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Convex Low-Thrust Trajectory Optimization With No-Thrust
Constraints and Moving Target∗

Christian Hofmann† and Francesco Topputo‡

Polytechnic University of Milan, 20156 Milan, Italy

I. Introduction
Numerous new space missions attempt to satisfy the increasing need for exploration and exploitation of space.

The space economy is rapidly increasing, and the interest in new technologies and applications has been growing

tremendously in the past few years. Especially minor and major bodies in the deep space are important targets for

space agencies and other institutions [1, 2]. CubeSats are now a viable low-cost alternative to conventional spacecraft.

The recent success of NASA’s MarCO CubeSats [3] and the Italian Space Agency’s LICIACube [4] has shown that

interplanetary CubeSats are becoming reality.

In contrast to conventional chemical propulsion systems that produce high thrust, CubeSats are often equipped with

low-thrust engines that result in a small thrust-to-mass ratio. As the state of the spacecraft changes slowly due to the small

control actions, transfer times increase because the thruster has to operate over a significantly larger portion of the flight

time. Yet, operational constraints often require periods where the thruster has to remain off. Such coast arcs are necessary

to perform mission relevant tasks, for example, communication and orbit determination. Therefore, mission-compliant

trajectories are sought where thrust and coast arcs alternate. These so-called duty cycles are a sequence of thrust and

coast arcs; the latter are included to accommodate spacecraft operations. In preliminary mission design, duty cycles are

often modeled by taking margins in the maximum thrust magnitude [5, 6]. Even though this approach was successfully

applied in several low-thrust missions like Dawn [7], such margins may be overconservative. Moreover, high-fidelity

mission design tools like NASA’s Evolutionary Mission Trajectory Generator (EMTG) often require an accurate initial

guess where duty cycles are explicitly modeled [8]. Given the current trend towards autonomous guidance, navigation,

and control [9, 10], including no-thrust periods in the optimization process may become even more important in the

future if the reference trajectory is to be recomputed on board. Therefore, a computationally efficient method is desirable

for the simultaneous optimization of low-thrust trajectories while incorporating realistic duty cycle constraints.

In general, indirect and direct methods are mainly used to solve the low-thrust trajectory optimization problem [11].

Indirect methods make use of the calculus of variations to derive the first-order necessary conditions, and the resulting

two-point boundary value problem is then solved numerically. Direct methods transcribe the infinite-dimensional optimal
∗Part of this work was presented as paper AAS 22-750 at the 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, August 7 –

11, 2022.
†Ph.D. Graduate, Department of Aerospace Science and Technology, Via La Masa 34; currently Postdoctoral Associate, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; hofmannc@mit.edu.
‡Professor, Department of Aerospace Science and Technology, Via La Masa 34; francesco.topputo@polimi.it. AIAA Senior Member.



control problem into a finite-dimensional parameter optimization problem before solving it with some gradient-based

algorithm. Two important optimization methods are nonlinear programming (NLP) and sequential convex programming

(SCP).

Various low-thrust trajectory optimization problems have been solved with indirect [12, 13] and direct methods

[14, 15]. Regardless of the method, discontinuous constraints where the engine parameters change are often a major

challenge due to the required first- and second-order derivatives. In particular, indirect methods suffer from a poor

convergence domain when discontinuous constraints are included [16, 17]. Often, continuation techniques are used

to enhance convergence [18, 19]. In [20], the discontinuous behavior is addressed using interior-point constraints in

combination with a homotopic approach. Only few works consider constraints where the thruster has to remain off

during some periods. For example, the paper in [21] uses a homotopic approach to solve the nonlinear program and

to successively obtain a solution with no-thrust constraints. The work in [22] requires a mesh refinement process to

determine trajectories with shutdown constraints in the two-body environment using SCP. In [23], no-thrust periods are

included in a model predictive control approach for small-body proximity operations using a zero-order-hold (ZOH)

discretization method within SCP. A composite smooth control technique is used in [24] where the switching times are

determined to enforce coast periods within an indirect optimization framework. Even though such duty cycles are of

utmost importance for real space missions, most of the methods found in literature allow continuous thrust during the

whole transfer. The resulting trajectories are therefore not mission-compliant.

At the same time, many works consider fixed state vectors for the final boundary conditions for rendezvous problems

[15, 25]. Yet, space missions typically require time-varying final boundary conditions where planetary ephemeris

are incorporated. The reason is that the target body (e.g., an asteroid) is in fact moving and following some known

trajectory. Therefore, the final time is free, and it is part of the optimization. As a consequence, the final state is not fixed

anymore, but becomes a nonlinear function of time. Depending on the application, it may be sufficient to determine

the future state of the target body beforehand using ephemeris data and then solve the corresponding fixed-final-state

problem. This, however, requires a feasible initial guess for the transfer time. Directly solving the moving target problem

is considered more flexible, as the solver is free to choose the optimal arrival time. Such problems with nonlinear

dynamic endpoint constraints are often solved with indirect [26] and direct, NLP-based methods [27], and recently also

with convex optimization approaches. In [28], simple near-field rendezvous and docking problems are solved using

SCP, assuming that the target follows a Keplerian orbit. It has been demonstrated that a successive approximation

approach performs well for problems characterized by a short time of flight, less than one revolution, and a linear gravity

model. Additionally, SCP is utilized in [29] for solving the orbital transfer problem to a coplanar orbit. Here, nonlinear,

time-independent final boundary conditions are linearized, with the application of a second-order correction. In the

domain of powered descent guidance, [30] addresses the six-degree-of-freedom problem using SCP. The optimal engine

ignition time is free, and intermediate nonlinear equality constraints are imposed. These constraints ensure that the
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position and velocity at ignition time adhere to trajectories represented by first- and second-order polynomials. The

time-independent nonlinear terminal constraints in [31] are also linearized within the ascent trajectory optimization

problem. Furthermore, the work in [32] employs a convex optimization approach to address the stationkeeping problem

for periodic and quasi-periodic orbits. The position on the target orbit is a nonlinear function of the states, and it

is determined in advance through a semi-analytical approach. Even though SCP has been used to solve problems

with (time-varying) nonlinear boundary conditions before, it is yet to be investigated how it performs for high-fidelity

low-thrust trajectory optimization with free final time and a moving target. These features are crucial not only for rapid

preliminary trajectory design but also for potential onboard applications.

