
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347805766

Performance Prediction for Data-driven Workflows on Apache Spark

Conference Paper · November 2020

DOI: 10.1109/MASCOTS50786.2020.9285944

CITATIONS

5
READS

199

4 authors, including:

Andrea Gulino

Politecnico di Milano

12 PUBLICATIONS 127 CITATIONS

SEE PROFILE

Arif Canakoglu

Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico

51 PUBLICATIONS 667 CITATIONS

SEE PROFILE

Danilo Ardagna

Politecnico di Milano

65 PUBLICATIONS 2,390 CITATIONS

SEE PROFILE

All content following this page was uploaded by Arif Canakoglu on 06 April 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347805766_Performance_Prediction_for_Data-driven_Workflows_on_Apache_Spark?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347805766_Performance_Prediction_for_Data-driven_Workflows_on_Apache_Spark?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gulino?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gulino?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Gulino?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arif-Canakoglu?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arif-Canakoglu?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fondazione_IRCCS_Ca_Granda-Ospedale_Maggiore_Policlinico?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arif-Canakoglu?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Ardagna?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Ardagna?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Ardagna?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arif-Canakoglu?enrichId=rgreq-8c21cc15040be6a8bcfc318a9df08019-XXX&enrichSource=Y292ZXJQYWdlOzM0NzgwNTc2NjtBUzoxMDA5NjEwNTI1Nzc3OTIwQDE2MTc3MjEzMTUwMDY%3D&el=1_x_10&_esc=publicationCoverPdf

Performance Prediction for Data-driven Workflows on Apache Spark

Andrea Gulino, Arif Canakoglu, Stefano Ceri and Danilo Ardagna
Politecnico di Milano, name.surname@polimi.it.

Abstract— Spark is an in-memory framework for imple-
menting distributed applications of various types. Predicting
the execution time of Spark applications is an important but
challenging problem that has been tackled in the past few years
by several studies; most of them achieving good prediction
accuracy on simple applications (e.g. known ML algorithms
or SQL-based applications). In this work, we consider complex
data-driven workflow applications, in which the execution and
data flow can be modeled by Directly Acyclic Graphs (DAGs).
Workflows can be made of an arbitrary combination of known
tasks, each applying a set of Spark operations to their input
data. By adopting a hybrid approach, combining analytical and
machine learning (ML) models, trained on small DAGs, we
can predict, with good accuracy, the execution time of unseen
workflows of higher complexity and size.
We validate our approach through an extensive experimentation
on real-world complex applications, comparing different ML
models and choices of feature sets.

Index Terms— performance prediction, workflow applica-
tions, Spark, machine learning

I. INTRODUCTION

In the past decade, we have witnessed an increasing spread
of big data applications in several domains, such as business
analytics [1], social media analysis [2], healthcare [3], and
natural language processing [4]. Big data applications are
characterized by data-intensive and computationally intensive
tasks which are typically implemented on top of parallel
algorithms and distributed computing frameworks. Among
such frameworks, Apache Spark has emerged as the de-
facto platform for analytical processing, with broad adoption
in both industry and academia, due to its simplicity, fault
tolerance, and scalability [4].
At the same time, users and enterprises have started mov-
ing their big data applications from traditional local server
architectures to cloud computing platforms (e.g. Amazon
EC2, Google Cloud, Microsoft Azure1), which provide con-
figurable environments suiting the needs of big data appli-
cations. These systems usually offer services at the Platform
level, where big data frameworks are already installed, and
allow their users to choose among several configurations,
e.g. specifying the number of instances in a cluster and
their characteristics (CPUs, memory, . . .). Each choice might
drastically affect the application execution time and the
monetary cost of using the cloud computing service.
Predicting the performance of an application is therefore
useful for a proper allocation of the available resources,
aimed at reducing resource wasting and extra costs.

1https://aws.amazon.com, https://cloud.google.com and https://azure. mi-
crosoft .com

The problem of performance prediction for big data appli-
cations on the cloud has been tackled in several studies. Some
of them rely on traditional techniques, such as analytical
models [5]–[7] and simulation [8]. More recently, machine
learning (ML) has been used to predict the performance
of large systems [9]–[12]. The idea is to collect training
data offline and use ML models, such as regression, to
predict the runtime performance of future executions. Those
studies mainly differ for the chosen set of features (black-
box vs. gray-box approaches), i.e. capturing more or fewer
details of the system, and for the applied ML technique
(simple regression vs. more complex ML techniques). In [12]
authors show how black-box models (specifically Ernest,
an approach proposed by Spark inventors [9]) fail when
applications exhibit irregular patterns and/or when extrap-
olating on bigger data set sizes. Despite achieving good
results in terms of accuracy, those studies are performed on
simple monolithic applications (e.g. static programs, known
ML algorithms), which complexity is far from modern data
analytics pipelines. Indeed, nowadays, scientific jobs are
rather represented as workflow applications that consist of
many complex tasks, with logical or data dependencies, that
can be implemented on top of several parallel frameworks
[13]–[15].

