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Abstract
Superoscillating functions are band-limited functions that can oscillate faster than 
their fastest Fourier component. The study of the evolution of superoscillations as 
initial datum of field equations requires the notion of supershift, which generalizes 
the concept of superoscillations. The present paper has a dual purpose. The first 
one is to give an updated and self-contained explanation of the strategy to study the 
evolution of superoscillations by referring to the quantum-mechanical Schrödinger 
equation and its variations. The second purpose is to treat the Dirac equation in rela-
tivistic quantum theory. The treatment of the evolution of superoscillations for the 
Dirac equation can be deduced by recent results on the Klein–Gordon equation, but 
further additional considerations are in order, which are fully described in this paper.

Keywords Superoscillating functions · Convolution operators · Schrödinger 
equation · Dirac equation · Entire functions with growth conditions

Mathematics Subject Classification 32A15 · 32A10 · 47B38

1  Introduction to Superoscillations and the Supershift Property

Superoscillating functions are band-limited functions that can oscillate faster than 
their fastest Fourier component. These functions (or sequences) appear in weak val-
ues in quantum mechanics (see [3, 12, 14, 26]) and in several other fields of science 
and technology, as it will be mentioned in the sequel. A natural problem, suggested 
by Aharonov, is to study the evolution of weak-values-superoscillations as initial 
datum of Schrödinger equation or as initial condition of other quantum field equa-
tions such are Klein–Gordon, see [10], or Dirac equation which is treated in this 
paper.
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In order to explain the topic and our main results we consider in this section some 
heuristic facts and properties of superoscillations and we introduce a diagram to vis-
ualize them. Furthermore, we discuss, from an intuitive point of view, the notion of 
supershift property of the solutions of differential equations which generalizes the 
notion of superoscillations. The supershift property is the crucial concept to investi-
gate the evolution of superoscillatory initial datum by all field equations.

In the last decade a systematic study of superoscillating functions has been car-
ried out also from the mathematical point of view. In fact, the rigorous treatment 
of the evolution of superoscillations, as initial datum of the Schrödinger equation, 
required some sophisticated mathematical tools, as it has been shown for example in 
[1, 2, 4–8, 16, 17, 27–29] and partially summarized in [9]. The prototypical function 
arising in Aharonov’s weak values is given by

which, using Euler’s identities and Newton’s binomial, can be written as

where a > 1 and

If we fix x ∈ ℝ and we let n go to infinity, we obtain that

The term superoscillations comes from the fact that the frequencies (1 − 2j∕n) in (2) 
are in modulus bounded by 1 but the frequency a, in the limit function (4), can be 
arbitrarily large. The superoscillatory phenomenon appears because thanks to the 
form the coefficients Cj(n, a) the plane waves ei(1−2j∕n)x interfere in such a way that 
they produce the plane wave eiax , where a can be very large with respect to one.

Superoscillations occur also when n is a fixed number, not only when n goes to 
infinity, simply the region of superoscillation is a small interval that contains the 
origin. One can clearly see that if x is very small compared to n it is x

n
∼ 0 so in this 

limit we have

We illustrate in the figure the superoscillations for fixed n and a plotting the loga-
rithm of the real part of Fn . The logarithm is necessary to re-scale the function in 
other to better see the superoscillations (Fig. 1).

We note that there is no conflict with the theory of Fourier series because the 
sequence Fn(x, a) is not a Fourier sequence even though it looks like. In fact, the 
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coefficients Cj(n, a) and the wave numbers kj(n) ∶= 1 − 2j∕n depend both on j and 
on n while for Fourier series the numbers Cj(n) and kj(n) depend on j and but not 
on n. Sequences such as Fn(x, a) are called generalized Fourier sequences and can 
produce superoscillations while Fourier series cannot.

In order to understand the meaning of the evolution of superoscillations as ini-
tial condition of a given quantum field equation we need the following interpreta-
tion of the generalized Fourier sequence Fn(x, a) . Consider x as a parameter and 
let us focus our attention on the points (1 − 2j∕n) . For the sake of clarity we set

and with this position we write the sequence Fn(x, a) as

Now consider x as a fixed parameter and recall we have set eiax = �(a, x) . Then the 
limit Fn(x, a) → �(a, x) , as n → ∞ means that we compute the function � ↦ �(�, x) 
in infinitely many points 1 − 2j∕n that belong to the interval [−1, 1] (band limited fre-
quencies) and we determine the value of �(�, x) in the point 𝜆 = a >> 1 . When we 
consider the evolution of Fn(x, a) as initial value the free particle using Schrödinger 
equation

we obtain the solution

�(�, x) ∶= ei�x

Fn(x, a) =

n∑

j=0

Cj(n, a)�(1 − 2j∕n, x).

i�t�(x, t) = −�2
xx
�(x, t), �(x, 0) = Fn(x, a)

Fig. 1  log Re(F
n
(x, a)) , a = 4 , n = 20
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We define the following function of �

where t and x are considered parameters, so that studying the evolution of superos-
cillations is tantamount to studying the limit of the solution

for n → ∞ . Since for the particular case of the free particle the solution of 
Schrödinger equation is written in terms of the exponential function we still speak 
of superoscillations, but in the general case of nontrivial potentials the functions 
�(�, t, x) are not necessarily the exponential function.