The contribution of this Note is twofold. First, a method is proposed to directly embed no-thrust periods into the

first-order-hold discretization method within SCP. Second, time-varying endpoint constraints are considered using

planetary ephemeris, and the free-final-time problem is transformed into an equivalent fixed-final-time problem. It is

shown that linearizing around a reference arrival time is an easy yet effective method to convexify the target state if

ephemeris data is available. A high-fidelity model with 𝑛-body dynamics, solar radiation pressure, and a real thruster

model is taken into account. The effectiveness of the approach is demonstrated in transfers to the asteroids 2000 SG344

and Dionysus.

The Note is structured as follows. Section II states the optimal control problem and describes the first-order-hold

method. No-thrust constraints are addressed in Section III, and the moving target problem is considered in Section IV.

Section V presents the numerical simulations, and Section VI concludes this Note.

II. Optimal Control Problem and First-Order-Hold Discretization
Considering the solar radiation pressure aSRP and the perturbing acceleration of other bodies anbody, the dynamics of

a spacecraft orbiting the Sun are of the form

f (x, u) =



¤r

¤v

¤𝑧


=



v

−` r/𝑟3

0


+



0

anbody

0


+



0

aSRP

0


+



0

𝝉

−Γ/(𝑔0 𝐼sp (𝑟))


(1)

r ∈ R3, v ∈ R3, and 𝑧 ∈ R are the position, velocity, and modified mass of the spacecraft, respectively, and 𝑟 ..= ∥r∥2. `

denotes the gravitational parameter of the primary body. We consider a real thruster model where the maximum thrust

𝑇max (𝑟) and the variable specific impulse 𝐼sp (𝑟) depend on the distance to the Sun 𝑟 . 𝑔0 is the gravitational acceleration

at sea level, and Γ ..= ∥T∥2 /𝑚, 𝝉 ..= T/𝑚, and 𝑧 ..= ln𝑚 are introduced to decouple states and controls, T being the

thrust component vector and 𝑚 the mass of the spacecraft [33].
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A cannonball model with a constant projected area 𝐴SC of the spacecraft is used to compute aSRP [34]:

aSRP =
𝑆Sun 𝐶𝑅 𝐴SC

𝑚

r
𝑟3 (2)

where

𝑆Sun =
𝐿Sun
4 𝜋 𝑐

(3)

𝐿Sun = 4 𝜋 𝐶Sun AU2 (4)

𝐶𝑅, 𝑆Sun, 𝐿Sun, and 𝐶Sun denote the reflectivity coefficient of the spacecraft, the solar pressure constant, the luminosity

of the Sun, and the solar constant, respectively. 𝑐 is the speed of light, and AU the astronomical unit.

The perturbing acceleration of other bodies is calculated using

anbody =

𝑛∑︁
𝑖

`𝑖

(
rsat,𝑖

𝑟3
sat,𝑖

− r𝑖
𝑟3
𝑖

)
(5)

where `𝑖 denotes the gravitational constant of the 𝑖th body, and rsat,𝑖 = r𝑖 − r, r𝑖 being the position of the 𝑖th body with

respect to the Sun. Note that the time dependency is omitted for better readability.

The general convexified fuel-optimal optimization problem with fixed final time 𝑡 𝑓 is then given by Problem 1.

Problem 1. Find the functions Γ and 𝝉 that solve the following second-order cone program:

minimize
Γ, 𝝉,𝝂, [

− 𝑧(𝑡 𝑓 ) + _a ∥𝝂∥1 + _[ max(0, [) (6a)

subject to: ¤x = A(x̄) x + B(x̄) u + q (x̄, ū) + 𝝂 (6b)

Γ ≤ 𝑇max (𝑟) e− �̄� [1 − 𝑧 + 𝑧] + [ (6c)

∥𝝉∥2 ≤ Γ (6d)

∥x − x̄∥1 ≤ 𝑅 (6e)

r(𝑡0) = r0, v(𝑡0) = v0, 𝑧(𝑡0) = 𝑧0 (6f)

r(𝑡 𝑓 ) = r 𝑓 , v(𝑡 𝑓 ) = v 𝑓 (6g)

xlb ≤ x(𝑡) ≤ xub, ulb ≤ u(𝑡) ≤ uub (6h)

where

A(x̄) ..=
𝜕f
𝜕x

���
x̄,ū

, B(x̄) ..=
𝜕f
𝜕u

���
x̄,ū

, q(x̄, ū) ..= f (x̄, ū) − A(x̄) x̄ − B(x̄) ū (7)

Slack variables 𝝂 and [ are added in Eqs. (6b) and (6c) to avoid artificial infeasibility, and penalized in the objective

4



function with factors _a and _[ . Note that we used the approximation 𝐼sp (𝑟) ≈ 𝐼sp (𝑟) (𝑟 being the radius at the

previous iteration) before linearizing the dynamics. Consequently, the linearzed dynamics in Eq. (6b) do not depend

on the reference control history ū. Our previous works indicate that this approach frequently offers benefits in terms

of convergence [35]. Moreover, the maximum available thrust 𝑇max (𝑟) on the right-hand side in Eq. (6c) was not

linearized about some reference, but approximated by 𝑇max (𝑟) ≈ 𝑇max (𝑟). It was found that employing this method

often proves beneficial in achieving convergence [36]. The constraint on the upper bound of the control magnitude

was relaxed in Eq. (6d), and the trust-region constraint in Eq. (6e) with radius 𝑅 is added to restrict the search space

to the neighborhood of the reference solution. Initial and final boundary constraints are given by Eqs. (6f) and (6g),

respectively. Upper (subscript 𝑢𝑏) and lower (subscript 𝑙𝑏) bounds on states and controls are imposed in Eq. (6h). A

more detailed derivation of Problem 1 can be found in [15].

