 2, the DRL controller
provided a performance improvement of about 7%; this
result was rather consistent through the different experi-
mental trials, since the standard deviation was only about
13% of the mean value of Jn for both cases. The DRL
performance was perfectly aligned with that obtained in
simulation during the testing phase: the mean value of Jn
was approximately the same, although the standard devi-
ation decreased for the experimental data. This provides
a strong justification for training the system in simulation,
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Motion Planning With Obstacle Avoidance

The methods for robot motion planning with obstacle avoid-
ance used in this work are only a subset of a wider set

of approaches, described for instance in [S8]. Most of these
methods define a path in the configuration space Q ⊆ Rnq ,
which, in the case study analyzed in this paper, would coincide
with the space of manipulator joint angles q ∈ R6. The aim is
to find a feasible path in the subset of Q that does not contain
obstacles (namely, Qfree ) between a starting configuration qs

and a goal configuration qg . After a suitable path has been
planned, the actual robot motion (that is the evolution of the
state variables in time) has to be determined, for example using
methods based on spline functions [S9, Ch. 4].

Shared control can be seen as a particular motion planning
problem, in which qg changes with time. The deep reinforce-
ment learning and model predictive control methods considered
in this work can be seen as optimal control approaches, since
the robot motion is determined based on the maximization of
a utility function subject to constraints. A brief non-exhaustive
overview of alternative motion planning methods in the pres-
ence of obstacles is provided in the following.

VISIBILITY GRAPHS
Visibility graphs [S10] can be used when all obstacles are mod-
eled as polygons and nq is relatively small. A graph is defined
that has all vertices of the polygonal obstacles, together with
the starting and goal configurations, as nodes, and, as edges,
all straight lines connecting the configurations corresponding to
the nodes without crossing any obstacles. A search algorithm
such as A∗ is used to find the shortest path between qs and qg ,
which corresponds to the actual shortest path in Q.

GRID-BASED METHODS
As an alternative, one can ignore the obstacle boundaries and
discretize Qfree with a uniform grid, obtaining a so-called grid-
based method [S11, Sec. 10.4]. In this case, one would still
obtain a graph, with, as nodes, all vertices of the grid, and,
as edges, all straight lines connecting the configurations cor-
responding to nearby nodes. As in the case of visibility graphs,
search methods such as A∗ can be used to find the shortest
path on the graph between the nodes whose configurations are
the closest to qs and qg . The determined path in Q will be the
shortest one for the used level of discretization. This method still
suffers from the curse of dimensionality, as the number of nodes
explodes as nq increases.

SAMPLING-BASED METHODS
In order to be able to explore higher-dimensional configuration
spaces, sampling-based methods constitute the current state of
the art for motion planning [57, Ch. 5]. A tree is built, which
is a special type of graph that does not require the use of
search algorithms to find the (unique) path between any two
nodes. By initializing the tree with a single node corresponding
to qs , these methods are constituted by (i) a function (named

sampler ) that chooses a sample qσ from Q, (ii) another function
that finds the nearest configuration qn (corresponding to an
existing tree node) to qσ, and (iii) a local planner that adds a new
configuration as tree node between qσ and qn , and determines
a path between qn and the newly introduced configuration
using motion primitives. In case qs is randomly sampled, this
algorithm is referred to as rapidly-exploring random trees (RRT),
while, if qs is deterministically chosen using a progressively finer
grid, we speak of rapidly-exploring dense trees (RDT). A popu-
lar variant of RRT, in which the tree is modified (“rewired”) after
each iteration to avoid convoluted paths, is referred to as RRT∗.
The solution provided by RRT∗ asymptotically approaches the
actual shortest path in Q as the number of samples increases.

VIRTUAL POTENTIAL FIELD METHODS
A method that directly determines the robot motion, rather
than first generating a path, is the one given by potential field
methods [S13]. This approach, inspired by potential energy
fields in the physical world, assigns a low virtual potential to qg

and high virtual potential to the configurations corresponding to
obstacles. The direction in Q in which the robot should move is
obtained at each sampling instant based on the virtual force
vector resulting from the virtual potential field. Following this
direction, the robot configuration gets repelled by the obstacles
and attracted by qs , thus eventually converging to qs . The speed
of the robot in Q can be determined based on a simple rule,
for example maintaining the speed constant when far from qg ,
and gradually decreasing it in a given neighborhood of qg . This
method suffers from the problem of local minima, which might
lead the robot to stop at a configuration other than qg . On
the positive side, compared to the motion planning methods
described above, virtual potential fields are very suitable for
case studies in which the goal point position changes con-
tinuously, such as the case study considered in this paper.
However, variants of the other methods, especially in the case
of sampling-based methods, have also been studied in the case
of time-varying environments [S14].
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DRL presents a better performance than MPC, but only if the provided
reference falls within the distribution of the DRL algorithm policy