In this case there arises the natural notion of supershift of the solution where we 
compute the function � ↦ �(�, t, x) in infinitely many points 1 − 2j∕n that belong to 
the interval [−1, 1] , and we determine the value of �(�, t, x) in the point 𝜆 = a >> 1 . 
For example for the quantum harmonic oscillator the function �(�, t, x) can be com-
puted by elementary functions and it is given by

As shown above, superoscillations are a particular case of supershift, which is the 
property to be proven when we study the evolution of superoscillations as initial 
datum of given field equation.

A different class of superoscillating functions with respect to the ones considered 
in this paper can be found in [23]. In antenna theory the phenomenon of superoscil-
lations was discovered by Toraldo di Francia in [36] (see also the paper of Berry 
[20]). The literature on superoscillations is large, and without claiming complete-
ness we mention the papers [19, 21, 22, 24, 25, 30, 31, 33, 35]. More information 
can be found in the introductory papers [11, 13, 15, 32].

Moreover, in the recent paper Roadmap on superoscillations, see [18], some of 
the most important achievements in the applications of superoscillations are well 
explained by the leading experts in this field. In fact, the main aim of the paper [18] 
is to give an exposition of various aspects of superoscillations that are accessible to 
non experts in this field. There are contributions in: optical superoscillatory focus-
ing and imaging technologies, superoscillatory interference for super-resolution tel-
escope, an antenna array approach to superoscillations, applications of superoscil-
lations in ultrafast optics, superoscillations in magnetic holography and acoustics, 
superoscillations and information theory. The paper also contains many illustrations 
to clarify the experiments and it can be freely downloaded from the web.

This paper has two main purposes. The first one is to explain and motivate the 
general strategy to study the evolution of superoscillations in the context of quantum 
mechanics. The second one is to study superoscillations as initial datum of the Dirac 

�n(x, t) =

n∑

k=0

Ck(n, a)e
ix(1−2k∕n)e−it(1−2k∕n)

2

.

�(�, t, x) =∶ eix�e−it�
2

,

�n(x, t) =

n∑

k=0

Ck(n, a)�(1 − 2k∕n, t, x)

�(�, t, x) = (cos t)−1∕2 exp(−(i∕2)(x2 + �2) tan t + i�x∕ cos t).
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equation. The paper is organized as follows. In Sect. 2 we formulate and state our main 
results in precise mathematical term for the Dirac equation. In Sect. 3 we discuss the 
strategy to demonstrate our results, whose full proofs are then given in Sect. 4.

2  The Main Results for the Dirac Equation

In this section we formulate in precise mathematical terms the problem of the evolution 
of superoscillating initial datum for the Dirac equation. We summarize the main result 
on the supershift property for the Dirac equation, but we postpone the proofs to Sect. 4 
of the paper. The sequence defined in (2) extends to the sequence of entire function 
Fn(z, a) , for z ∈ ℂ . The tools to study the evolution of superoscillations are convolution 
operators that naturally act on spaces of entire functions that contains the holomorphic 
extensions Fn(z, a) , so we recall some notions and results on entire functions. Let f be a 
non-constant entire function of a complex variable z. We define

for r ≥ 0 . The non-negative real number � defined by

is called the order of f. If � is finite then f is said to be of finite order and if � = ∞ the 
function f is said to be of infinite order. In case f is of finite order we define the non-
negative real number

which is refereed to as the type of f. More to the point, if � ∈ (0,∞) we say that f is 
of normal type, while we say that f is of minimal type if � = 0 and of maximal type 
if � = ∞ . The constant functions are said to be of minimal type of order zero. Let 
p ≥ 1 , we denote by Ap the space of entire functions with either order lower than p 
or order equal to p and finite type. It consists of functions f for which there exist con-
stants B,C > 0 such that

The extension of the functions Fn(x, a) defined in (2) are exponentially bounded and 
more general sequences that generalize the Fn(x, a) can be defined as follows:

with coefficients cj(n) ∈ ℂ and kj(n) ∈ ℝ . We say that Yn is a superoscillating 
sequence (or function), if there exists some a ∈ ℝ , with |a| > 1 , such that 

Mf (r) = max
|z|=r

|f (z)|,

� = lim sup
r→∞

ln lnMf (r)

ln r

� = lim sup
r→∞

lnMf (r)

r�
,

(5)|f (z)| ≤ CeB|z|
p

.