A workflow application can be represented by a Directed
Acyclic Graph (DAG), i.e. a directed graph with no cycles,
in which vertices and their connecting edges are used to rep-
resent, respectively, application tasks and their dependencies.
Each task cannot be executed until all its parent tasks have
completed their execution and moved their results to their
child tasks. Specifically, we target workflow applications
implemented on Spark, i.e. workflows in which each task
of the workflow applies a set of Spark operations to the task
inputs. Moreover, a workflow can be potentially implemented
by multiple Spark applications.

A simple way of predicting the execution time of a work-
flow could consider the workflow as a monolithic application
with known inputs. In this case, a ML model should be
trained for each feasible workflow, i.e. for each possible
combination of tasks that could appear in the workflow.
Besides being a solution that does not scale, the complexity
of large workflows could be hardly captured by machine
learning.

The solution proposed in this paper, instead, builds a
separate ML model for each task allowed in a workflow
application. The workflow execution time is eventually es-
timated as a combination of the individual tasks execution
time predictions. This type of solution allows training ML

models on minimal workflows and uses them to predict the
performance of unseen workflows of arbitrary complexity.
Moreover, since the input data of intermediate tasks is not
known offline, we estimate their characteristics (profiles) by
mixing ML and analytical models.

The overall solution is a hybrid approach to estimate the
execution time of arbitrary complex workflow applications
based on Spark. To the best of our knowledge, no previous
work focused on performance prediction for Spark appli-
cations presenting this level of complexity and no similar
approaches, explicitly tackling the problem of intermediate
result estimation, were used for workflow performance pre-
diction.

We validate our approach on a real-world complex system,
comparing different ML techniques and choices of feature
sets (black-box vs. gray-box). Eventually, an extrapolation
analysis compares the robustness of different ML models
against the variation of the input data size and of the cluster
computational power.

This paper is organized as follows: in Section II we
describe data-driven workflow applications and introduce
the real-world system used in our experimental evaluation;
in Section III we describe our three-phase approach for
performance prediction, validating the approach in section
IV. A discussion of related literature proposals is reported
in Section V. Conclusions are finally drawn in Section VI.

II. DATA-DRIVEN WORKFLOW APPLICATIONS

A data-driven workflow application can be represented as
a Directly Acyclyc Graph (DAG), i.e. a directed graph with
no cycles. Each vertex in this DAG represents a task, while
edges represent the data and control dependencies between
tasks. A task is executed only when all its input data have
been computed, i.e. when all parent tasks have completed
their execution. Formally, a DAG representing a workflow
application can be described as a tuple G = (V,E), where
V is the set of vertices (tasks), E the set of directed edges
(dependencies) s.t. E ⊆ V 2. We call entry task (exit task) a
task with no incoming (outgoing) edges. For simplicity, we
assume that workflows have a unique exit task. While entry
tasks represent the reading of the workflow input data, the
exit task stores back its final result. We further assume that
each task produces a single output, which can be the input
to multiple child tasks (through multiple edges).
Moreover, we characterized each task defining:
• Output Profile: a set of features quantitatively describing

its result.
• Task Arguments: any input parameter given to the task, in

addition to the input data produced by its parent tasks.
Examples can be strings, flags or other options that might
change the behaviour of the task.

• Environment Parameters: a set of features describing the
execution environment in which the task will run. Exam-
ples are the number of cores and amount of memory of a
cluster.

• Execution Time: time required for processing the input data
and produce the task result.

Fig. 1: A ScQL Workflow is mapped to Spark DAG Appli-
cation.

.

A. Target Application

For our experimental evaluation, we chose a real-world cloud
system that maps complex workflows to Spark applications.
This system implements a SQL-like language for interval
data called ScQL [16], [17].

Like for other query languages relying on relational al-
gebra, a ScQL query can be easily mapped to a workflow,
in which each task represents a query operator. A simplified
version of a ScQL query is the following:

DS1 = READ() dataset_1;
DS1 = READ() dataset_2;
RES = JOIN(dist<100) DS1 DS2;
STORE RES;

Once a query is submitted, the ScQL processing system
translates the query into a ScQL-Workflow, similar to the one
depicted on the left side of Fig. 1. Each task of this workflow
applies a set of Spark operations on input data to implement
the semantics of the corresponding ScQL operator. In this
specific example, the entire workflow corresponds to a single
Spark application, which DAG structure is depicted on the
right side of Fig. 1.