Remark 1. The solution to the relaxed problem with ∥𝝉∥2 ≤ Γ is also a solution to the original problem if the inequality

constraint in Eq. (6d) is active, i.e., ∥𝝉∥2 = Γ. Several works have proved that this condition is satisfied almost

everywhere on [𝑡0, 𝑡 𝑓 ], and, consequently, the solutions of the original and relaxed problems are identical [37, 38].

When no-thrust constraints are added in Section III, the problem formulation slightly changes because interior-point

constraints are implicitly included that force the controls to be zero during certain periods. As such constraints solely

depend on time and not on any state variables, no discontinuities are induced in the costates [39]. Therefore, we make

use of results from the literature where it is shown that the relaxed problem is also an optimal solution to the original

problem when additional constraints on the controls are present [40, 41]. This is confirmed in our simulations where we

numerically checked that ∥𝝉∥2 = Γ holds at the solution.

Using the standard first-order-hold discretization method where the controls are interpolated linearly, the discretized

dynamics are given by

x𝑘+1 = A𝑘 x𝑘 + B−
𝑘 u𝑘 + B+

𝑘 u𝑘+1 + q𝑘 + 𝝂𝑘 (8)

where (·)𝑘 ..= (·) (𝑡𝑘), 𝑘 = 1, . . . , 𝑁 − 1, 𝑁 being the number of discretization points. Moreover,

A𝑘 = 𝚽(𝑡𝑘+1, 𝑡𝑘) (9a)

B−
𝑘 = A𝑘

∫ 𝑡𝑘+1

𝑡𝑘

𝚽−1 (𝑡, 𝑡𝑘) B(𝑡) _− (𝑡) d𝑡 (9b)

B+
𝑘 = A𝑘

∫ 𝑡𝑘+1

𝑡𝑘

𝚽−1 (𝑡, 𝑡𝑘) B(𝑡) _+ (𝑡) d𝑡 (9c)

q𝑘 = A𝑘

∫ 𝑡𝑘+1

𝑡𝑘

𝚽−1 (𝑡, 𝑡𝑘) q(𝑡) d𝑡 (9d)
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with the state transition matrix 𝚽 and

_− (𝑡) ..=
𝑡𝑘+1 − 𝑡

𝑡𝑘+1 − 𝑡𝑘
, _+ (𝑡) ..=

𝑡 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] (10)

III. No-Thrust Constraints
Although operational constraints are important for real space missions, they are rarely included in the optimization

process. The obtained thrust profiles in the literature often require continuous thrust for several weeks or even months.

In reality, this is not feasible, for example due to hardware or mission constraints. Duty cycles are often imposed where

thrusting and coasting periods alternate, and it is of paramount importance that mission-compliant trajectories are

computed. An example is the onboard orbit determination process in the context of autonomous navigation where a

navigation cycle is defined to determine the state of the spacecraft [42]. In this Note, we focus on operational constraints

where the thruster has to remain off for certain periods. We extend the approach in [23] where the ZOH discretization,

linear dynamics, constant specific impulse and maximum thrust, and a single and fixed thrusting period per segment are

considered for small-body proximity operations.

Given a trajectory segment [𝑡𝑘 , 𝑡𝑘+1], we define 𝑛 required no-thrust periods in this segment as

[𝑡𝑖 , 𝑡𝑖 + Δ𝑡off,𝑖], ∀𝑖 = 1, . . . , 𝑛 (11)

where 𝑡𝑖 > 𝑡𝑘 and 𝑡𝑖 + Δ𝑡off,𝑖 < 𝑡𝑘+1 without loss of generality, i.e., the no-thrust periods Δ𝑡off,𝑖 lie strictly within a

trajectory segment. This assumption is reasonable because the location of the nodes (and thus, endpoints of a segment)

can be chosen arbitrarily. Moreover, Δ𝑡off is in general much smaller than one segment. If 𝑖 > 1, it is assumed that the

no-thrust periods are not overlapping, i.e., 𝑡𝑖+1 > 𝑡𝑖 + Δ𝑡off,𝑖 . Therefore,

u(𝑡) = 0, ∀𝑡 ∈ [
𝑡𝑖 , 𝑡𝑖 + Δ𝑡off,𝑖

]
(12)

and

u(𝑡) = _̃− (𝑡) u𝑘 + _̃+ (𝑡) u𝑘+1, ∀𝑡 ∉ [
𝑡𝑖 , 𝑡𝑖 + Δ𝑡off,𝑖

]
(13)

where _̃− (𝑡) and _̃+ (𝑡) are the factors that define the control interpolation. Note that these must be chosen differently

compared to the standard formulation in Eq. (10). According to Pontryagin’s minimum principle, a fuel-optimal solution

yields a bang-bang control structure where the magnitude 𝑢 = 𝑇max or 𝑢 = 0 [13]. As we defined the accelerations as our

control variables, this piecewise constant relationship does not hold anymore; instead, the magnitude of the acceleration

Γ increases over time due to the decreasing mass when thrusting. Simply interpolating the accelerations linearly would
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𝑡𝑘 𝑡1 𝑡2 𝑡𝑘+1
𝑡

𝑢

𝑡

𝑇

𝑇max

𝑡𝑘 𝑡1 𝑡2 𝑡𝑘+1

Fig. 1 Linear interpolation of accelerations when no-thrust periods are considered and corresponding thrust
magnitude.

therefore yield a thrust magnitude curve that is not piecewise constant if no-thrust constraints are considered (see Fig. 1

where one no-thrust period [𝑡1, 𝑡2] in a segment [𝑡𝑘 , 𝑡𝑘+1] is shown, and 𝑢 ≡ Γ). Two different interpolation methods

and modifications to the discretized dynamical equations are presented in the following, depending on whether the case

considers constant or variable maximum thrust and specific impulse.