(6)Yn(z) =

n∑

j=0

cj(n)e
ikj(n)z, z ∈ ℂ,
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 (i) sup
n∈ℕ0,j∈{0,…,n}

|kj(n)| ≤ 1,

 (ii) lim
n→∞

Yn(z) = eia z on the compact sets of ℂ.

Superoscillating functions as Fn do not only converge uniformly on the compact 
sets of ℂ but they converge in the space A1 . More in general we recall that the 
sequence (fn)n∈ℕ ∈ Ap converges to f0 ∈ Ap if there exists some B > 0 such that

We now come to the definition of supershift property. Let I ⊆ ℝ be an interval with 
[−1, 1] ⊂ I  , Ω ⊆ ℝ

d , for d ∈ ℕ , be a domain and let � ∶ I × [0, T] × Ω → ℝ , T > 0 
be a continuous function on I  . We set

and consider a sequence of points (�k,n) such that

and a sequence of complex numbers (ck(n)) for k = 0,… , n and n = 0,… ,+∞ . We 
define the functions

If we have that limn→∞ �n(t, x) = �a(t, x) for some a ∈ I  and with |a| > 1 , we say 
that the function � → ��(t, x) , for t and x fixed, admits a supershift in �.

Finally we state our results for the Dirac equation. Let �� be the Gamma matri-
ces and let �+

0
(x) and �−

0
(x) represent the wave functions for the positive and nega-

tive energy level. Now consider, for a, b ∈ ℝ and m > 0 , the Cauchy problem

where

and denote by �1,a(t, x) , �2,b(t, x) , �3,b(t, x) and �4,b(t, x) the components of the solu-
tion �(t, x) . Suppose that �+

0,n
(x) and �−

0,n
(x) are the superoscillating initial data of 

the Cauchy problem

where

(7)lim
n→∞

sup
z∈ℂ

|||(fn(z) − f0(z))e
−B|z|p ||| = 0.

��(t, x) ∶= �(�, t, x),

(
�k,n

)
∈ [−1, 1] for k = 0,… , n and n = 0,… ,+∞,

(8)�n(t, x) =

n∑

k=0

ck(n)��k,n
(t, x).

(9)

(
i���� − m

)
�(t, x) = 0, t ≠ 0, x ∈ ℝ

3, and �(0, x) =
[
�+
0,a
(x) �−

0,b
(x)

]T
, x ∈ ℝ

3

(10)�+
0,a
(x) =

(
eiax1

0

)
, �−

0,b
(x) =

(
eibx1

0

)
,

(11)

(
i���� − m

)
�(t, x) = 0, t ≠ 0, x ∈ ℝ

3, and �n(0, x) =
[
�+
0,n
(x) �−

0,n
(x)

]T
, x ∈ ℝ

3
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Then the solution of (11) can be written in terms of the solution of the Cauchy prob-
lem (9) as

and the supershift property holds, that is

The precise mathematical proof of the above result is not trivial and all the details 
are given in Sect. 4.

3  Supershift and Techniques Based on Infinite Order Differential 
Operators

In this section we recall some facts leading to the definition of supershift and we 
summarize the main mathematical tools used to study superoscillations. From the 
prototypical example described in the previous section one can extend the definition 
of superoscillations to the case of several variables. To this aim, we give the defini-
tion of generalized Fourier sequence in several variables, which is a variation of the 
definition introduced in [8].

Definition 3.1 (Generalized Fourier sequence in several variables) For m ∈ ℕ we 
assume that (x1,… , xm) ∈ ℝ

m . Let (�k,j(n)) , k = 0,… , n for n = 0,… ,∞ , be real-
valued sequences for j = 1,… ,m . We call generalized Fourier sequence in several 
variables a sequence of the form

where (ck(n)) , k = 0,… , n , n = 0,… ,+∞ is a real-valued sequence.

Definition 3.2 (Superoscillating sequence) A generalized Fourier sequence in sev-
eral variables fn(x1,… , xm) , is said to be a superoscillating sequence if, for

we have

(12)�+
0,n
(x) =

(
Fn

(
x1, a

)

0

)
, �−

0,n
(x) =

(
Fn

(
x1, b

)

0

)
.

(13)

�j,n(t, x) =

n∑

k=0

Ck(n, a)�j,1−2k∕n(t, x), j = 1, 4,

�j,n(t, x) =

n∑

k=0

Ck(n, b)�j,1−2k∕n(t, x), j = 2, 3,

lim
n→∞

�j,n(t, x) = �j,a(t, x), for j = 1, 4 lim
n→∞

�j,n(t, x) = �j,b(t, x), for j = 2, 3.

