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Abstract— Multi-channel data management is crucial in a
world where big data processing is extensively used in research
and business. Histogramming is a common technique employed to
detect, analyze, and store enormous volumes of data in real-time,
making it useful for industrial applications in fields such as biol-
ogy, chemistry, medical imaging, and spectroscopy. Due for them
programming simplicity and low-cost large amount of memory,
general-purpose temporal computing processors are commonly
used, but they lack the ability to perform parallel computation
at high-performance. Field-Programmable Gate Array (FPGA)
is a powerful parallel computing solution proposed by both the
scientific and industrial worlds, but it is equipped with little
memory for these applications. Thus, a hybrid spatial/temporal
computing histogram generator has been proposed, which uses a
low-area multi-channel histogramming engine in programmable
logic which is expanded thanks to an external Double Data Rate
Synchronous Dynamic Random Access Memory (DDR) driven
by a MicroBlaze Soft Processor Core. The proposed system has
been validated on a Xilinx 28-nm 7-Series Artix-7 XC7A100T
FPGA hosted on a Nexys4 Evaluation Board. Thanks to this
hybrid solution, up to 128 channels can handle in a low-end
FPGA occupies 207 LUTs and 325 flip-flops per channel plus a
total 630 kb of total BRAM shared between all channels; a power
consumption of 10.1 mW per channel is measured.

Index Terms— Histograms, field-programmable gate array
(FPGA), MicroBlaze, real-time systems, soft processor core.

I. INTRODUCTION

HISTOGRAMS are frequently the most economical way
to compress data for handling it in large quantities [1],

[2], [3]. It is common knowledge that histograms, for instance,
keep track of the frequency of events by storing the data
in a user-defined memory that, roughly speaking, can be
dimensioned regardless of the number of events. Today, there
is an increasing requirement to manage massive data, which
might even be spread over very broad value dynamics [4].
This is true for many applications that may offer significant
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benefits from being able to obtain a more condensed version
of the observed occurrence. In addition, many applications,
including weather forecasting [5] and traffic prediction [6], to
mention a few, have moved away from deterministic models
in favor of stochastic ones [7], [8]. The required information
can be obtained and applied in a number of methods, such
as by computing statistical moments, such as mean-value,
variance, and higher moments [9]. The normalized version of a
histogram is actually the closest representation of the random
process that created the sequence from a stochastic perspec-
tive [10]. Histograms play a significant role in the analysis
and processing of data in this scenario due to their ability to
simplify the extraction of statistics from the underlying data
stream.

The simplicity of histograms also makes them useful in
a wide variety of measurement disciplines, from industry to
research. Even when considering some end-user applications,
such as image and video processing for computer vision [11]
and automotive [12] purposes, these applications heavily rely
on histogramming methods. The large amount of data and,
more importantly, the high data rates are, therefore, the com-
mon denominators of all histogram applications. It is crucial
to be able to handle these rates with real-time processing in
order to prevent the creation of bottlenecks and to ensure the
necessary rising performance [13]. Consider computer vision,
which uses the gray-scale image’s histogram and variance
for in-the-moment image recognition [14], [15]. Histograms
are frequently used in time-based experiments in the context
of scientific study; for instance, they form the foundation of
nuclear physics investigations. In this scenario the histogram
tool performs energy spectra, measures gamma-photons arrival
time distribution in Time-of-Flight Positron Emission Tomog-
raphy (TOF-PET) [16], Time-Resolved Spectroscopy [17],
Time-Correlated Single Photon Counting (TCSPC) [18], Time-
of-Flight (TOF) Rangefinder such as Laser Rangefinders [19]
(LR), Time-of-Flight Mass Spectrometry [1] (TOF-MS), and
so on.

Every quantized data in the digital world is represented
by an N -bit wide word, which can be easily translated into
the analog world by multiplying it by the so-called Least
Significant Bit (LSB). In these terminology, the analog values
that can be quantized have a Full-Scale Range (F S R) that
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Fig. 1. The left-hand side displays the temporal evolution of the signal
of interest, while the right-hand side shows its corresponding histogram
(a.k.a., statistics) where the mean value (µ) and standard deviation (σ ) are
highlighted.

goes up to 2N
· L SB. If we were to create a histogram in

this case, the F S R of the data series should be split into
L SB wide classes, sometimes known as bins. On the other
hand, a histogram with F S R

L SB = 2N bins can be successfully
stored in a digital memory made up of 2N cells. Each cell
in the histogram’s digital memory is identified by the data
width M , which specifies the maximum number of counts
(Countmax = 2M

− 1) that a single bin can hold before
being saturated. The M parameter establishes the histogram’s
correctness in that the estimation of the statistical process p
is more accurate the more samples there are in the histogram.
Figure 1 shows a representation of the histogramming of a
generic signal.