In the ScQL Data Model, an interval-dataset D is made
of several files (which in memory are called samples). Each
entry in a file represents an interval, by means of its start
and stop values.
Although ScQL includes several operators, in our experimen-
tal evaluation we will only mention two of its most complex
and peculiar operators, namely ScQL-Map and ScQL-Join,
that are here briefly described:
• ScQL Map: given two input datasets, namely a reference

and an experiment dataset, this operator computes, for
each interval in the reference dataset, aggregates on the
overlapping experiment intervals.

• ScQL Join: given two input datasets, namely a reference
and an experiment dataset, this operator computes, for
each couple of reference-experiment files, the couples of
overlapping reference-experiment intervals. A distance
parameter (dist) can be provided to match also experiment
intervals which are at a maximum distance from a reference
interval.

Lastly, we mention a partitioning technique called interval-
binning [18]. The bin-size parameter determines the amount

of intervals that end up in the same partition. Depending on
this parameter, some intervals of the initial dataset might be
replicated in several partitions.

III. WORKFLOW PERFORMANCE PREDICTION

Our three-phase solution for predicting the execution time
of a workflow application performs the following three steps:

1) Intermediate profile estimation: for each task in the
workflow, its output profile is estimated. This implies that,
at the end of this phase, the input data profile of every task
in the workflow will be available. This phase is detailed in
Section III-C.

2) Task execution time prediction: for each task of the
workflow, its execution time is predicted. This is discussed
in section III-A.

3) Workflow execution time prediction: the overall execu-
tion time is computed by combining the predictions of the
individual tasks execution times. Generally, the workflow
execution time depends on the underlying engine and its
scheduling algorithm. In this work we target workflows
that are mapped to Spark applications. By assuming that:
i) every task of a workflow is executed within the same
Spark context; ii) every workflow task corresponds to a
number of Spark tasks that is greater or equal to the number
of available cores (in other words, assuming that each
workflow task will keep busy all the available cores) then
we can reasonably approximate the workflow execution
time as the sum of the individual tasks execution times. The
validity of these assumptions is proven by our experimental
results (see Section IV).

A. Task execution time prediction

The goal of task execution time prediction is to build, for
each different type of task that can be present in a workflow,
a machine learning model that, with adequate accuracy, is
able to predict the task execution time. A ML model is
trained on a set of features characterizing the task, such as
a quantitative description of its input data, its arguments,
and features describing the execution environment, with the
objective of predicting its execution time.
Identifying and extracting a complete set of features is hard
to achieve in this context. First of all, the knowledge on
the application and on the execution environment might be
limited; secondly, extracting some features might be non-
trivial and time-consuming, hence not convenient. Third, a
super-set of features usually leads to overfitting.

State-of-the-art ML solutions for performance prediction
are mostly based on simple feature sets that provide an
high-level description of the input data and of the execution
environment. These are usually called black-box features, e.g.
the input size and the number of cores can be considered
a complete set of black-box features for the performance
prediction of a generic parallel application. Although it has
been proven that black-box features can be powerful enough
to get good prediction accuracy (e.g. in Ernest [9]), choosing
a simple feature set might become limiting when trying to
describe the performance of complex workflows.

TABLE I: Feature-set categorization

Basic Full

Black-box
Input Data (BBI) BBI ∪ BBT ∪ BBT

Task Parameters (BBT) Composite Features (BBC)
Execution Environment (BBE)

Gray-box
Input Data (GBI) GBI ∪ GBT ∪ GBT

Task Arguments (GBT) Composite Features (GBC)
Execution Environment (GBE)

In this work, we considered different feature sets, showing
how different choices can impact the prediction accuracy
of the produced models. Without constraining the choice of
features, we propose a categorization of the possible feature
sets. The first distinction we make is between:

• Black-box features, that do not require detailed knowledge
on the application, data model and execution environment.

• Gray-box features, that extend black-box features with
application, data-model and environment-specific features.
We assume that gray-box feature sets include also black-
box features.

Orthogonality to the previous distinction, we discriminate
among:

• Basic features, organized into:
– Input Data Profiles: features quantitatively describing

the input data of a task (e.g. data size, number of files,
number or entries ...).