(14)fn
(
x1,… , xm

)
=

n∑

k=0

ck(n)

m∏

j=1

eixj�k,j(n),

sup
k=0,…,n, n∈ℕ0

|�k,j(n)| ≤ 1, for j = 1,… ,m
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and there exists a compact subset of ℝm , which will be called a superoscillation set, 
on which fn converges uniformly to 

∏m

j=1
eixjgj , where |gj| > 1 for j = 1,… ,m.

A very important particular case of generalized Fourier sequence in several vari-
ables is the following

where Ck(n, a) are given by (3) and qj ∈ ℕ , for j = 1,… ,m.
From an historical point of view the main problem, which was first suggested by 

Aharonov, was to study the evolution of superoscillations by Schrödinger equation for 
the force free field with rigorous mathematical tools. This example was the starting 
point to understand the most natural functional setting in which one can study the evo-
lution of superoscillations. We have already mentioned the solution of the Schrödinger 
equation with superoscillatory initial datum for the free particle

is given by

The crucial problem is to show that during the evolution, as n goes to infinity, the 
superoscillatory behavior of the limit function persists. It turns out that the limit

is uniform on compact sets in ℝ2 . This means that the limit function eiax−ia2t has a 
superoscillatory behavior. The main tools used to compute rigorously such a limit 
are convolution operators acting on spaces of entire functions. For such operators 
a crucial fact is to prove a continuity theorem. Specifically, for the free particle the 
convolution operator associated with this problem is

so that the evolution problem can be written as

for every x ∈ ℝ and t ∈ ℝ . Clearly, the function in (16) is a generalized Fourier 
sequence in two variables, and for a > 1 it is a superoscillatory function.

lim
n→∞

fn(x1,… , xm) =

m∏

j=1

eixjgj

Yn(x1,… , xm) =

n∑

k=0

Ck(n, a)e
ix1(1−2k∕n)

q1
… eixm(1−2k∕n)

qm
.

(15)i�t�(x, t) = −�2
xx
�(x, t), �(x, 0) = Fn(x, a)

(16)�n(x, t) =

n∑

k=0

Ck(n, a)e
ix(1−2k∕n)e−it(1−2k∕n)

2

.

lim
n→∞

�n(x, t) = eiax−ia
2t,

U(t, �x) ∶=

∞∑

m=0

(it)m

m!
�2m
x

�n(x, t) = U(t, �x)Fn(x, a)
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Inspired by the example of the free particle, if in Eq. (15) one replaces the 
second derivative with respect to the space variable x by the partial derivative 
�
p
x�(x, t) of order p ∈ ℕ , it is possible to prove that we still have a superoscillating 

function. In this case we have (p is even)

which converges, for n → ∞ , and uniformly on compact sets, to �(x, t) = eiax−ia
pt . 

More in general, there is a very large class of superoscillatory functions that can be 
generated stating from convolution equations of the type

where the second derivative with respect to time in (15) has been replaced by a suit-
able convolution operator

where the complex coefficients a
�
 satisfy give growth conditions.

For the above class of differential equations, or more in general for convolution 
equations, the solutions remain in the class of generalized Fourier sequences, but 
when we take into account the Schrödinger equation with a nonconstant potential 
it turns out that the solution is not a generalized Fourier series in several variable. 
For instance, when we consider a linear potential, which means that the evolution 
takes place in a constant electric field, the solution of the Cauchy problem

is given by

which is not of the form (14). So, by computing the limit for n → ∞ , we obtain

Hence, the class of superoscillations proves too narrow. In order to overcome this 
limitation, the notion of supershift has been introduced.

Definition 3.3 (Supershift) Let I ⊆ ℝ be an interval with [−1, 1] ⊂ I  , Ω ⊆ ℝ
d , for 

d ∈ ℕ , be a domain and let � ∶ I × [0, T] × Ω → ℝ , T > 0 be a continuous function 
on I  . We set

�n(x, t) =

n∑

k=0

Ck(n, a)e
ix(1−2k∕n)e−it(1−2k∕n)

p

(17)i�t�(x, t) = P
(
�x
)
�(x, t), �(x, 0) = Fn(x, a)

P
(
�x
)
∶=

∞∑

�=0

a
�
��
x

(18)i�t�(t, x) = −
1

2
�2
x
�(t, x) − x�(t, x), �(0, x) =

n∑

k=0

Ck(n, a)e
ix(1−2k∕n),

(19)�n(t, x) =

n∑

k=0

Ck(n, a)e
−it3∕6 e−i(1−2k∕n)t((1−2k∕n)+t)∕2ei((1−2k∕n)+t)x,

lim
n→∞

�n(t, x) = e−it
3∕6 e−iat(a+t)∕2ei(a+t)x.
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and we consider a sequence of points (�k,n) such that

We define the functions

where (ck(n)) is a sequence of complex numbers for k = 0,… , n and n = 0,… ,+∞ . 
If limn→∞ �n(t, x) = �a(t, x) for some a ∈ I  with |a| > 1 , we say that the function 
� → ��(t, x) , for t and x fixed, admits a supershift in �.