The most commonly employed approach for creating a
histogram involves the utilization of temporal computing
processors, including Central Processing Units (CPUs) or
Graphics Processing Units (GPUs) [20], where the histograms
are stored on high-density external Random Access Memory
(RAM) modules, such as the Double Data Rate Synchronous
Dynamic Random Access Memory (DDR SDRAM or sim-
ply DDR). This method offers the advantage of algorithmic
simplicity, although it is constrained by the limited number
of threads, tens, (i.e., histograms) that can operate simul-
taneously. Modern applications, however, take advantage of
multi-channel solutions, where enormous (ranging from tens
to hundreds) processing cores, in this case histogramming
engines, operate independently. Spatial computing architec-
tures based on Field Programmable Gate Array (FPGA) are
essential in these settings [21]. However, this strategy incurs
a memory cost, as the use of internal Block RAM (BRAM)
is constrained by its physical size, which is limited by the
technology of Static RAM (SRAM) [22]. Employing external
Dynamic RAM (DRAM) with an FPGA approach can lead
to an explosion in system complexity, due to the difficulty
of managing access and refresh operations of the DRAM.
In this paper, we propose a multi-channel, low-area occupancy
hybrid spatial/temporal computing solution, which uses a low-
area multi-channel histogramming engine in programmable
logic which is expanded thanks to an external DDR driven
by a MicroBlaze Soft Processor Core [23]. By doing so, the
MicroBlaze will handle the read/write operations of the DDR,
reducing the system complexity as compared to when the
FPGA itself manages direct DDR access.

The innovation of the proposed structure lies in its ability
to implement histograms with 28 bins and a depth M of 32
(equivalent to 4294967296 counts per bin), in a multichannel
mode of up to 128 (i.e., 128×28 total bins), while maintaining
an extremely low usage of BRAM (totaling 630 kb). This
implies an allocation of less than 5 kb of BRAM for each
channel, as the storage effort is shifted to more compact and
scalable external DDR solutions, leveraging MicroBlaze to
simplify interfacing with DDR and the histogramming process.
Although it combines basic ideas, in its simplicity, it effi-
ciently implements a fast multichannel histogramming solution
at 95 Msps, considering a maximum clock of 150 MHz
(thus suitable for real-world applications), and simultaneously
maintains compactness with less than 204 LUTs, 318 FFs, and
5 kb for BRAM per channel. Furthermore, a total power con-
sumption of 1.29 W is observed, indicating a mere 10.1 mW
per channel.

The paper is structured as follows: Section II introduces the
trend toward parallel computing solutions and the state-of-the-
art in the area of high-performance histogram computation;
Section III discusses the specifics and features of the suggested
architecture. The experimental validation in TOF-PET setup is
described in Section IV and them are performed on a Xilinx
28-nm Artix-7 100T FPGA (i.e., XC7A100TCSG324-1) [24]
and a 16 MiB Micron RAM (M45W8MW16) hosted in a
Digilent Nexys4 Evaluation Board (EVB) [25].

II. STATE-OF-THE-ART AND TREND OF
IMPLEMENTATION STRATEGY

The shift from general-purpose processors like CPUs [26]
and GPUs [27] to FPGA architectures for histogram creation
is prompted by the demand for efficient parallel computing in
multi-channel applications across various research fields [28],
[30]. Traditional temporal computing becomes inefficient,
especially in scenarios like metrology with increasing parallel
input channels. Researchers are now focusing on lower-level
approaches, leveraging specialized FPGA architectures for
tailored processing solutions, exploiting full-speed data source
interfaces [31], [32].

In this regard, the FPGA domain [33] offers the opportunity
to keep the system simpler and the processing to be done
closer to the data generation, in real-time. In fact, the possi-
bility of directly building a histogramming IP-Core into the
hardware and replicating it to exploit maximum parallelism,
as needed by the application, offers the chance to keep the
system simple [21]. The device being used, specifically the
quantity of resources available, has a general relationship to
the parallelization limit.

Furthermore, it is essential to be able to provide at least
basic processing in real-time, immediately following the acqui-
sition chain, in an environment where there are likely some
detectors producing signals that need to be captured and pro-
cessed [34]. If this is the case, FPGAs enable the construction
of "cores" for data processing alongside Data Acquisition
(DAQ), creating a potent combination that, in many cases,
ensures there are no bottlenecks caused by data transfer off
chip, a stage that is necessary when leaving the processing
to an external device like a GPU. Sometimes, it may also be
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TABLE I
SYNOPTIC VIEW OF SOME APPLICATIONS WITH CORRESPONDENT

DATA RATES ANDHOST PROCESSING UNITS

necessary for the DAQ and data processing units to have a real-
time, low-latency bidirectional communication in order for the
system to be employed in a feedback configuration, which uses
the processed data to change acquisition parameters [35]. This
is simple to accomplish if the DAQ section, which is often built
on FPGAs, is supported by a separate processing unit on the
same chip.