– Task Arguments: any input parameter given to the task.
– Execution Environment: a set of features describing the

environment in which the task is executed, e.g. number of
cores and amount of memory, or more advanced features
characterizing the Spark environment.

• Composite features. Even though several machine learn-
ing methods are able to capture non-linear dependencies on
the features, it is sometimes "helpful" to include non-linear
combinations of some basic features in the final feature
set. For example, Ernest [9] introduced the logarithm of
the number of cores, which encodes the cost of reducing
operations in parallel frameworks, and the ratio between
data size and number of cores, which approximates the time
spent in parallel processing. We define composite features
as linear or non-linear combinations of basic features.

Given the aforementioned distinctions, we organize the pos-
sible feature sets in four categories, summarized in Table I:
basic black-box features (BB-Basic); basic and composite
black-box features (BB-Full); basic gray-box features (GB-
Basic); basic and composite gray-box features (GB-Full).

According to the proposed categorization, Ernest, i.e. the
state-of-the-art for Spark application performance prediction,
uses a black-box full (BB-Full) feature set. In the experimen-
tal evaluation, our choice of features for the BB-Full feature
set included all the Ernest features and will be considered a
baseline to evaluate the benefits of our approach.

For each category, we defined a set of candidate features
on which we applied Sequential Forward Selection (SFS)
[19] to remove non-relevant ones.

B. Model Techniques

In the previous works, Venkararaman et al. [9] (Ernest’s
authors) and Maros et al. [12] have applied ML to estimate
the execution of simple Spark applications. While Ernest
is based on linear regression, with coefficients estimation
based on non-negative least squares (NNLS), in Maros et al.
authors took into account more complex ML techniques such
as Decision Tree and Random Forest.
In Section IV we compare the performance of three suitable
ML techniques: (i) Linear regression (LR), which produces
models that can be easily interpreted, but hardly captures
complex interactions between features, (ii) Decision Trees
(DT) and (iii) Random Forest (RF), having the ability to
capture non-linear relationships, still allowing a good inter-
pretability of the model.

Given a target task type, for which we want to predict
the execution time, the training set provided to the chosen
machine learning technique is made of several executions of
that task. As proven in the experimental section, depending
on the feature set and on the model technique, it might not
be necessary to run on big inputs and extremely powerful
environments. Even running small executions on medium-
size clusters can still produce prediction models with good
prediction error on larger inputs and clusters.

C. Predicting intermediate input features

In order to perform the task execution time prediction
step, all the input features, including the input data profiles,
must be available offline. However, this does not hold for
intermediate tasks, which input data have not been computed
yet. To address this problem, we perform, as the first step,
an estimation of all such data profiles.
We assume that entry tasks import data which have already
been profiled. This assumption is in general acceptable, since
application users typically download a limited number of
datasets which are then re-used for several workflow runs
and can therefore be profiled once for all.

The goal is to estimate, for every task vi ∈ V , which is not
the exit task, its output profile Pi. Specifically, an estimation
model should be built for each feature in Pi. (e.g. data size,
number of entries, etc.).
Similarly to the execution time prediction, the feature set
used for this type of estimation includes: i) the input profiles
of task vi, ii) the task arguments. Moreover, the same feature
set categorization proposed in section III-A has been applied,
reasonably excluding any environment-related feature.
Each feature in Pi can be estimated:
• Analytically: there is a known combination of features of

the chosen feature set which allows to exactly compute the
output feature.

• Heuristically: the exact formula for computing the output
feature is unknown or there is not enough information to
compute it; in this case, heuristics on the available feature
set can be defined.

• by Machine Learning: applying ML to estimate the output
feature, similarly to what was has been said for task
execution time prediction.

The intermediate profile estimation phase estimates each task
output profile, starting from entry nodes, which input data
profile was computed offline (previous assumption), up to
the exit node.
In the experimental section (IV) we compare different ways
of predicting the output profiles, showing the advantage of
using heuristics/analytical models w.r.t. ML. Even though
heuristics and analytical models require more knowledge on
the application, they are able to guarantee lower prediction
error. Analytical and heuristic-based based estimations for
ScQL (GMQL) are described in [18].

IV. EXPERIMENTAL EVALUATION

We applied the proposed performance prediction model to
ScQL DAGs, introduced in II-A, focusing on two of its most
complex and peculiar operators. In this section we:
• describe the experimental setup (IV-A), the evaluation

metric and how hyper-parameter tuning was performed (IV-
B)

• assess the accuracy of task execution time prediction for
different choices of feature sets, different ML techniques
and execution environment configurations (IV-C).