Regardless of the interpolation method and assuming one no-thrust period [𝑡1, 𝑡2] in a segment [𝑡𝑘 , 𝑡𝑘+1], the state

at 𝑡1 can be computed as:

x(𝑡1) = 𝚽(𝑡1, 𝑡𝑘) x(𝑡𝑘) +𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) _̃− (b) B(b) db u(𝑡𝑘)

+𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) _̃+ (b) B(b) db u(𝑡1) +𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) q(b) db
(14)

Next, the final state x(𝑡2) of the coasting period is calculated:

x(𝑡2) = 𝚽(𝑡2, 𝑡1) x(𝑡1) +𝚽(𝑡2, 𝑡1)
∫ 𝑡2

𝑡1

𝚽−1 (b, 𝑡1) q(b) db (15)

Note that there is no control term. The final step is to calculate the state at the end of the segment:

x(𝑡𝑘+1) = 𝚽(𝑡𝑘+1, 𝑡2) x(𝑡2) +𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡2) _̃− (b) B(b) db u(𝑡2)

+𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡2) _̃+ (b) B(b) db u(𝑡𝑘+1)

+𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡𝑘) q(b) db

(16)

Substituting Eq. (14) into Eq. (15), and Eq. (15) into Eq. (16) yields

x(𝑡𝑘+1) = A(𝑡2) A(𝑡1) A(𝑡𝑘) x(𝑡𝑘) + A(𝑡2) A(𝑡1) B− (𝑡𝑘) u(𝑡𝑘) + A(𝑡2) A(𝑡1) B+ (𝑡𝑘) u(𝑡1)

+ A(𝑡2) A(𝑡1) q(𝑡𝑘) + A(𝑡2) q(𝑡1) + B− (𝑡2) u(𝑡1) + B+ (𝑡2) u(𝑡2) + q(𝑡2)
(17)
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where

A(𝑡𝑘+1, 𝑡2) = 𝚽(𝑡𝑘+1, 𝑡2), A(𝑡2, 𝑡1) = 𝚽(𝑡2, 𝑡1), A(𝑡2, 𝑡𝑘) = 𝚽(𝑡2, 𝑡𝑘) (18a)

B− (𝑡𝑘+1, 𝑡2) = 𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡𝑘) B(b) _̃− (b) db (18b)

B+ (𝑡𝑘+1, 𝑡2) = 𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡𝑘) B(b) _̃+ (b) db (18c)

B− (𝑡1, 𝑡𝑘) = 𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) B(b) _̃− (b) db (18d)

B+ (𝑡1, 𝑡1) = 𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) B(b) _̃+ (b) db (18e)

q(𝑡𝑘+1, 𝑡2) = 𝚽(𝑡𝑘+1, 𝑡2)
∫ 𝑡𝑘+1

𝑡2

𝚽−1 (b, 𝑡𝑘) q(b) db (18f)

q(𝑡2, 𝑡1) = 𝚽(𝑡2, 𝑡1)
∫ 𝑡2

𝑡1

𝚽−1 (b, 𝑡1) q(b) db (18g)

q(𝑡1, 𝑡𝑘) = 𝚽(𝑡1, 𝑡𝑘)
∫ 𝑡1

𝑡𝑘

𝚽−1 (b, 𝑡𝑘) q(b) db (18h)

B(b) and q(b) are the Jacobian matrix and constant part of the linearization, respectively, as defined in Eq. (7) in

Section II. It is straightforward to extend this approach to more no-thrust periods.

The only unknowns are the interpolated controls u(𝑡1) and u(𝑡2). Two methods are proposed to show how they can

be determined.

A. Constant Maximum Thrust and Specific Impulse

When 𝑇max is constant, we have 𝑇 (𝑡) = 𝑇max for thrusting periods, 𝑇 (𝑡) ..= ∥T(𝑡)∥2. Therefore, ¤𝑚(𝑡) = 𝑇max/(𝑔0 𝐼sp)
is also constant ∀𝑡 ∉ [𝑡𝑖 , 𝑡𝑖 +Δ𝑡off,𝑖] because 𝐼sp = const., and the mass decreases linearly. As Γ(𝑡) = 𝑇 (𝑡)/𝑚(𝑡), we thus

propose a piecewise linear interpolation where the slope of Γ(𝑡) (and hence the angle \ in Fig. 2) is constant. This way,

the resulting thrust magnitude is piecewise constant in that segment as expected. Figure 2a illustrates the interpolated

thrust acceleration in one segment with one no-thrust period. Given the optimization variables u𝑘 and u𝑘+1 and times

Δ𝑡1 = 𝑡1 − 𝑡𝑘 and Δ𝑡2 = 𝑡𝑘+1 − 𝑡2, and using

tan \ =
Δu1
Δ𝑡1

=
u1 − u𝑘

Δ𝑡1
(19)

tan \ =
Δu2
Δ𝑡2

=
u𝑘+1 − u1

Δ𝑡2
(20)
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𝑡𝑘 𝑡1 𝑡2 𝑡𝑘+1

𝑢𝑘

𝑡

𝑢

𝑢1

𝑢2 = 𝑢1

𝑢𝑘+1,linear

𝑢𝑘+1

\

\

Δ𝑢𝑘+1

(a) One no-thrust period in one segment.

𝑡𝑘 𝑡1 𝑡2 𝑡3 𝑡4 𝑡𝑘+1

𝑢𝑘

𝑡

𝑢

𝑢1

𝑢2 = 𝑢1 𝑢3

𝑢4 = 𝑢3

𝑢𝑘+1,linear

𝑢𝑘+1

Δ𝑢𝑘+1

\

\

\

(b) Two no-thrust periods in one segment.