Table I offers a concise comparison of various histogram
computation methodologies in different fields. The top section
focuses on time-domain experiments ([13], [20], [21], [36],
[37]), while the bottom section addresses computer vision
and image processing applications ([14], [15], [38], [39],
[40]). FPGAs emerge as the dominant technology, tailored
to specific application areas, emphasizing reprogrammability,
multi-channel capabilities, low latency, high throughput, and
adaptability. The availability of effective hardware primi-
tives like BRAM and Digital Signal Processor (DSP) for
FPGAs [41] has significantly improved real-time histogram
computation, making FPGAs a key technology in this domain.
Additionally, FPGAs are often employed as a preliminary
stage for hardware design verification before final implemen-
tation as ASICs [42].

III. SPATIAL/TEMPORAL COMPUTING HYBRID SOLUTION

The main features of a histogram can be extracted by using
FPGA-based solutions described in Section I. The first two
that may be determined are the maximum number of bins
2N , also known as the number of values on the abscissa,
and the maximum number of counts 2M

− 1, also known as
the values on the ordinate, for each bin. As the reader will
quickly realize, it is imperative in this context that a memory,
such as BRAM in Xilinx FPGAs, be available and have a
minimum storage capacity of (M −bit/word)×(2N

−word).
Also, the chosen bin must have an appropriate increment
mechanism, such as an adder or a DSP. Other fundamental
figures of merit that are determined by the pipeline that the
memory introduces and the increment mechanism include
clock cycles of latency L , maximum rate R and R without
and with losses (Msps), and system clock FC L K (MHz). Last
but not least, another factor to take into account is the entire
area occupancy. A bigger M necessitates the use of wider
increment mechanisms, which are characterized by slower
propagation delays. The same idea applies to bigger N , which

requires using larger memories and address methods, both of
which have slower propagation delays. A pipeline technique
is necessary in this case to speed up the system at the expense
of a higher area occupancy. Reducing the maximum input
rate in respect to the clock frequency [40], could be one
way to minimize this trend. In contrast, the technique offered
in [15] memorizes histograms using flip-flops rather than
traditional BRAM, enabling high-frequency operation without
the need for a pipeline and saving space. Similarly, CPU/GPU-
based architectures have the same figures-of-merit, with the
exception of area occupancy which is replaced by number of
core/thread involved (C) and the number of cycles required to
perform the accumulation (CY ). Latency and maximum rate
are strongly depended to the architecture; instead, in contrast
to FPGA, big flexibility is intrinsically present concerning the
storage capacity.

When it comes to low latency, high throughput, flexibility,
and compatibility with multi-channel systems, FPGA solutions
are definitely preferable to temporal-computing ones, although
they have a strong limitation in terms of storage due to the low
density of BRAM. Unlike CPU/GPU architectures designed to
manage relatively simple high-density DRAM memories. For
this reason, we have decided to present a hybrid architecture
that combines the advantages of both. In this sense, we expand
the BRAM of a classic histogram implemented in FPGA
technology with an external DRAM. To lighten the hardware
required to manage such memory, the complex control logic
necessary for DDR read and write operations was handled
using a MicroBlazeThis gave us the opportunity to integrate
the MicroBlaze software programmability with the simple
DDR memory interface provided by the Memory Interface
Generator (MIG) IP-Core. In this way, the work is greatly
eased by using the extensive software libraries that are already
built into the MicroBlaze. In doing so, it is possible to use the
advantages of both the firmware and software techniques, com-
bining them to produce a flexible, scalable, high-performance
solution for the already noted need of controlling massive
multichannel systems. Paragraph III-A and Paragraph III-B
present the details of the proposed hybrid architecture (consid-
ering the maximum clock frequencies allowed without timing
errors) and detail about performance and area occupied, while
Paragraph III-C will illustrate the trade-offs compared to the
classical FPGA-based solution and future developments.

A. Hybrid Architecture Overview

Figure 2 depicts the proposed architecture’s conceptual plan
organize using IP-Cores. All the interconnection between IPs
are performed using the Advanced eXtensible Interface 4
(AXI4) standard [43]. The Memory Manage Engine (MME)
[44] is the IP-Core that manage the link between FPGA and
Personal Computer (PC) by means of an 2 Mbps RS-232
protocol and it will not be described in this paper [45].

The module named “Histogram Wrapper” is the heart of the
system and is responsible for implementing the multi-channel,
up to H = 128 (where H is the number of channels), low-
area, especially BRAM, histogramming mechanism inside the
FPGA at 256 bins (i.e., N = 8). Each channel consists of an
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Fig. 2. Proposed hybrid architecture.

input line, control logic, an accumulator, a BRAM memory
area, and configuration registers. The histogramming mecha-
nism is therefore a synchronous logic module identical to the
one described in [21] and is driven by a 150 MHz FPGA clock
(F F PG A

C L K ). It is a pipeline that allows working at the FPGA’s
clock frequency, and at each occurrence of the input signal,
a “+1” is added to the corresponding BRAM memory cell
address through the accumulator. In this way, each channel of
the histogram is able to support an accumulation rate equal to
the FPGA’s clock frequency (i.e., R = F F PG A

C L K = 150 Msps)
with a latency L of 2. Unlike what is described in [21], in order
to achieve up to 128 channels in a low-end FPGA, the BRAM
does not need to store the entire histogram but only a limited
number of occurrences called “mini-histograms”. In fact, the
entire histogram will finally be allocated in DDR. Therefore,
the BRAM performs the task of a small hardware cache. Thus,
each individual channel can accumulate a maximum number
of counts equal to 216

− 1 (i.e., M = 16). In this scenario,
each “mini-histogram” occupies only 4096 bits of memory
(i.e., 2N

× M = 28
× 16 = 4096).