TABLE 2 Performance of deep reinforcement learning
(DRL) and model predictive control (MPC) algorithms
for 25 experiments with a duration of 40 s: Jn (left) and
Ĵn (right).

Jn (×104) Ĵn (×104)

mean std. dev. mean std. dev.
DRL −1.70 0.22 −2.24 0.32
MPC −1.84 0.25 −2.48 0.32

since the CoppeliaSim environment could reproduce the
actual robot behavior, at least in terms of cumulative cost.

We might argue that this is not a fair comparison, since
the MPC strategy was not maximizing exactly the same
reward function of DRL: in particular, a purely quadratic
function was defined for R̂t in (37), while a Huber loss
function is defined to obtain Rn in (30). Therefore, the
equivalent of the a-posteriori evaluated cumulative cost
Jn was defined for the MPC reward function, as

Ĵn ,
n

∑
t=1

r̂t , (40)

and the two algorithms were compared on this metric
as well. Also in this case, DRL consistently outperformed
MPC of about 9.7%, as one can see again in Table 2.

Real-time reference tracking under different
conditions
In order to investigate the reasons for the better perfor-
mance of DRL as compared to MPC, it is necessary to
analyze the time evolution of the system variables. Three
sets of experiments, each made of 10 trials of the duration
of 40 s each for both controllers, were conducted: in Set 1,
the DRL algorithm was executed in real time on the
experimental setup, and the reference signal recorded for
this first experiment was used with the MPC algorithm for
comparison. Screenshots of this type of setting are shown
in Figure 5, in which one can see that, for both DRL (on the
left) and MPC (on the right), the robot moves up to avoid
the box, even if the operator’s hand moves approximately
horizontally. Conversely, in the second and third set of
experiments, the MPC algorithm was executed with a real-
time reference from the arm tracker, and the same signal
was later provided as reference to the DRL algorithm. In
general, executing a control algorithm in real time can
be more challenging than using a pre-recorded reference,
due to the presence of possible communication delays.
In this case, however, the communication delays were

TABLE 3 Performance of deep reinforcement learning
(DRL) and model predictive control (MPC) algorithms
for real-time experiments with a duration of 40 s and
with reference mutually recorded (Sets 1, 2, and 3): Jn
(left) and Ĵn (right).

Jn (×104) Ĵn (×104)

Set 1,
training

DRL real-time −1.91 −2.54
MPC recorded −2.13 −2.85

Set 2,
higher speed

DRL recorded −3.91 −5.40
MPC real-time −4.16 −6.17

Set 3,
higher z in pd

DRL recorded −2.70 −4.25
MPC real-time −1.72 −2.23

negligible, and the results of the experiments with both
DRL and MPC executed in real time are shown to prove
the actual implementability of the proposed methods.
We now analyze the system performance for the three

sets of experiments. In Set 1, the variations of pd in time
were in the same range observed for the training set. The
overall performance of the two controllers is shown in
the upper portion of Table 3. These results are in line
with those of Table 2: in particular, all costs in Table 3
are about one standard deviation above the corresponding
costs of Table 2. The evolution of the reference joint speeds
q̇d for the two control schemes is reported in Figure 6,
where one can see that the amplitude of the corresponding
control inputs for DRL and MPC were close to each other:
this shows that the tuning of the two controllers led to a
similar trade-off between control energy and tracking error,
thus making their comparison in terms of performance
meaningful. The reference tracking for DRL and MPC
is reported in Figure 7, in which one can see that both
controllers also succeeded to avoid the obstacles (table and
box) in the workspace, which would be repeatedly hit if
the reference trajectory were to be perfectly tracked. One
can see that the quality of the tracking for the x-component
of pd was similar for both controllers. On the other hand,
for the y-component of pd, DRL showed better results; this
can be possibly explained by the fact that the human arm
motion presented a relatively regular pattern in terms of
left-right and right-left movements, which happened along
the y axis: this regularity could be exploited by DRL, which
learned how to anticipate the operator’s motion based on
training data. Finally, MPC showed better results on the
z-component of pd, and this was probably due to fact
that MPC possessed an explicit, although conservative,
formulation of the volume occupied by obstacles (that is,