Fig. 2 Modified linear interpolation when no-thrust periods are considered with constant 𝑇max and 𝐼sp.

the interpolated controls u1 = u(𝑡1) = u2 = u(𝑡2) can be computed as follows:

u1 = u2 =
Δ𝑡2

Δ𝑡1 + Δ𝑡2︸     ︷︷     ︸
_− (𝑡 )

u𝑘 + Δ𝑡1
Δ𝑡1 + Δ𝑡2︸     ︷︷     ︸

_+ (𝑡 )

u𝑘+1 (21)

It is straightforward to determine the interpolated controls for 𝑛 > 1 off periods. For example, for 𝑛 = 2 (see Fig. 2b) we

obtain

u1 = u2 =
Δ𝑡2 + Δ𝑡3

Δ𝑡1 + Δ𝑡2 + Δ𝑡3
u𝑘 + Δ𝑡1

Δ𝑡1 + Δ𝑡2 + Δ𝑡3
u𝑘+1 (22)

u3 = u4 =
Δ𝑡3

Δ𝑡1 + Δ𝑡2 + Δ𝑡3
u𝑘 + Δ𝑡1 + Δ𝑡2

Δ𝑡1 + Δ𝑡2 + Δ𝑡3
u𝑘+1 (23)

B. Variable Maximum Thrust and Specific Impulse

The variable maximum thrust and specific impulse case requires a different approach as ¤𝑚 cannot be considered

constant anymore. Instead of linearly interpolating the accelerations, we approximate the thrust vector T̃(𝑡) ..=

[T(𝑡)⊤, 𝑇 (𝑡)]⊤ with affine functions:

T̃(𝑡) = 𝑡𝑘+1 − 𝑡

𝑡𝑘+1 − 𝑡𝑘︸    ︷︷    ︸
=.._− (𝑡 )

T̃𝑘 + 𝑡 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘︸    ︷︷    ︸
=.._+ (𝑡 )

T̃𝑘+1 = _− (𝑡) T̃𝑘 + _+ (𝑡) T̃𝑘+1, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] (24)
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Substituting T̃(𝑡) = u(𝑡) 𝑚(𝑡) into Eq. (24) and solving for u(𝑡) yields

u(𝑡) = _− (𝑡) 𝑚(𝑡𝑘)
𝑚(𝑡) u𝑘 + _+ (𝑡) 𝑚(𝑡𝑘+1)

𝑚(𝑡) u𝑘+1

≈ _− (𝑡) �̄�(𝑡𝑘)
�̄�(𝑡) u𝑘 + _+ (𝑡) �̄�(𝑡𝑘+1)

�̄�(𝑡) u𝑘+1

(25)

where the mass is approximated using the value of the reference trajectory. Evaluating Eq. (25) at 𝑡𝑖 (𝑖 = 1, 2 for one

no-thrust period) allows us to determine the interpolated controls with respect to the accelerations. The only unknown is

�̄�(𝑡1) = �̄�(𝑡2) which can be calculated by integrating the differential equation of ¤𝑚:

�̄�(𝑡1) = �̄�(𝑡𝑘) +
∫ 𝑡1

𝑡𝑘

¤̄𝑚 d𝑡 = �̄�(𝑡𝑘) − 1
𝑔0

∫ 𝑡1

𝑡𝑘

𝑇 (𝑡)
𝐼sp (𝑡)

d𝑡 (26)

As in Eq. (24), 𝑇 (𝑡) and 𝐼sp (𝑡) are assumed to be piecewise affine functions. Recalling that 𝑚 = e𝑧 , �̄�(𝑡1) can be

computed analytically. It follows that

u(𝑡1) = _− (𝑡1) �̄�(𝑡𝑘)
�̄�(𝑡1)︸          ︷︷          ︸
=.. _̃− (𝑡1 )

u𝑘 + _+ (𝑡1) �̄�(𝑡𝑘+1)
�̄�(𝑡1)︸             ︷︷             ︸
=.. _̃+ (𝑡1 )

u𝑘+1 = _̃− (𝑡1) u𝑘 + _̃+ (𝑡1) u𝑘+1 (27)

u(𝑡2) = _− (𝑡2) �̄�(𝑡𝑘)
�̄�(𝑡2)︸          ︷︷          ︸
=.. _̃− (𝑡2 )

u𝑘 + _+ (𝑡2) �̄�(𝑡𝑘+1)
�̄�(𝑡2)︸             ︷︷             ︸
=.. _̃+ (𝑡2 )

u𝑘+1 = _̃− (𝑡2) u𝑘 + _̃+ (𝑡2) u𝑘+1 (28)

Our simulations suggest that this successive approximation approach yields a good compromise in terms of convergence,

accuracy, and computational effort.

IV. Moving Target
In this section, the convex low-thrust trajectory optimization approach is extended to include planetary ephemeris for

dynamic endpoint constraints. This increases the flexibility and capabilities of the method because many (preliminary)

studies require the computation of fuel-optimal trajectories for targets that follow some trajectory (see for example the

asteroid selection process for ESA’s Miniaturised Asteroid Remote Geophysical Observer in [27]).

The position r𝑡 (𝑡) and velocity v𝑡 (𝑡) of the target become functions of time, and we relax the final boundary

conditions to obtain

|r(𝑡 𝑓 ) − r𝑡 (𝑡 𝑓 ) | ≤ Δr (29a)

|v(𝑡 𝑓 ) − v𝑡 (𝑡 𝑓 ) | ≤ Δv (29b)
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where Δr and Δv are given and define the desired accuracy. If Δr = Δv = 0, the spacecraft must precisely reach the

target state within the specified tolerances of the solver. Even though the ephemerides of the target body are assumed

to be known at all times, determining r𝑡 (𝑡) and v𝑡 (𝑡) (e.g., retrieving the data from a lookup table or integrating the

dynamics of the target body) is in general a nonlinear and nonconvex operation. As a consequence, the boundary

conditions in Eq. (29) become nonconvex. Therefore, we approximate r𝑡 (𝑡) and v𝑡 (𝑡) using a first-order Taylor series

about a reference final time 𝑡 𝑓 [43]:

r𝑡 (𝑡 𝑓 ) ≈ r𝑡 (𝑡 𝑓 ) + dr𝑡 (𝑡)
d𝑡

���
𝑡 𝑓

(
𝑡 𝑓 − 𝑡 𝑓

)
(30a)

v𝑡 (𝑡 𝑓 ) ≈ v𝑡 (𝑡 𝑓 ) + dv𝑡 (𝑡)
d𝑡

���
𝑡 𝑓

(
𝑡 𝑓 − 𝑡 𝑓

)
(30b)