• assess the accuracy of output profile estimation, either
using analytical models/heuristics, and ML (IV-D).

• measure the error in predicting the workflow execution
time, comparing gray-box models to the state of the art
black-box based (IV-E) and validating on workflows that
were much more complex than the workflows used for
collecting training data.

• present an extrapolation analysis, in which we compare
the robustness of different ML models against the increase
of the input data size and of the cluster computational
power (IV-F). Specifically, we prove that models trained on
small input data (number of cores) are good at predicting
execution with larger input data (higher number of cores).
This is particularly beneficial, given the nature of big data
analyses, in which the size of processed data gets bigger
and bigger, as well as the computational resources required
for processing.

A. Experimental setup

All the experiments in this section were run on Ama-
zon AWS (EMR service) choosing a variable number of
r5d.2xlarge worker nodes (each having 8 vCores, 64
GiB RAM). Specifically, we used clusters with 6,8,10 and
12 worker nodes, running the emr-5.19.1 release with
Spark 2.3.2 and the Amazon 2.8.5 Hadoop distribu-
tion. Training sets were built running more than 4500 exe-
cutions, collecting all the information required for execution
time prediction and output profile estimation, using an in-
house developed profiling solution.

B. Evaluation metric and hyper-parameter tuning

a-MLLibrary, an open source library2 built on top of scikit-
learn 0.19.13, was used to test different values for the hyper-

2https://github.com/eubr-atmosphere/a-MLLibrary
3https://scikit-learn.org

TABLE II: Most used hyper-parameters values (RF and DT)

Hyper-parameter DT RF
Max Depth 5 8

Max Features auto auto
Min samples to split 4 2
Min samples per leaf 1 2

Criterion MSE MAE
Estimators NA 300

TABLE III: Most used hyper-parameters values (LR)

Hyper-parameter LR
Penalty α 0.01

Fit-intercept True

parameters characterizing each learning methods along the
lines of the work in [12]. Several combinations of values for
the hyper-parameters were tested, and the best combination,
corresponding to the lowest MAPE obtained with 5-fold
cross-validation, was selected.

The most frequently used hyper-parameters are reported
in tables II and III. Some parameters, e.g. the alpha penalty
and the maximum three depth for Random Forest and Deci-
sion Tree help to prevent overfitting. Minimum Samples to
Split/per Leaf represent, respectively, the minimum number
of samples required to split a node and the minimum number
of samples required to be a leaf. More details on the hyper-
parameters are provided in the scikit-learn documentation.
For each feature set category, we first defined a set of
candidate features and then applied SFS to exclude non-
relevant features.

C. Task execution time prediction

Tables IV and V report the measured MAPE for different
ScQL operators, i.e. ScQL-Map (Table IV) and ScQL-Join
(Table V). Within each table, we report the prediction error
for:
• different choices of the feature set, i.e. black-box vs gray-

box and basic vs full, as described in Section III-A;
• different machine learning methods, including DTs, RFs,

and LR. We excluded methods for which the best MAPE
was higher than 20%, like XGBoost and Neural Networks.

Tables VI and VII, show, respectively, the relevant features
for ScQL-Map and ScQL-Join provided by the ML technique
giving the lowest MAPE (RF), for a given feature set
choice (black-box vs. gray-box, basic vs. composite). The
feature called binned-result-size represents the (known-by-
semantics) result size, accounting for the replication of some
intervals due to binning. The definition of this composite
feature includes gray-box features such as the bin-size and
the average-interval-length. Similarly applies to the feature
called binned-total-size, which definition includes also a task
parameter distance.
Results show that:
• RF is able to give good predictions even with black-box

basic features. Therefore, even without having detailed
knowledge on the application and on the environment, and
without "helping" the model by defining composite (i.e.

TABLE IV: Prediction MAPE for SciQL-MAP - AWS

Basic
DT LR RF

Full
DT LR RF

BB 16% 34% 12% 16% 33% 12%
GB 16% 34% 12% 12% 14% 9%

TABLE V: Prediction MAPE for SciQL-JOIN - AWS

Basic
DT LR RF

Full
DT LR RF

BB 20% 32% 17% 19% 26% 15%
GB 19% 31% 14% 16% 22% 13%

TABLE VI: SciQL-MAP Relevant Features (RF)

Basic Full)

BB

ref-total-size (0.5)
exp-num-files (0.3)

cores (0.2)
...

ref-total-size (0.5)
exp-num-files (0.3)

input-total-size/cores (0.3)
...

GB

ref-total-size (0.5)
exp-num-files (0.3)

cores (0.2)
...

bin-size (<0.1)

binned-result-size / cores (0.8)
binned-result-size(0.1)

...