Let us stress that the term supershift comes from the fact that I  can be an arbitrar-
ily large (it can also be ℝ ) and so also a can be arbitrarily far away from the interval 
[−1, 1] where the function �� is computed, see (20). In the case of the sequence (Fn) 
in (2), we have �k,n = 1 − 2k∕n , ��k,n

(t, x) = ei(1−2k∕n)x and ck(n) are the coefficients 
Ck(n, a) defined in (3).

3.1  Schrödinger‑Like Equations

By using the notion of supershift, it is now possible to formulate in precise math-
ematical terms the problem of the evolution of superoscillations for a quantum 
mechanical system described by the Hamiltonian operator H . We consider the evo-
lution problem

and we denote by �n(t, x) the solution of the Cauchy problem (21), by �a(t, x) we 
indicate the solution of the Schrödinger equation in (21) where we replace Fn by the 
initial datum eiax . Given the solutions �n(t, x) and �a(t, x) , owing to the linearity of 
Schrödinger equation, the function �n(t, x) can be written as

The persistence of superoscillations means that the supershift property holds. Hence, 
we have to show that

or, equivalently, that the function � → ��(t, x) admits a supershift in the sense Defi-
nition 3.3.

When the Green function of the time-dependent Schrödinger equation is known, 
there is a standard procedure to study the evolution problem (21) and to determine 

��(t, x) ∶= �(�, t, x),

(
�k,n

)
∈ [−1, 1] for k = 0,… , n and n = 0,… ,+∞.

(20)�n(t, x) =

n∑

k=0

ck(n)��k,n
(t, x),

(21)i�t�(t, x) = H(t, x)�(t, x), �(0, x) = Fn(x, a)

�n(t, x) =

n∑

k=0

Cj(n, a)�1−2k∕n(t, x).

lim
n→∞

�n(t, x) = �a(t, x)



1366 Foundations of Physics (2020) 50:1356–1375

1 3

under which conditions the supershift property holds. The first step consists in writing 
the solution of the Cauchy problem (21) in term of the function �a(t, x) which is the 
solution of the problem

The Green function K of Schrödinger equation with Hamiltonian H gives

where, in most typical cases, Ω amounts to the real line ℝ or the half line ℝ+ . 
Accordingly, the solution of problem (21) is given by

Then, in order to study the supershift property, some crucial considerations are in 
order:

(I) The first important step is to establish in what sense the integral (23) converges. 
This fact can be assured by regularizing the integral or by considering the integral 
defined as a Fresnel integral. Here complex analysis plays an important role in the defi-
nition of the integral.

(II) Once that point (I) is enforced, we have to assure that the function

is analytic and then we need suitable estimates, which allows us to exchange the 
series with the integral in such a way that we obtain

This is quite delicate fact to handle because the integral is computed, in general, on 
an unbounded domain Ω.

(III) Finally, suppose formula (24) holds, we set

where

and by introducing the auxiliary complex variable � we represent the function 
�a(t, x) as

(22)i�t�(t, x) = H�(t, x), �(0, x) = eiax.

(23)�a(t, x) = ∫Ω

eiay K(x, y, t)dy,

�n(t, x) =

n∑

k=0

Ck(n, a)∫Ω

ei(1−2k∕n)y K(x, y, t)dy.

a ↦ ∫Ω

eiay K(x, y, t)dy

(24)�a(t, x) =

∞∑

m=0

am

m! ∫Ω

(iy)mK(x, y, t)dy.

(25)�a(t, x) =

∞∑

m=0

�m(x, t)a
m,

�m(x, t) ∶= ∫Ω

(iy)m

m!
K(x, y, t)dy,
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where U(x, t, ��) is the convolution operator defined by

acting on eia� and |�=0 denotes the restriction to � = 0.
The above steps make sense when we can prove that the operator U(x, t, ��) acts 

continuously on a space of entire functions that contains the exponential function. 
For example, if we show that

acts continuously, then we have

which in turn gives the sought-after supershift property. This follows because the 
sequence Fn(�, a) converges to eia� in A1 and in particular it converges uniformly on 
the compact set in ℂ.

The above procedure is very general and it works also for different types of evolu-
tion equations recently it has been applied to the Klein–Gordon equation (see [10]). 
In the next section, by taking advantage of some preliminary results presented in 
[10], we study the supershift property for the Dirac field.

4  Proofs of the Main Results for the Dirac Equation

In this section we recall a well known representation formula for the solution of 
Klein–Gordon equation in ℝ3 expressed by smooth functions like the Bessel func-
tion J1 . This formula is a consequence of the knowledge of the Green function and it 
expresses the solution of the Cauchy problem

Precisely, we consider y = (y1, y2, y3) ∈ ℝ
3 with y written in spherical coordinates, 

i.e., y1 = � sin� cos � , y2 = � sin� sin � , y3 = � cos� . We will set d3y = r2drdΩy , 
where dΩy = sin�d�d� , for � ∈ [0,∞) , � ∈ [0,�] , � ∈ [0, 2�].