As dr𝑡 (𝑡)/d𝑡 = v𝑡 (𝑡) and dv𝑡 (𝑡)/d𝑡 = a𝑡 (𝑡), Eqs. (30a) and (30b) can be rewritten as

r𝑡 (𝑡 𝑓 ) ≈ r𝑡 (𝑡 𝑓 ) + v𝑡 (𝑡 𝑓 )
(
𝑡 𝑓 − 𝑡 𝑓

)
(31a)

v𝑡 (𝑡 𝑓 ) ≈ v𝑡 (𝑡 𝑓 ) + a𝑡 (𝑡 𝑓 )
(
𝑡 𝑓 − 𝑡 𝑓

)
(31b)

Considering a 𝑛-body model, the acceleration a𝑡 (𝑡 𝑓 ) of the target body can be calculated using

a𝑡 (𝑡 𝑓 ) = − ` r𝑡 (𝑡 𝑓 )
𝑟𝑡 (𝑡 𝑓 )3 +

𝑛∑︁
𝑖=1

`𝑖

(
rt,𝑖 (𝑡 𝑓 )
𝑟3

t,𝑖 (𝑡 𝑓 )
− r𝑖 (𝑡 𝑓 )
𝑟3
𝑖 (𝑡 𝑓 )

)
(32)

where rt,𝑖 (𝑡 𝑓 ) = r𝑖 (𝑡 𝑓 ) − rt (𝑡 𝑓 ). The relaxed final boundary conditions are thus

��r(𝑡 𝑓 ) − r𝑡 (𝑡 𝑓 ) − v𝑡 (𝑡 𝑓 )
(
𝑡 𝑓 − 𝑡 𝑓

) �� ≤ Δr + 𝜻𝑟 (33a)��v(𝑡 𝑓 ) − v𝑡 (𝑡 𝑓 ) − a𝑡 (𝑡 𝑓 )
(
𝑡 𝑓 − 𝑡 𝑓

) �� ≤ Δv + 𝜻𝑣 (33b)

Note that slack variables 𝜻𝑟 and 𝜻𝑣 are included to avoid artificial infeasibility due to the linearized constraints. These

are again penalized by adding

_Z

𝑚∑︁
𝑖=1

max(0, Z𝑖) (34)

to the cost function, where Z𝑖 denotes the 𝑖th component of 𝜻 ..= [𝜻⊤𝑟 , 𝜻⊤𝑣 ]⊤ ∈ R𝑚.

In case of a moving target, the final time 𝑡 𝑓 cannot be considered fixed anymore. Therefore, the problem becomes a

free-final-time problem with 𝑡 𝑓 being an optimization parameter. The normalized time b ∈ [0, 1] is introduced to obtain

an equivalent fixed-final-time problem [44]. It is defined such that

0 = b1 < b2 < · · · < b𝑁 = 1 (35)
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Using 𝑡 𝑓 = d𝑡/db, the nonlinear dynamics become

F(𝑡 𝑓 , x(b), u(b)) ..= x′ (b) ..=
d

db
x(b) = d𝑡

db
d
d𝑡

x(b) = 𝑡 𝑓 ¤x(b) (36)

As a consequence, 𝑡 𝑓 becomes an additional optimization variable, and the discretized optimal control problem is now

formulated in the b domain. Therefore, the linearized dynamics change to

x′ (b) = 𝑡 𝑓 f (x(b), u(b)) (37)

and we obtain

x′ (b) = A(b) x(b) + B_− (b) u𝑘 + B_+ (b) u𝑘+1 + S(b) 𝑡 𝑓 + q(b) (38)

where the Jacobian matrices are now determined with respect to the modified dynamics x′ (b). The discretized dynamics

then read

x𝑘+1 = A𝑘 x𝑘 + B−
𝑘 u𝑘 + B+

𝑘 u𝑘+1 + S𝑘 𝑡 𝑓 + q𝑘 + 𝝂𝑘 (39)

The matrices and vectors A𝑘 , B−
𝑘 , B+

𝑘 , and q𝑘 are similar to Eq. (9), but with respect to F and in the b domain. S𝑘 is

given by

S𝑘 = A𝑘

∫ b𝑘+1

b𝑘

𝚽−1 (b, b𝑘) S(b) db (40)

where S ..= 𝜕F(𝑡 𝑓 , x(b), u(b))/𝜕𝑡 𝑓 . The reference state at b ∈ [b𝑘 , b𝑘+1] and the nonlinear constraint violations are

computed in the same way as in the formulation with a fixed final time.

Given 𝑁 discretization points, the resulting convex optimization problem is then given by Problem 2.