TABLE VII: SciQL-JOIN Relevant Features (RF)

Basic Full

BB

input-total-size (0.5)
exp-num-files (0.3)

ref-num-entries (0.1)
cores (0.1)

...
distance (<0.1)

input-total-size (0.3)
input-total-size/cores (0.3)

exp-num-files (0.3)
ref-num-entries (0.1)

...

GB

input-total-size (0.4)
exp-num-files (0.3)

ref-num-entries (0.1)
cores (0.1)

...
bin-size (<0.1)

(binned-total-size / cores)2 (0.5)
exp-num-files (0.1)

...

non-linear) features, it is still possible to get an acceptable
error.

• LR performs well only when all the complex features are
in place (gray-box), including the user-provided non-linear
features (composite).

• Basic gray-box features do not significantly reduce the
prediction error unless they are properly combined into
composite features.

• The higher complexity of the ScQL-Join operation w.r.t.
the ScQL-Map is reflected in the higher prediction error.

D. Intermediate profiles estimation

In Table VIII we report the prediction error (MAPE)
for the main features describing the result of a ScQL-
Join operation. While the output number of files can be
analytically determined, the output total size and the output
average interval length cannot be known a priori, since
they depend on the number of intersections between input
intervals. For those features, we defined two heuristics which
give a low prediction error. For instance, the number of
output samples (files) of a ScQL-Join operation is simply
estimated as the product between the number of samples
in the reference dataset and the number of samples in the

Fig. 2: Workflow execution time prediction error distribution
for BB-FULL and GB-FULL

experiment dataset. For all the three features we reported
the prediction error obtained using ML models (specifically,
Decision Tree). Although the output total size is a black
box feature, the prediction error reported in the table was
obtained using a model which took into account gray box
features; using only black-box features we were not able to
obtain a MAPE lower than 22%. We do not report ScQL-
Map prediction errors since all the output features can be
easily estimated, both analytically and by applying ML, with
a MAPE lower than 1%.

E. Workflow execution time prediction

In order to measure the workflow execution time pre-
diction error we automatically generated 168 workflows
with different topologies including ScQL-Map and ScQL-
Join, together with other mandatory entry/exit tasks which,
for simplicity, are not discussed in this paper. Each ScQL
workflow was mapped to a Spark Application. On average,
each generated Spark application contained 23 jobs, 117
stages and more than 16K tasks per critical stage. Note
that those workflows have higher complexity w.r.t. to the
workflows used to build the training sets, mostly containing
only the task for which the ML model was going to be
build. In other words, here we demonstrate the ability of our
modular approach to predict the execution time of workflows
of unseen complexity, although minimal workflows were
used for training the ML models.

As described in Section III, we first estimated the input
profiles for all the tasks in the DAG and then predicted each
task execution time using ML models that we previously
built. We compared the workflow execution time prediction
error (MAPE) for BB-FULL, i.e. the state of the art Ernest
approach, and GB-FULL feature sets. The error distribution
is depicted in Fig. 2. While using BB-FULL we observed
an average MAPE of 28%, using GB-FULL features the
average MAPE dropped to 17%. Moreover, while with BB-
FULL (Ernest) the error variance is higher, reaching more
than 120% prediction error in one case, the highest error
measured for GB-FULL is slightly higher than 50%.

F. Extrapolation analysis

A desirable way to build a prediction model for per-
formance estimation would consist in learning with small

TABLE VIII: Output-Estimation MAPE for ScQL-Join

Feature Analytical | Heuristics ML
out-num-files 0% 0.004%
out-total-size 0.2% 0.11%