Theorem  4.1 Let f ∈ C3(ℝ3) and g ∈ C2(ℝ3). Then the solution of the Cauchy 
problem  (26) is given by

�a(t, x) = U(x, t, ��)e
ia�|�=0

U(x, t, ��) ∶=

∞∑

m=0

�m(x, t)

im
�m
�

U(x, t, ��) ∶ A1 → A1

lim
n→∞

�n(t, x)|�=0 = lim
n→∞

U(x, t, ��)Fn(�, a)|�=0
= U(x, t, ��) lim

n→∞
Fn(�, a)|�=0

= U(x, t, ��)e
ia�|�=0

= �a(t, x)

(26)
(
�2
tt
− Δ + m2

)
�(t, x) = 0, �(0, x) = f (x), �t(0, x) = g(x).
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where J1 is the Bessel function, the spherical coordinates are given by d3y = r2drdΩy

, and Bt(0) is the ball with radius t centered at the origin. Moreover, � belongs to in 
C2(ℝ4).

Proof See Theorem 3.3.1 in [34].   ◻

Here we introduce some basic facts to study the evolution of superoscillations in 
the Dirac field. We recall the Pauli matrices

and the Gamma matrices, which can be written in terms of the Pauli matrices, are 
given by

The components of the solution of the Dirac equation satisfy the Klein–Gordon 
equation. We now focus on the Dirac equation with the associated Cauchy problem

The solution �(t, x) has components �j , for j = 1, 2, 3, 4 , and we write

where T  indicates the transposed vector, the components �j are explicitly given by

for j = 1, 2, 3, 4 , with the initial data that are given by

where we have used the matrices

(27)

�(t, x) =
t

4� ∫�Bt(0)

g(x + y)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

g(x + y)d3y

+ �t

�
t

4� ∫�Bt(0)

f (x + y)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

f (x + y)d3y
�

�1 =

(
0 1

1 0

)
, �2 =

(
0 − i

i 0

)
, �3 =

(
1 0

0 − 1

)

�0 =

(
I2×2 0

0 − I2×2

)
, �� =

(
0 ��

−�� 0

)
, � = 1, 2, 3.

(28)
(
i���� − m

)
�(t, x) = 0, t ≠ 0 x ∈ ℝ

3, �(0, x) = �0(x).

�(t, x) =
[
�1(t, x) �2(t, x) �3(t, x) �4(t, x)

]T
,

(29)

�j(t, x) =
t

4� ∫�Bt(0)

gj(x + y)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

gj(x + y)d3y

+ �t

�
t

4� ∫�Bt(0)

fj(x + y)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

fj(x + y)d3y

�

fj(x) ∶= (�0(x))j, gj(x) ∶= −i
(
�k�k�0

)
j
(x) + m(��0)j(x), j = 1, 2, 3, 4
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and I is the 2 × 2 identity matrix. In order to study superoscillations, we then need to 
consider the Cauchy problem associated with the plane waves. So, we start with the 
following result.

Theorem 4.2 Let �+
0
(x) and �−

0
(x) represent the wave functions for the positive and 

negative energy level. Consider the Cauchy problem

where a and b are real numbers and m > 0. Define the functions:

Then the components of the solution of the Dirac equation are given by

Proof Let us write explicitly the function g:

so we have that

and, taking into account with the initial datum (30), we obtain

� =

(
I 0

0 − I

)
, �� =

(
0 ��

�� 0

)
, � = 1, 2, 3

(30)

(
i���� − m

)
�(t, x) = 0, t ≠ 0, x ∈ ℝ

3, and �(0, x) =
[
�+
0,a
(x) �−

0,b
(x)

]T
, x ∈ ℝ

3

�+
0,a
(x) =

(
eiax1

0

)
, �−

0,b
(x) =

(
eibx1

0

)
,

(31)

U1(b, t) ∶=
t

4� ∫�Bt(0)

eiby1dΩy,

U2(b, t) ∶= −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eiby1d3y.