Problem 2. Find the vectors x, u, 𝝂, 𝜼, 𝜻 , and 𝑡 𝑓 that solve the following second-order cone program:

min
𝑡 𝑓 ,x,u,𝝂,𝜼,𝜻

− 𝑧𝑁 + _a

𝑁−1∑︁
𝑖=1

∥𝝂𝑖 ∥1 + _[

𝑁∑︁
𝑖=1

max(0, [𝑖) + _Z

𝑚∑︁
𝑖=1

max(0, Z𝑖) (41a)

subject to: x𝑘+1 = A𝑘 x𝑘 + B−
𝑘 u𝑘 + B+

𝑘 u𝑘+1 + S𝑘 𝑡 𝑓 + q𝑘 + 𝝂𝑘 , 𝑘 = 1, . . . , 𝑁 − 1 (41b)

Γ𝑘 ≤ 𝑇max (𝑟𝑘) e− �̄�𝑘 (1 − 𝑧𝑘 + 𝑧𝑘) + [𝑘 , 𝑘 = 1, . . . , 𝑁 (41c)

∥𝝉𝑘 ∥2 ≤ Γ𝑘 , 𝑘 = 1, . . . , 𝑁 (41d)

∥y − ȳ∥1 ≤ 𝑅 (41e)

𝑡 𝑓 ,lb ≤ 𝑡 𝑓 ≤ 𝑡 𝑓 ,ub (41f)

r1 = r0, v1 = v0, 𝑧1 = 𝑧0 (41g)
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��������

r𝑁

v𝑁

 −

r𝑡 (𝑡 𝑓 ) + v𝑡 (𝑡 𝑓 )

(
𝑡 𝑓 − 𝑡 𝑓

)
v𝑡 (𝑡 𝑓 ) + a𝑡 (𝑡 𝑓 )

(
𝑡 𝑓 − 𝑡 𝑓

)

�������� ≤


Δr

Δv

 + 𝜻 (41h)

where y ..= [x⊤, 𝑡 𝑓 ]⊤ in Eq. (41e), i.e., we include states and the final time in the trust-region constraint. Our simulations

suggest that neglecting the controls does not affect the results, but reduces the problem size. The constraint in Eq. (41f)

refers to the lower and upper bound of 𝑡 𝑓 , respectively.

V. Numerical Simulations
The effectiveness of the proposed methods is demonstrated in several numerical simulations. In particular, we

compute fuel-optimal trajectories with no-thrust constraints from the Sun-Earth Lagrange point 𝐿2 (SEL2) to the

asteroids 2000 SG344 and Dionysus. 2000 SG344 is a potential target of ESA’s Miniaturised Asteroid Remote

Geophysical Observer (M-ARGO) mission [27], and the transfer to Dionysus is often considered in literature because

it requires several revolutions and large changes in semi-major axis, eccentricity, and inclination [24, 45]. Moreover,

we briefly compare the performance of the moving target approach with the state-of-the-art optimal control software

GPOPS-II [46] in combination with the Interior Point Optimizer (IPOPT) [47]. The simulations are performed in

MATLAB on an Intel Core i7-8565 1.80 GHz Laptop with four cores and 16 GB of RAM. A 𝑚𝑒𝑥 function is used to

numerically integrate Eqs. (9b)–(9d), and we use the open-source Embedded Conic Solver (ECOS) [48] to solve the

second-order cone program in Problem 1. The initial guesses are generated with a shape-based method where the initial

and target states are connected by cubic polynomials [49].

The transfer data is given in Table 1, and tolerances and parameters relevant for the SCP algorithm in Table 2.

Details about the algorithm and the trust-region parameters 𝜌0, 𝜌1, 𝜌2, and 𝛼 and 𝛽 can be found in [50, 51]. We use

150 (2000 SG344) and 250 (Dionysus) discretization points, respectively. GPOPS-II employs 5 collocation points per

segment as this was found to be favorable for accuracy and computational efficiency. Note that the feasibility and

optimality threshold are the same for both algorithms. Table 3 provides the values of the physical constants.

The thruster model for the 2000 SG344 transfer is given by [27]:

𝑇max (𝑃in) = 𝑎0 + 𝑎1 𝑃in + 𝑎2 𝑃
2
in + 𝑎3 𝑃

3
in + 𝑎4 𝑃

4
in (42a)

𝐼sp (𝑃in) = 𝑏0 + 𝑏1 𝑃in + 𝑏2 𝑃
2
in + 𝑏3 𝑃

3
in + 𝑏4 𝑃

4
in (42b)

𝑃in (𝑟) = 𝑐0 + 𝑐1 𝑟 + 𝑐2 𝑟
2 + 𝑐3 𝑟

3 + 𝑐4𝑟
4 (42c)
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Table 1 Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and Dionysus [27, 45].

Parameter SEL2 - 2000 SG344 SEL2 - Dionysus

Initial epoch 04-Feb-2024 12:00:00 UTC 23-Dec-2012 00:00:00 UTC
Initial mass 𝑚0, kg 22.6 4000
Final mass 𝑚(𝑡 𝑓 ), kg free free
Min. input power 𝑃in,min, W 90 62.5
Max. input power 𝑃in,max, W 120 1000
Max. thrust 𝑇max, N 2.2519 × 10−3 0.5
Max. specific impulse 𝐼sp,max, s 3067 3000
Spacecraft area 𝐴SC, m2 0.05 100
Reflectivity coefficient 𝐶𝑅 1.3 1.3

Table 2 Parameters of the algorithm.

Parameter Value

Feasibility tolerance 10−6

Optimality tolerance 10−4

_a , _[ 10.0, 10.0
𝜌0, 𝜌1, 𝜌2 0.01, 0.25, 0.85
𝛼, 𝛽 1.5, 1.5

Table 3 Physical constants in all simulations.

Parameter Value

Gravitational const. ` 1.327 124 4 × 1011 km3 s−2

Gravitational accel. 𝑔0 9.806 65 × 10−3 km s−2

Length unit LU = AU 1.495 978 707 × 108 km

Velocity unit VU
√︃
`AU−1

Time unit TU AU VU−1

Acceleration unit ACU VU TU−1

Mass unit MU 𝑚0
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Table 4 Coefficients for the real thruster model for the 2000 SG344 transfer.