For simplicity, all “mini-histograms” share the same address
space of 216 addresses with all BRAMs allocated between
addresses 0 × 8000 and 0xFFFF (i.e., up to 128 “mini-
histograms” with 256 bins, H ·2N ). Instead, addresses between
0 × 0000 and 0 × 7FFF are occupied by configuration reg-
isters necessary to properly set histogram parameters such
as acceptable maximum and minimum values, refresh rate,
etc. “Mini-histograms” stored in the BRAM and when one
bin is near to the overflow it is transferred to the so-called
H · 4096 bit-wide “Readout BRAM” (with dimension equal
to H · 2N

× M bits) clocked at F F PG A
C L K of 150 MHz,

another BRAM shared between the “Histogram Wrapper”
controller and the MicroBlaze, where the latter interfaces via
Direct Memory Access (DMA) [46], [47], [48]. Each “mini-
histogram” is accompanied by an ID (from 0 to 127) that

uniquely identifies the channel of the “Histogram Wrapper”
that produced it.

The MicroBlaze, clocked at F M B
C L K of 130 MHz, after a

proper interrupt signal reads the Readout BRAM through
DMA, appropriately identifies “mini-histograms”, and controls
the MIG to store them in DDR. Therefore, if the histogram has
an ID that is not present in DDR, a memory area is allocated
in DDR where it is saved. Conversely, if the ID is already
present, the content of the newly arrived “mini-histogram”
is added to the existing histogram in DDR. Thanks to this
mechanism, the MicroBlaze extend the maximum number of
counts per bin (i.e., 2M

− 1) from 16 to 32 without using
BRAM. This costs for the MicroBlaze, that is programmed
in bare-metal, 10 clock cycles (i.e., CY = 10) for one bin
at 130 MHz. In this way, in the worst case of operation (i.e., all
histograms collect events at the same rate), the total bandwidth
of 130 MHz (i.e., F M B

C L K ) is shared among all bins of all
histograms (i.e.,H · 2N

= H · 256), limiting the maximum
measurement rate without losses to 50.8/H ksps (i.e., R =

F M B
C L K /(CY · H · 2N ) = 130/(10 · H · 256) = 50.8/H ksps);

R = F M B
C L K ·

C
CY

1
2N · H

(1)

However, many applications allow for burst processing,
especially in cases where the data to be analyzed is already
stored and the analysis is triggered by the user (e.g., video
analysis). Alternatively, even in continuous acquisition sys-
tems, the loss of samples may be inconsequential for analytical
purposes and simply result in a proportional increase in
the acquisition time, as observed in TCSPC systems and
generally in TOF experiments based on statistical concepts.
In such cases, it is meaningful to consider the average his-
togramming rate based on the maximum acquisition rate with
losses (R) rather than the maximum rate without losses (R).
In the proposed FPGA-side (i.e., “mini-histogram”) system,
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the worst-case scenario for histogram saturation occurs after
acquiring 2M

− 1 (i.e., 216
− 1 = 65535) samples in the

same bin simultaneously across all H histograms in paral-
lel. This, as reported in (2) (where M is the width of the
BRAM), corresponds to an FPGA accumulation time of 437
µs independent from H (i.e., TF PG A = (2M

− 1)/F F PG A
C L K =

65535/150 M H z = 437 µs).

TF PG A =
2M

− 1
F F PG A

C L K
(2)

After this accumulation time, the acquired data in the
BRAM needs to be transferred to the MicroBlaze processor
via DMA, extended to 32 bits, and integrated into DDR. From
an acquisition time perspective, as previously discussed, this
transfer takes 10 clock cycles (CY ) at 130 MHz (F M B

C L K )
per bin per core (C), which amounts to 2.52 ms, this time,
as reported in (3), it depends on N and H (i.e., TM B =

(CY/F M B
C L K /C) · 2N

· H = (10/130 M H z/1) · 28
· H =

76.9 ns · 256 · H = 19.7 µs · H = 2.52 ms).

TM B =
CY
C

·
2N

· H
F M B

C L K
(3)

Thus, by tolerating a dead-time of 2.52 ms (i.e., TM B),
we can acquire for a maximum duration of 437 µs (i.e.,
TF PG A) at a rate of 150 MHz (i.e., F F PG A

C L K ), resulting,
as shown in (4), in an average rate of 95 Msps considering
128 histogram (i.e.,R = F F PG A

C L K · TF PG A/(TF PG A + TM B) =

f F PG A
C L K /(1 + TM B/TF PG A) = 150/(1 + 0.00451 · H) Msps).