(32)

�1,a(t, x) =mU1(a, t)e
iax1 + mU2(a, t)e

iax1 + �tU1(a, t)e
iax1 + �tU2(a, t)e

iax1 ,

�2,b(t, x) =bU1(b, t)e
ibx1 + bU2(b, t)e

ibx1 ,

�3,b(t, x) =mU1(b, t)e
ibx1 + mU2(b, t)e

ibx1 + �tU1(b, t)e
ibx1 + �tU2(b, t)e

ibx1 ,

�4,a(t, x) =bU1(a, t)e
iax1 + aU2(a, t)e

iax1 .

g(x) ∶= −i(�k�k�0(x)) + m(��0(x))

g(x) = −i

(
0 �1

�1 0

)(
�x1�

+
0
(x)

�x1�
−
0
(x)

)
− i

(
0 �2

�2 0

)(
�x2�

+
0
(x)

�x2�
−
0
(x)

)

− i

(
0 �3

�3 0

)(
�x3�

+
0
(x)

�x3�
−
0
(x)

)
+ m

(
I 0

0 − I

)(
�+
0
(x)

�−
0
(x)

)

g(x) = −i

(
0 �1

�1 0

)(
�x1�

+
0
(x)

�x1�
−
0
(x)

)
+ m

(
I 0

0 − I

)(
�+
0
(x)

�−
0
(x)

)
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so

and

and the components of g± are explicitly given by

With the above computations we obtain the set of conditions:

and also

Based on Theorem 4.1, the components of the Dirac equation can be written as

from which we reach the desired conclusion by using the functions U1 and U2 defined 
in (31).   ◻

g+(x) = −i�1�x1�
−
0
(x) + m�+

0
(x) = b�1�−

0
(x) + mI�+

0
(x)

g−(x) = −i�1�x1�
+
0
(x) − m�−

0
(x) = a�1�+

0
(x) − mI�−

0
(x)

g+(x) =

(
meiax1

beibx1

)
, g−(x) =

(
meibx1

aeiax1

)
.

g1(x) = meiax1 , g2(x) = beibx1 , g3(x) = meibx1 , g4(x) = aeiax1

f1(x) = eiax1 , f2(x) = 0, f3(x) = eibx1 , f4(x) = 0.

(33)

�1,a(t, x) =
mt

4� ∫�Bt(0)

eia(x1+y1)dΩy −
m2

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eia(x1+y1)d3y

+ �t

�
t

4� ∫�Bt(0)

eia(x1+y1)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eia(x1+y1)d3y
�
,

(34)

�2,b(t, x) =
bt

4� ∫�Bt(0)

eib(x1+y1)dΩy −
bm

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eib(x1+y1)d3y,

(35)

�3,b(t, x) =
mt

4� ∫�Bt(0)

eib(x1+y1)dΩy −
m2

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eib(x1+y1)d3y

+ �t

�
t

4� ∫�Bt(0)

eib(x1+y1)dΩy −
m

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eib(x1+y1)d3y
�
,

(36)

�4,a(t, x) =
at

4� ∫�Bt(0)

eia(x1+y1)dΩy −
ma

4� ∫Bt(0)

J1(m
√
t2 − �y�2)

√
t2 − �y�2

eia(x1+y1)d3y,
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Let us note that it is enough to study the functions (�1,a,�4,a) since the func-
tions (�2,b,�3,b) are obtained by commuting a and b. As it was proven in [10], the 
functions U1 and U2 can be written in terms of convolution operators acting con-
tinuously on the space of entire functions A1 . For t ∈ [0, T] , with T > 0 , we define 
the following convolution operators

where the coefficients Bj,�(t) are given by

with the function K(p, q) being defined by

Moreover, we also need the following lemma.

Lemma 4.3 For t ∈ [0, T], with T > 0, we define the following convolution 
operators

where the coefficients B̃j,�(t) are given by

(37)Uj(t, �x1 ) ∶=

∞∑

�=0

Bj,�(t)�
�

x1
∶ A1 → A1, j = 1, 2, 3, 4, 5

(38)B1,�(t) ∶=
1

4�

t�

�!
K(� + 1,�),

(39)B2,�(t) ∶= −
m

4�

1

�!
K(� + 1,�)∫

t

0

�2+�
J1(m

√
t2 − �2)

√
t2 − �2

d�,

(40)B3,�(t) ∶=
1

4�

t�+1

�!
K(� + 2,� + 1),

(41)B4,�(t) ∶= −
m2t

4�

1

�!
K(� + 1,�)∫

t

0

J2(m
√
t2 − �2)

t2 − �2
��+2d�,

(42)B5,�(t) ∶=
m2

8�

t�+2

�!
K(� + 1,�),

(43)K(p, q) ∶= ∫
�

0

sinp �d�∫
2�

0

cosq �d�, p, q ∈ ℕ0.

(44)Ũj(t, �x1 ) ∶=

∞∑

�=0

B̃j,�(t)�
�+1
x1

∶ A1 → A1, j = 1, 2

(45)B̃1,�(t) ∶=
1

4�i

t�+1

�!
K(� + 1,�),
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Then we have

and

and the operators Ũj(t, �x1 ), for j = 1, 2, act continuously on A1.