JUNE 2020 « IEEE CONTROL SYSTEMS 13



FIGURE 5 Sequence of 6 screenshots corresponding to time instants (from above to below) for Set 1, in which deep reinforcement
learning (DRL, left) and model predictive control (MPC, right) follow the same reference trajectory.
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FIGURE 6 Control inputs for DRL (upper plot) and MPC (lower
plot). Time evolution of the components of joint angular speed
reference vector q̇d for Set 1.

FIGURE 7 End-effector position. Time evolution of the xyz com-
ponents of reference pd, and corresponding values of pe for deep
reinforcement learning (DRL) and model predictive control (MPC),
in Set 1.

the ellipsoidal approximation of the box allowed the robot
to move very close to its edges, but kept the robot up
to 4-5 cm farther when situated above the box center),
while DRL avoided them based on training data. It is
also worth remembering that DRL was trained on a non-
conservative model of the obstacles, but accounted for the
obstacles using the penalty term rO defined in (29). As
a consequence, −c3rO showed a non-negligible absolute
value as compared to that of −c1rT − c2rU already when
the robot had a distance of 2-3 cm from the box, and
this could have strengthened the tendency of the DRL-
controlled robot to remain further away from the obstacle.
A steeper penalty function rO could not be employed to
reduce this conservativity, since, in such case, the DRL

FIGURE 8 Control inputs for DRL (upper plot) and MPC (lower
plot). Time evolution of the components of joint angular speed
reference vector q̇d for Set 2.

FIGURE 9 End-effector position. Time evolution of the xyz com-
ponents of reference pd, and corresponding values of pe for deep
reinforcement learning (DRL) and model predictive control (MPC),
in Set 2.

policy would not converge during training; this can be
seen as an example of the more general problem of non-
transparent dependence of the DRL policy convergence
on hyperparameters values. For all three components of
pd, one can notice that DRL tended to anticipate the
human motion more than MPC, thus resulting in a faster
control action: this could be due to two factors, namely the
precise dynamics model of the UR5 used during training
in CoppeliaSim, and the better ability to implicitly forecast
the human motion, acquired during training.

In the second and third sets set of experiments, refer-
ence trajectories with different characteristics as compared
to those used during training were provided, in order to
assess the generalization capability of DRL (remembering
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FIGURE 10 Control inputs for DRL (upper plot) and MPC (lower
plot). Time evolution of the components of joint angular speed
reference vector q̇d for Set 3.

FIGURE 11 End-effector position. Time evolution of the xyz com-
ponents of reference pd, and corresponding values of pe for deep
reinforcement learning (DRL) and model predictive control (MPC),
in Set 3.

that MPC, being purely model-based, had no need for
training, and thus did not suffer from related drawbacks).
In particular, in Set 2, a reference was provided with
variations of pd in time that were faster, on average, than
those present in the training set. The overall performance
is shown in the second portion of Table 3: even though
the values of all costs were about twice those of Set 1,
DRL still showed better results than MPC. These higher
absolute values of the negative cumulative rewards were
expected: since the reward penalizes high joint speeds and
large tracking errors, it is obvious that a faster reference
would both require higher joint speeds, and (with the
same tuning) would result in larger tracking errors. The

corresponding evolution of the joint speeds, which are
again in the same range for DRL and MPC (but are on
average with larger absolute values compared to those
in Figure 6), can be seen in Figure 8. Also, the reference
tracking for both controllers is shown in Figure 9 to which,
in spite of the faster trajectories, the same comments apply
as for Figure 7.