R = F F PG A
C L K ·

1

1 +
F F PG A

C L K
F M B

C L K
·

CY
C ·

2N ·H
2M −1

(4)

With regard to total latency, the time required for writing to
“Readout BRAM” (L RB), the latency of the DMA (L DM A),
and the latency of the MicroBlaze (L M B) to access the DDR
must be added to the latency of 2 clock pulses at 150 MHz
(i.e., F F PG A

C L K ) of the “Histogram Wrapper” (i.e., L H W =

2/F F PG A
C L K = 2/150 M H z = 13.3 ns). Concerning the BRAM,

Equation (5), each “mini-histogram” requires 2N clock cycles
to be memorized, so 1.71 µs per channel are requested (i.e.,
L RB = 2N

·H/F F PG A
C L K = (28/150 M H z)·H = (1.71 µs)·H).

L RB =
2N

· H

F F PG A
C L K

(5)

The latency of the DMA is been measured as 77 µs per
channel (i.e., L DM A = (77 µs) · H ). Referring to the latency
of the MicroBlaze, considering that the integration process
costs 10 clock cycles at 130 MHz per bin per core we can
derive (6) and thus estimating a value of 19.7 µs per channel
(i.e., L M B = (CY ·2N

· H/F M B
C L K /C) = (10 ·28/130M H z/1) ·

H = (19.7 µs) · H).

L M B =
CY
C

·
2N

· H

F F PG A
C L K

(6)

In this way, the total latency, as reported in (7), is the sum of
theses contributions (i.e., L = L H W + L RB + L DM A + L M B =

13.3 ns + (1.71 µs + 77 µs + 19.7 µs) · H ∼= 98.4 µs · H )

that means 98.4 µs per channels dominated by the DMA and
MicroBlaze.

L =
2

F F PG A
C L K

+
2N

· H

F F PG A
C L K

+ (77µs) · H +
2N

· H
F M B

C L K
·

CY
C

(7)

B. Performance and Figures-of-Merits

1) Area Occupancy: Table II and Fig. 3 show the area
occupancy offered by the proposed solution considering M
equal to 16 and 32 in BRAM and DDR respectively as a
function of the number H of histograms implemented and the
number of bin 2N differentiating the programmable logic (i.e.,
FPGA and BRAM) and in temporal computing (i.e., DDR and
MicroBlaze) sections. For a more straightforward comparison
among different architectures and technological nodes, the
area occupancy is expressed in terms of number of Lookup
Tables (LUTs), Flip-Flops (FFs) and kilobits of BRAM and
DDR both for the entire system (ToT) and each individual
channel (per CH). Indeed, the number of LUTs, FFs, and
kilobits of BRAM can be considered cross-cutting parameters
across the technological node inside FPGAs and therefore
taken as reference parameters. So, we can derive the average
area occupied in FPGA for each single channel as function of
the number of bins 2N that correspond to 207 LUTs, 325 FFs,
and 630 kb of BRAM shared between all channels for N = 8,
215 LUTs, 339 FFs, and 2166 kb of BRAM (shared between
all channels) for N = 10, and 210 LUTs, 353 FFs, and 8310 kb
of BRAM (shared between all channels) for N = 12.

Observing Tab. II and Fig. 3, it is evident that, thanks to the
proposed hybrid architecture, the FPGA resources (LUTs, FFs,
and BRAM) employed in a single channel decrease with the
number of parallel histograms H . This is especially true for
the most sensitive resource, the BRAM. In fact, all the memory
efforts are shifted to the external DRAM; thus, the DDR usage
increases with the number of histograms H . This translates
into a significant relaxation of the FPGA’s area occupation
requirements, as all the storage effort is shifted to the external
DDR, which is much more compact and has considerably
lower power consumption than the FPGA.

Regarding inferring the DSP for operations in the 7-Series
Xilinx FPGA (i.e., DSP48), the decision has been left to the
compiler, which did not find it advantageous to infer them.
This is most likely because DSP48s become beneficial when
words are long (e.g., >32 bits) and comparable to the DSP48’s
own width (i.e., 48 bits), and in this case, it is not applicable.

2) Rates and Latency: Table III and Fig. 4 show the figures
of merit (i.e., R, R, and L), reported in (1), (4), and (7),
offered by the proposed solution considering M equal to
16 and 32 in BRAM and DDR, respectively, with clocks
of 150 MHz and 130 MHz for the FPGA and MicroBlaze
(i.e., F F PG A

C L K = 150 M H z, F M B
C L K = 130 M H z), as a function

of the number H of implemented histograms and the number
of bins 2N .