out-interval-length 0.005% 0.03%

input data and few computational resources and expect a
low prediction error even when the input data is much bigger
and the execution environment is more powerful. In this way,
the training dataset could be built in a short-time and renting
expensive resources would not be necessary. If a ML model
is able to guarantee a stable prediction error for unseen value
ranges of a given feature, we can say that the model is robust
against the scaling of that feature. In this section, we compare
the robustness of models, built with different ML techniques
and trained on different feature sets, w.r.t. the scaling of the
number of cores and of the input data size. Since we observed
that DT models are as robust as the models produced by RFs,
we only show the comparison between RF and LR.
In the first two rows of Fig. 3, we tested the robustness
against the scaling of the input data size for ScQL-MAP (first
row) and ScQL-Join (second row). The first plot in each row
shows on the x-axis the input data size and on the y-axis the
number of executions in our dataset performed with an input
of that size. We trained the models on small executions (with
input size lower than x0 = 20% of the maximum size) and
measured the validation MAPE on executions belonging to
unseen input size ranges: 20-40%, 20-60%, 20-80% and 20-
100% of the maximum input size. The scaling of the MAPE
is depicted in the plots belonging to the second and third
columns of Fig. 3. The first point in each plot (positioned
at x0) represents the validation MAPE computed on some
executions randomly selected from the 0-20% range that
were not used for training.
Results show that RF guarantees a good scaling, while LR
fails (overfits in 0-20% range), unless gray-box full features
are provided. Similarly, we tested the robustness against the
scaling of the number of cores, which, for our experiments,
corresponds to the scaling of the number of worker nodes in
the EMR cluster. We trained our models on executions with
16 and 32 cores (i.e. 2 and 4 worker nodes), and measured
the validation MAPE on executions using 48 cores, (48 &
64) cores and (48 & 64 & 96) cores.
Again, results show that RF guarantees a good scaling, while
LR fails (overfits), unless composite features are used. In this
case, LR is robust even using black-box features, given that
non-linear features involving the number of cores are defined
(in our feature sets input-total-size/cores has been selected
by SFS).

V. RELATED WORK

To the best of our knowledge, this is the first com-
prehensive work on performance estimation for scientific
data-driven workflows, implemented on Spark, based on
machine learning and analytical models. Moreover, we did
not find any modular workflow performance prediction so-
lutions which explicitly address the problem of estimating

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3: Validation error (MAPE) variation w.r.t. the scaling of the input data size and the number of cores.

intermediate tasks input data profiles, which are not known
offline.

Performance prediction for cloud-based applications has
been tackled in several ways. Some studies apply traditional
techniques, such as analytical models [6], [20]–[22] and
simulation [23]. These techniques usually require detailed
knowledge of the system, which is available only at runtime,
and make simplifying assumptions that produce models
unable to capture the complexity of cloud-based big data
applications, losing in accuracy. Some studies, e.g. [24],
propose a change in the Spark architecture that makes the
job completion time estimation easier. More recently, there

have been studies exploiting machine learning (ML) models
for performance prediction of large systems [9]–[12], [25].
Most of these works use a black-box approach, in which
historical data is used to predict future execution time,
without knowledge of the system internals. Some works,
instead, try to apply gray-box approaches, taking into account
some system detail [12], [26]. Ernest [9], using simple
features (functions of the input size and of the number of
cores) and non-negative least squares (NNLS) regression, is
considered the state-of-the-art in using ML. In [12], several
ML models and several approaches (black-box vs. gray-box)
are compared, showing better accuracy w.r.t. Ernest.

In the area concerning workflow performance prediction,
most of the works focus on the individual task execution time
prediction [27]–[29], highlighting the important role that this
prediction plays in the context of optimal workflow schedul-
ing [30]. In those papers, machine learning techniques are
applied to predict the execution time of tasks contained in
different real-word static workflows, i.e. workflows with a
fixed structure, executed on the cloud. feature sets mostly
accounts for environment parameters and only the workflow
input data size, not the individual input to each task, is used
to describe the input data.

Compared to previous work, we extend performance pre-
diction to complex Spark applications, showing the limita-
tion of using black-box features, and we consider complex
workflows with arbitrary combinations of tasks, whose per-
formance can be accurately predicted thanks to intermediate
output estimation.

VI. CONCLUSIONS
In this paper, we presented a hybrid three-phase modular

solution for predicting the performance of complex data-
driven workflows which can be mapped to Apache Spark
applications. The workflow performance is predicted by
combining individual task execution time predictions. Com-
pared to previous works in this area, we targeted dynamic
workflows, with arbitrary tasks composition, introduced
intermediate-profile estimation, essential for the proposed
approach, and considered a real-word complex system as
a benchmark. In the experimental evaluation we compared
the accuracy of different ML methods using different fea-
ture sets, which depend on how much knowledge on the
application is available. Results show that, even for complex
systems, performance can be predicted with good accuracy,
which improves when the semantics of tasks is known,
i.e. when using gray-box features. Moreover, the produced
models keep a low prediction error even for unseen input data
size, amount of cluster resources and workflow dimensions.

ACKNOWLEDGMENT
This work was supported by the AWS Machine Learning

Research Award (MLRA) and by the Data-Driven Genomic
Computing (GeCo) project, funded by the European Re-
search Center (ERC) (Advanced ERC Grant 693174).