In Set 3 we provided references pd in which the z com-
ponent was considerably larger than the values provided
during training. The overall performance is shown in the
lower portion of Table 3: even if the variation of pd in
time was similar to that of the training set, and the range
of motion of pd along the y axis was reduced (which led
to the lower joint speeds observable in Figure 10), DRL
exhibited a considerable performance degradation, with a
41% and 67% increase of the average magnitudes of Jn and
Ĵn, respectively, as compared to Set 1. This is due to the
fact that the provided reference trajectories were outside
the distribution of the reinforcement learning algorithm
policy, and the results are visible in Figure 11, in which
one can see that the tracking error in the z axis is of
considerable entity. On the other hand, MPC did not show
any substantial performance degradation, thanks to its
model-based nature. By taking advantage of the smaller
range of motion of pd along the y axis as compared to
Set 1, MPC even managed to decrease the absolute value
of both cumulative reward functions. A single frame of the
sequence of motion represented in Figure 11 can be seen
in Figure 12, where one can observe the large discrepancy
in terms of z for the two controllers.

To complement these results and provide better under-
standing, videos from all three sets of experiments are
available at https://youtu.be/5jWXP9ozgfk.

COMPARISON WITH PREVIOUS WORKS
In [49], DRL outperformed MPC in a distributed aircraft
control framework for wildfire surveillance, due to two
main reasons. First, each aircraft was controlled in a
decentralized fashion, because an MPC scheme with a
higher degree of coordination would have required to
increase the suboptimality of the solution (due to real-time
computational constraints), with a consequent loss of per-
formance; instead, the proposed DRL schemes provided a
higher level of coordination, thanks to their lower real-time
computational complexity. The second reason was also
related to computational feasibility, since the prediction
horizon of MPC had to be maintained relatively short,
which gave it a reduced ability to plan the aircraft motion:
this resulted in sharper turns when tracking the wildfire
front, as compared to DRL. These drawbacks of MPC
compared to DRL were not found in our work, since we
used a centralized scheme for both DRL and MPC, and the
prediction horizon of MPC was sufficiently long to avoid
sudden changes in the robot motion for avoiding obstacles.
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FIGURE 12 Screenshot from the video representing a single time instant in Set 3, in which deep reinforcement learning (DRL, left) and
model predictive control (MPC, right) follow the same reference trajectory.

In [50], a car was controlled to execute a safe and
comfortable merging maneuver into dense traffic. The
proposed DRL approach was compared against several
MPC strategies, which differed for the method used to
predict the motion of the other cars (no motion, constant
speed, motion learned via a recurrent neural network).
The MPC strategies based on no-motion or constant-speed
predictions suffered from the inability to account for inter-
vehicle interactions, which led to a lower success rate as
compared to DRL and to the MPC strategy with motion of
the other cars learned via recurrent neural network (even
if, for the latter, a more relaxed criterion was used to assess
the success rate). DRL outperformed all other methods in
terms of lowering the time to merge into the traffic, and
was less affected by the distribution of drivers on the road
than the MPC strategies. Also in this case, there is no
obvious overlapping of conclusions with our work, also
due to the very different application.

Finally, [51] compared DRL and MPC on an adaptive
cruise control application. When there were no modeling
errors and the testing inputs were within the distribution
of the DRL algorithm policy, DRL and MPC performed
similarly, as long as MPC had a sufficiently long predic-
tion horizon. The DRL performance worsened when the
testing inputs were outside the distribution of the DRL
algorithm policy. On the other hand, when modeling errors
were inserted (for instance, by increasing control delay
or disturbances) DRL performed better than MPC. The
authors could not provide a formal explanation for this;
however, they gave the following intuitive explanation: the
DRL “state transition is based on expectation of proba-
bilities although the state-action mapping is deterministic.
The probabilistic state transition allows for environment
stochasticity that can be represented as modeling errors.”
The results in [51] had in common with our work that
the DRL performance was affected by inputs to the DNN
outside the distribution of the DRL policy.

The main difference of our work as compared to [49]–
[51] mainly consists of the implementing DRL and com-
paring it with MPC, analyzing pros and cons in a dif-
ferent field of application (industrial robotics rather than
aircraft or autonomous vehicle control), for a different

type of control problem (shared control rather than control
of autonomous agents), and via experiments rather than
simulations.

CONCLUSIONS
The proposed DRL strategy for manipulator teleoperation
succeeded in avoiding obstacles while aiming at tracking
the provided reference position. The observed advantages
with respect to MPC can be summarized as a drastic (and
largely expected) reduction in terms of execution time,
and a satisfactory improvement in terms of performance,
measured via the cost functions defined for DRL and
MPC. On the other hand, DRL failed to provide acceptable
results when the reference was outside the range used
during training: this was also expected, since the data-
driven nature of DRL requires training data that cover the
whole range of possible system operation.
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