For a more straightforward comparison among different
architectures and technological nodes, it has been decided to
reference and document, in Tab. III, the maximum acquisition
rate with losses R expressed as a percentage (i.e., α) of
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TABLE II
AREA UTILIZATION OFFERED BY THE PROPOSED SOLUTION CONSIDERING MEQUAL TO 16 AND 32 IN BRAM AND DDR RESPECTIVELY;

AS BRAM WE INTENDTHE TOTAL BRAM USED BY THE COMPLETE PROJECT

Fig. 3. Area Occupancy offered by the proposed solution (Tab. II) as function of the number of channels H with N = 8 (blue), N = 10 (orange), and
N = 12 (yellow).

the maximum clock frequency possible in the FPGA (i.e.,
F M AX

C L K = 680 M H z). Therefore, α = R/F M AX
C L K .

Moreover, from Tab. III, we can observe that the maximum
rate with lossesR represents a significant percentage, 50% or
more, of the maximum clock frequency in the system (i.e.,
150 MHz) when the number of bins used is less than216,
highlighting the effectiveness of the system. On the contrary,
the processing latency has been found to be entirely non-
optimized.

3) Power Consumption: Power analysis was conducted for
the proposed solution, considering M equal to 16 and 32 in
BRAM and DDR, respectively. The clocks for the FPGA and
MicroBlaze were set at 150 MHz and 130 MHz (i.e.,F F PG A

C L K =

150 M H z, F M B
C L K = 130 M H z), as a function of the number

H of implemented histograms and the number of bins 2N . The
results are reported in Tab. IV and Fig. 5.

Referring to the functional blocks depicted in Fig. 2 (MIG,
MicroBlaze, DMA, and “Histogram Wrapper”), Tab. IV shows
that, unlike the “Histogram Wrapper”, all functional blocks
exhibit dynamic power independent of H and N (i.e., MIG
642 mW, MicroBlaze 115 mW, and DMA 24 mW). In contrast,
“Histogram Wrapper” has dynamic power proportional to the
number of channels H , equal to H × 4.0 mW for N = 8,
H × 4.5 mW for N = 10, and H × 5 mW for N = 12.
We can observe the advantage of the following architecture
also from the perspective of power dissipation; despite a
significant power overhead of 781 mW due to MicroBlaze,

MIG, and DMA, the utilization of multiple channels in parallel
is expected to result in a very low consumption per individual
channel, reaching only a few milliwatts in the configuration
with 128 channels.

4) Comparison: In Table V, it is possible to com-
pare the area occupation and figures of merits as function of
H and the number of bins 2N of the proposed hybrid solution
with the classic programmable logic architecture proposed
in [21] and taken as a reference and used for the design of the
“Histogram Wrapper”. The trade-off between BRAM occupa-
tion and maximum measurement rate without loss (i.e., R) is
evident. However, the maximum acquisition rate with losses
(R) of both solution is comparable, hundreds of Msps, if the
total number of bins H · 2N stay below 215 (i.e.; N = 8 and
H = 128, N = 10 and H = 32). It is important to underline
that [21] for N = 10 and N = 12 no implementations
with M = 32 are available but only with M = 20 and
M = 16. The comparison of the two implementations reported
in Table V, being on systems implemented in the same
technological node (i.e., 28-nm Xilinx 7-Series) and within the
same FPGA family (i.e., Artix7), does not require the use of
α introduced in Paragraph III-B.2. Moreover, considering the
28-nm Xilinx technological node and the Artix-7 XC7A100T
(126,800 FFs, 63,400 LUTs, and 1.188 kb BRAM) as target,
the proposed hybrid solution, from an area occupancy point of
view, is advantageous compared to the classical one presented
in [21] for H > 32. Furthermore, if H > 66 only the proposed
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TABLE III
RATES AND LATENCY OFFERED BY THE PROPOSED SOLUTION CONSIDERING MEQUAL TO 16 AND 32 IN BRAM AND DDR RESPECTIVELY WITH

CLOCKS OF 150MHZ AND 130 MHZ FOR THE FPGA AND MICROBLAZE

Fig. 4. Rates and Latency offered by the proposed solution (Tab. Table III) as function of the number of channels H with N = 8 (blue), N = 10 (orange),
and N = 12 (yellow).

TABLE IV
DYNAMIC POWER CONSUMPTION IN MW OFFERED BY THE PROPOSED SOLUTION CONSIDERINGM EQUAL TO 16 AND 32 IN BRAM AND DDR

RESPECTIVELY WITH CLOCKS OF150 MHZ AND 130 MHZ FOR THE FPGA AND MICROBLAZE

hybrid solution is feasible because the classical one saturates
the BRAM.

Instead, in Table VI it is possible to compare the proposed
solution used for the experimental validation in Section IV
with the state-of-the-art exposed in Section II. Considering
the use of different technological nodes, the figures of merit

regarding FPGA area occupancy (number of LUTs, FFs, and
kilobytes of BRAM) are to be referred to a single channel H .
As for the rate, it is also reported through the coefficient α

introduced in Paragraph III-B.2.
Concerning the area occupancy, it is noticeable that the

proposed hybrid solution consistently exhibits one of the
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Fig. 5. Power dissipation offered by the proposed solution (Tab. IV) as function of the number of channels H with N = 8 (blue), N = 10 (orange), and
N = 12 (yellow).