Proof We observe that from the definition of the function U1 we have

and hence we obtain (47), similarly we get (48). The continuity of the operators 
Ũj(t, �x1 ) for j = 1, 2 follows with similar computations of the Lemmas 4.2 and 4.3 in 
[10].   ◻

Lemma 4.4 The components of the solution of the Dirac equation given in (32) can 
be represented in terms of convolution operators as

Proof The functions �1,a(t, x) and �3,b in (49) are a direct consequence of (32) and of 
the relations

where the operators Uj(t, �x1 ) , for j = 1, 2, 3, 4, 5 , are defined in (37) with coefficients 
(45), (46), (40), (41) and (42). These operators are continuous on the space of entire 
functions A1 as proved in Lemmas 4.2, 4.3, 4.5 and 4.4 in [10]. The representations 
of �2,b(t, x) and �4,a(t, x) follows from Lemma 4.3.   ◻

(46)B̃2,�(t) ∶=
1

i
B2,�(t).

(47)bU1(b, t)e
ibx1 = Ũ1(t, �x1 )e

ibx1

(48)bU2(b, t)e
ibx1 = Ũ2(t, �x1 )e

ibx1

bU1(b, t) =
1

4�i

∞∑

�=0

i�+1b�+1t�+1

�!
K(� + 1,�).

(49)

�1,a(t, x) =
(
(mt + 1)U1

(
t, �x1

)
+ mU2

(
t, �x1

)
+ U3

(
t, �x1

)
+ U4

(
t, �x1

)
+ U5

(
t, �x1

))
eiax1 ,

�2,b(t, x) =
(
Ũ1

(
t, �x1

)
+ Ũ2

(
t, �x1

))
eibx1 ,

�3,b(t, x) =
(
(mt + 1)U1

(
t, �x1

)
+ mU2

(
t, �x1

)
+ U3

(
t, �x1

)
+ U4

(
t, �x1

)
+ U5

(
t, �x1

))
eibx1 ,

�4,a(t, x) =
(
Ũ1

(
t, �x1

)
+ Ũ2

(
t, �x1

))
eiax1 .

U1(a, t)e
iax1 = tU1(t, �x1 )e

iax1

U2(a, t)e
iax1 = U2(t, �x1 )e

iax1

�tU1(a, t)e
iax1 = U1(t, �x1 )e

iax1 + U3((t, �x1 )e
iax1 ,

�tU2(a, t)e
iax1 = U4(t, �x1 )e

iax1 + U5(t, �x1 )e
iax1 .
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We are now in the position to state the main result of this section, that is the super-
shift property for the Dirac equation. It is encoded in the following theorem:

Theorem 4.5 Consider the Cauchy problem

where �+
0,n
(x) and �−

0,n
(x) are the superoscillating initial data:

for a and b real numbers and let m > 0. Then the solution can be written as

and the supershift property holds, that is we have

Proof The proof is a direct consequence of the continuity of the operators

defined in (37) and from the continuity of the operators

defined in (44).   ◻

(i���� − m)�(t, x) = 0, t ≠ 0, x ∈ ℝ
3, and �n(0, x) =

[
�+
0,n
(x) �−

0,n
(x)

]T
, x ∈ ℝ

3

(50)�+
0,n
(x) =

(
Fn(x1, a)

0

)
, �−

0,n
(x) =

(
Fn(x1, b)

0

)

(51)

�1,n(t, x) =

n∑

k=0

Ck(n, a)�1,1−2k∕n(t, x),

�2,n(t, x) =

n∑

k=0

Ck(n, b)�2,1−2k∕n(t, x),

�3,n(t, x) =

n∑

k=0

Ck(n, b)�3,1−2k∕n(t, x),

�1,n(t, x) =

n∑

k=0

Ck(n, a)�4,1−2k∕n(t, x),

lim
n→∞

�j,n(t, x) = �j,a(t, x), for j = 1, 4 lim
n→∞

�j,n(t, x) = �j,b(t, x), for j = 2, 3.

(52)Uj

(
t, �x1

)
∶=

∞∑

�=0

Bj,�(t)�
�

x1
∶ A1 → A1, j = 1, 2, 3, 4, 5

(53)Ũj

(
t, �x1

)
∶=

∞∑

�=0

B̃j,�(t)�
�+1
x1

∶ A1 → A1, j = 1, 2
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5  Conclusions

Superoscillations are an important notion in quantum mechanics, as they appear 
in Aharonov’s theory of weak values. The study of superoscillations requires 
sophisticated mathematical tools in order describe their evolution in time accord-
ing to Schrödinger equation or other relativistic field equations. The mathemati-
cal methods to investigate the evolution of superoscillations have improved in the 
last ten years, and in this paper we have offered a summary of these methods by 
using Schrödinger equation as a model. In particular, we explicitly explained why 
we need to generalize the notion superoscillation with the notion of supershift. 
That put us in a position to develop our main technical result, namely the treat-
ment of the evolution of superoscillation via the Dirac equation.
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