REFERENCES

[1] Z. Sun, L. Sun, and K. Strang, “Big data analytics services for
enhancing business intelligence,” Journal of Computer Information
Systems, vol. 58, no. 2, pp. 162–169.

[2] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social
media big data analytics: A survey,” Computers in Human Behavior,
vol. 101, pp. 417–428.

[3] A. J. Kulkarni, P. Siarry, P. K. Singh, A. Abraham, M. Zhang,
A. Zomaya, and F. Baki, Big Data Analytics in Healthcare. Springer.

[4] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266.

[5] V. Mak and S. Lundstrom, “Predicting performance of parallel com-
putations,” IEEE Trans. on Parallel & Distributed Systems, vol. 1, no.
undefined, pp. 257–270, 1990.

[6] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti, M. Gribaudo,
T. B. Pinto, A. Guimarães, A. P. Couto da Silva, and J. M. Almeida,
“Performance prediction of cloud-based big data applications,” in
ICPE 2018.

[7] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkin-
son, H. Kuno, and U. Dayal, “Analytical performance models for
mapreduce workloads,” International Journal of Parallel Program-
ming, vol. 41, no. 4, pp. 495–525, 2013.

[8] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic
Resource Inference and Allocation for MapReduce Environments,” in
ICAC 2011.

[9] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics,” in 13th NSDI, 2016.

[10] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Heming-
way: modeling distributed optimization algorithms,” arXiv preprint
arXiv:1702.05865.

[11] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in 14th NSDI, 2017.

[12] A. Maros, F. Murai, A. P. Couto da Silva, J. M. Almeida, M. Lattuada,
E. Gianniti, M. Hosseini, and D. Ardagna, “Machine learning for
performance prediction of spark cloud applications,” in 2019 IEEE
CLOUD.

[13] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, “Scientific
workflows: Past, present and future,” 2017.

[14] W. A. Warr, “Scientific workflow systems: Pipeline pilot and knime,”
Journal of computer-aided molecular design, vol. 26, no. 7, pp. 801–
804.

[15] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, “Servicess: An
interoperable programming framework for the cloud,” Journal of grid
computing, vol. 12, no. 1, pp. 67–91, 2014.

[16] P. Pinoli, S. Ceri, D. Martinenghi, and L. Nanni, “Metadata manage-
ment for scientific databases,” Information Systems, vol. 81, pp. 1–20.

[17] M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Palluzzi,
H. Muller, and S. Ceri, “Genometric query language: a novel approach
to large-scale genomic data management,” Bioinformatics, vol. 31,
no. 12, pp. 1881–1888, 2015.

[18] A. Gulino, A. Kaitoua, and S. Ceri, “Optimal binning for genomics,”
IEEE Transactions on Computers, vol. 68, no. 1, pp. 125–138, 2018.

[19] M. Kudo and J. Sklansky, “Comparison of algorithms that select
features for pattern classifiers,” Pattern recognition, vol. 33, no. 1,
pp. 25–41, 2000.

[20] R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE transactions on computers,
vol. 37, no. 6, pp. 739–743.

[21] V. W. Mak and S. F. Lundstrom, “Predicting performance of parallel
computations,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 1, no. 3, pp. 257–270.

[22] D.-R. Liang and S. K. Tripathi, “On performance prediction of
parallel computations with precedent constraints,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 5, pp. 491–508.

[23] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering
tools for system modeling,” ACM SIGMETRICS Performance Evalu-
ation Review, vol. 36, no. 4, pp. 10–15.

[24] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks:
Architecting for performance clarity in data analytics frameworks,” in
SOSP 2017.

[25] S. Mustafa, I. Elghandour, and M. A. Ismail, “A machine learning
approach for predicting execution time of spark jobs,” Alexandria
Engineering Journal, vol. 57, no. 4, pp. 3767 – 3778.

[26] J. Shon, H. Ohkawa, and J. Hammer, “Scientific workflows as pro-
ductivity tools for drug discovery.” Current opinion in drug discovery
& development, vol. 11, no. 3, pp. 381–388.

[27] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, 2017.

[28] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, “On-
line task resource consumption prediction for scientific workflows,”
Parallel Processing Letters, vol. 25, no. 03, p. 1541003, 2015.

[29] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime
prediction in scientific workflows using an online incremental learning
approach,” in IEEE/ACM UCC, 2018.

[30] G. Kousalya, P. Balakrishnan, and C. P. Raj, “Workflow scheduling
algorithms and approaches,” in Automated Workflow Scheduling in
Self-Adaptive Clouds, 2017, pp. 65–83.

View publication stats

https://www.researchgate.net/publication/347805766