TABLE V
PERFORMANCE AND OCCUPANCY OFFERED BY THE PROPOSED HYBRID SOLUTIONIN COMPARISON WITH CLASSIC PROGRAMMABLE LOGIC

ARCHITECTURE PROPOSED IN [21] AS FUNCTION OF THE NUMBER OF CHANNELS H AND THE NUMBER OF BIN 2N . IT IS IMPORTANT
TO UNDERLINE THAT [21] FOR N = 10 AND N = 12 NO IMPLEMENTATIONS WITH M = 32 ARE AVAILABLE

lowest utilizations of LUTs and FFs per channel (208-202
LUTs and 318-335 FFs), alongside [40] (218 LUTs, 213 FFs),
[49] (976 LUTs, 359 FFs). However, it keeps the kilobytes
of BRAM low (<39 kb) compared to [40] (90 kb) and [49]
(594 kb). Moreover, those who offer zero utilization of BRAM
compensate for this with an incredible utilization of LUTs
and FFs [14], [15], [38], [39]. With regard to the rate, despite
the significant area savings, it is still possible to maintain a
coefficient α in the range of 14% to 20.6%, comparable to
other conventional (i.e., full-parallel) solutions.

C. Trade-Offs and Future Developments

Referring to the maximum rate without lossless R (1), we
can see that it depends on the MicroBlaze execution speed (i.e.,
F M B

C L K ·
C

CY ) and is inversely proportional to the total number of
bins (i.e., 2N

· H ) due to the bottleneck caused by the intrinsic
sequential execution of temporal computing. As a result, with
the same total number of bins, the only way to increase R is
by using fast processors (increasing F M B

C L K , reducing CY ) and
multi-core architectures (increasing C). If we put this figure
in relationship with respect to classical FPGA-based solution,
like [21] where maximum rate without loss rate correspond to
F F PG A

C L K , it is evident the gain given by multi-core capability
(C) and the need to execute the storage of the histogram in
DDR (CY ) as fast as possible.

The situation becomes much more promising when con-
sidering the average rate R (4). In addition to the processor
speed, the maximum number of counts possible in the BRAM
(i.e., 2M

− 1) helps alleviate the bottleneck of the total

number of bins (i.e., 2N
· H ), providing the designer with

an additional tuning factor (2). Naturally, an increase in M
results in an increment of R and a corresponding increase in
area occupancy.

L (7) is significantly worsened and strongly limited by the
DMA, thus, in a first approximation, independent of the design
parameters.

Moreover, performance in terms of maximum rate without
loss and latency can be further improved using System-
on-Chip like Xilinx 28-nm Zynq-7000 or 18-nm Zynq
Ultrasclale+ where an high-speed (i.e., from 667 MHz to
1.2 GHz for Zynq and from 1.2 GHz to 1.5 GHz for Zynq
Ultrasclale+ as F M B

C L K ) and multi-core (i.e., dual and quad)
ARM processor (i.e., ARM-Cortex-A9 for Zynq and ARM-
Cortex-A53 or ARM-Cortex-A72 for Zynq Ultrasclale+) can
replace the MicroBlaze. In this way, the term F M B

C L K ·C can be
increased by a factor between 10 (dual core at 667 MHz) up
to 46 (quad core at 1.5 GHz) proportional to the number of
cores and the clock frequency. This means that, referring to the
128-channel implementation, if a Zynq or a Zynq Ultrasclale+
are used the maximum rate without losses (R) is speed up
to 4 ksps and 18.4 ksps respectively (instead of the proposed
0.4 ksps proposed with MicroBlaze), while the average rate
(R) saturates to F F PG A

C L K .

IV. ARCHITECTURE FOCUS AND
EXPERIMENTAL VALIDATION

The simple solution in Section III with N = 8 and
H = 128 has been experimentally validated using time
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TABLE VI
COMPARISON OF THE PROPOSED SOLUTION WITH RESPECT TO STATE-OF-THE-ARTIN TABLE I

Fig. 6. Proposed histogram is used to visually represent the N bits of 1t
that are stored.

measurements via Time-to-Digital Converter (TDC) IP-Core
provided by TEDIEL S.r.l. [51], [52], [53] as a case study.

The TDC is a digital system that converts the time difference
between two events (i.e., START and STOP) into a T -bit
wide digital code called Timestamp (i.e., 1t). The TDC
considered has a Timestamp of 32-bit wide and characterized
by an LSB is 36.6 fs. In this sense, each single channel of
the TDC directly generates the data to be histogrammed by
a single histogram channel of the proposed hybrid system.
As was already indicated, the ability to create histograms
of timestamps is very valuable in applications like TCSPC,
TOF-PET, optical spectroscopy, and many others [54], [55],
[56], [57].

Furthermore, to better adjust the histogram Bin Width
(BW) and Full-Scale Range (FSR), as depicted in
Figure 6, two registers, for each “mini-histogrammer”,
called T I M E_O F F SET and B I T _T RU NC have
been introduced to accommodate the size of 1t , which
is T - bits wide (i.e., 32), to the 2N bins (i.e., 256)
provided by the histogram. This way, each channel of the
histogram offers a BW equal to 2B I T _T RU NC

× L SB and
an FSR ranging from T I M E_O F F SET × L SB up to
I M E_O F F SET × L SB + 2N

× BW . Thus, only the bits
from B I T _T RU NC to N + B I T _T RU NC of the timestamp
offset in time (i.e., 1t + T I M E_O F F SET × L SB) are
histogrammed, rather than all T -bits of 1t .

Following, we present acquisitions from a TOF-PET setup,
in which a Time-over-Threshold (ToT) over a SiPM spanning
from 70 ns up to 252 ns is read out by the aforementioned
TDC and histogrammed using the proposed solution. Thanks

Fig. 7. Single channel histogram at 28 bins of the ToT with
F S R ∈ [64 ns; 307.2 ns] and BW = 1.2 ns.

Fig. 8. Multi channel histogram at 128 × 28 bins of the ToT with
F S R ∈ [64 ns; 256 ns] and BW = 4.69 ps.

to the DDR aproch we can achive up to 232
− 1 counts per

each single bin.
In Figure 7, a single histogram consisting of 256 bins

from one of the 128 available channels is observable. In this
configuration, the FSR of the histogram has been set within
the range of 64 ns to 371.2 ns with a bin width (BW) of 1.2 ns.
Specifically, considering an LSB of 36.6 fs, B I T _T RU NC
has been set to 15, while T I M E_O F F SET is fixed at
1747626.
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Furthermore, it is possible to utilize all 128 × 28 bins
available across the H = 128 histograms to obtain a single
histogram with a more resolved bin width by appropriately
programming eachT I M E_O F F SET so that the FSR of each
channel results contiguous to one another. In this regard,
Figure 8 is histogramming the same information as Figure 7
using an FSR from 64 ns to 256 ns, but here, by operating
all 128 histograms in parallel on the same measurement,
it is possible to achieve a bin width of 4.69 ps. In this
context, all 128 histograms have the same B I T _T RU NC
equal to 7, while T I M E_O F F SET scales linearly from
channel to channel of the histogramming module, where the
h−th channel (with h ∈ [0; 128−1]) has a T I M E_O F F SET
equal to 1747626 + 28

× h.

V. CONCLUSION

This paper presents a multi-channel histogramming mecha-
nism, up to a maximum of 128 channels, based on a hybrid
spatial and temporal computing technology. The proposed
system with the 256 bins configuration was experimen-
tally validated in a measurement setup for TOF-PET, where
dozens/hundreds of histograms are required. The proposed
technique enables the implementation of up to 128 his-
tograms, each consisting of 256 bins of 32 bits (8192
bits/histogram), in a low-end Xilinx 28-nm 7-Series FPGA
(i.e.; Artix-7 XC7A100T) using minimal hardware resources
such as 207 LUTs and 325 FFs for a single histogram and
630 kb of BRAM shared between all channels; a power con-
sumption of 10.1 mW per channel is measured. This is made
possible by storing the histogram not only the BRAM (which
has a maximum capacity of 1.2 Mb in the target FPGA), but in
an external M45W8MW16 DDR (0.134 Gb). Communication
between programmable logic and DDR is enabled through
a MicroBlaze that works in combination with an MIG for
read/write operations to the DDR and a DMA for reading his-
tograms from programmable logic. This temporal-computing
approach has greatly simplified the control logic that would
be required for direct interfacing between programmable logic
and DDR. The bottleneck of this architecture has been found
to be latency L , i.e. ∼ (98.4 µs) · H , and maximum rate
without losses R, i.e. ∼ (50.8 ksps)/H , where H is the
number of histogram implemented. However, if losses of some
data are allowed (e.g., TCSPC and TOF-PET), the system can
sustain an average rate R up to 95 Msps among both the
128 histograms.

The great results (in terms of trade-off between number
of channels and RAM) obtained from the first tests suggest
that the realized architecture has perspectives for being further
developed and investigated for optimization and performance
enhancing. Many potential improvements have already been
identified, such as the migration of the architecture from bare-
metal to a Linux based system, in order to take advantage
of all the features a Linux system can provide. Moreover,
performance in terms of latency and rate without losses
can be further improved using System-on-Chip like Zynq or
Zynq Ultrascale+ where an high-speed (i.e., from 667 MHz
to 1.2 GHz for Zynq and from 1.2 GHz to 1.5 GHz for
Zynq Ultrasclale+) and multi-core (i.e., dual and quad) ARM

processor (i.e., ARM-Cortex-A9 for Zynq and ARM-Cortex-
A53 or ARM-Cortex-A72 for Zynq Ultrasclale+) can replace
the MicroBlaze. In these terms, the bandwidth of 50.8 ksps
(obtained with one core clocked at 130 MHz) can be increased
by a factor between 10 (dual core at 667 MHz) and up to 46
(quad core at 1.5 GHz), proportional to the number of cores
and the clock frequency.
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