𝑇max 𝐼sp 𝑃in

𝑎0 = −0.7253 mN 𝑏0 = 2652 s 𝑐0 = 840.11 W
𝑎1 = 0.024 81 mN W−1 𝑏1 = −18.123 s W−1 𝑐1 = −1754.3 W AU−1

𝑎2 = 0 𝑏2 = 0.3887 s W−2 𝑐2 = 1625.01 W AU−2

𝑎3 = 0 𝑏3 = −0.001 74 s W−3 𝑐3 = −739.87 W AU−3

𝑎4 = 0 𝑏4 = 0 𝑐4 = 134.45 W AU−4

Table 5 Coefficients for the real thruster model for the Dionysus transfer.

𝑇max 𝐼sp

�̃�0 = 0.1069 N �̃�0 = 3000 s
�̃�1 = 3.9307 × 10−4 N W−1 �̃�1 = 0

with 𝑟 in AU. A similar model as in [18] is used for the Dionysus transfer:

𝑇max (𝑃in) = �̃�0 + �̃�1 𝑃in (43a)

𝐼sp (𝑃in) = �̃�0 + �̃�1 𝑃in (43b)

𝑃in (𝑟) = 1
𝑟2 (43c)

The coefficients are given in Tables 4 and 5, respectively.

A. No-Thrust Constraints

We first assess the performance of SCP when no-thrust periods are included. Without loss of generality, periods

of one day (2000 SG344) and two days (Dionysus) per segment are considered where no thrust is available. This

corresponds to duty cycles of 3.7 days (thrust) and 1 day (no thrust) for the 2000 SG344 transfer, and 12.2 days (thrust)

and 2 days (no thrust) for Dionysus. Typical profiles of the thrust magnitude are shown in Figs. 3a and 3b for the variable

𝐼sp and 𝑇max case. The dashed black line refers to the maximum available thrust, and the vertical lines correspond to the

on and off switches. Clearly, the thrust magnitude follows the available maximum thrust, being either zero or taking the

maximum value that depends on the distance to the Sun. Note that the available thrust is zero between 175 and 250 days

in Fig. 3a because the input power drops below the required minimum value of 90 W. Due to the long transfer time to

Dionysus, there are many no-thrust periods, making this problem difficult to solve. The corresponding trajectories are

depicted in Figs. 4a and 4b. The thrust arcs in red are discontinuous due to the no-thrust periods.

The profiles for the case when continuous thrust is considered look similar (see Fig. 5). The optimal solutions do

therefore not alter significantly, and the no-thrust periods are often simply added around the nominal thrust arcs. As a
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(a) Thrust profile for transfer to 2000 SG344.
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(b) Thrust profile for transfer to Dionysus.

Fig. 3 Typical thrust profiles obtained with SCP for the transfers to 2000 SG344 and Dionysus when no-thrust
periods are considered (variable 𝐼sp and 𝑇max).

consequence, the final masses are often nearly the same. For example, we obtain 𝑚 𝑓 = 2562 kg (with no-thrust periods)

and 𝑚 𝑓 = 2564 kg (continuous thrust) for the Dionysus transfer. The fuel consumption for 2000 SG344 with no-thrust

periods is slightly higher (𝑚 𝑓 = 21.39 kg compared to 𝑚 𝑓 = 21.49 kg) due to the additional control actions around 290

days.

In case of constant 𝐼sp and 𝑇max, the procedure described in Section III.A can be used. Again, SCP finds accurate

control profile as shown in Fig. 6.

The comparison of the number of iterations and CPU time with the standard SCP method (i.e., continuous thrust) is

shown in Fig. 7. For each transfer, we compute ten optimal trajectories with a perturbed cubic interpolation guess

where the number of revolutions ranges from 5.0 to 7.0 (Dionysus) and 1.8 to 2.1 (2000 SG344). Each case is computed

several times to measure the CPU time. Median values are given, and the error bars refer to the 80th and 20th percentile

of the corresponding quantity. SCPNT denotes the case with no-thrust periods. With regard to the transfer to 2000

SG344, the number of iterations increases from 19 to 31 when no-thrust periods are enforced. The reason is that the

trust-region size grows rapidly first, but then has to shrink again which requires additional iterations. This can be

avoided if different trust-region parameters are chosen. Interestingly, SCPNT requires slightly fewer iterations to find a

solution for the Dionysus transfer. The CPU time behaves accordingly (see Fig. 7b), even though the discrepancy is

larger for 2000 SG344 due the greater difference in the number of iterations. Most of the CPU time is required outside

of the convex solver. The CPU time of the convex solver is approximately the same regardless of whether no-thrust

periods are considered or not. The reason is that the convex program itself does not significantly change. However,

the integration of the integrands in Eq. (18) requires more time compared to Eq. (9) due to the additional terms. As

each segment is divided into subsegments in the no-thrust case, the number of integration intervals increases, while the

integration periods become smaller. Therefore, if the same integrator is chosen, both the accuracy and computational

effort increase.
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Fig. 4 Typical trajectories obtained with SCP for the transfers to 2000 SG344 and Dionysus when no-thrust
periods are considered (variable 𝐼sp and 𝑇max).
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Fig. 5 Typical thrust profiles obtained with SCP for the transfers to 2000 SG344 and Dionysus without
considering no-thrust periods (variable 𝐼sp and 𝑇max).
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Fig. 6 Typical thrust profiles obtained with SCP for the transfers to 2000 SG344 and Dionysus when no-thrust
periods are considered (constant 𝐼sp and 𝑇max).
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Fig. 7 Comparison of the number of iterations and CPU time for standard SCP and SCPNT where no-thrust
periods are considered.

B. Moving Target

We now assess the performance of the moving target algorithm. Note that no-thrust periods are not considered to

ensure a fair comparison with GPOPS-II. In case of the cubic interpolation guess, GPOPS-II is often able to find (slightly)

higher final masses than SCP. With regard to the 2000 SG344 transfer, GPOPS-II determines an optimal solution with

𝑡 𝑓 = 738 days and 𝑚 𝑓 = 21.59 kg, whereas SCP finds 𝑡 𝑓 = 749 days and 𝑚 𝑓 = 21.56 kg. The corresponding thrust

profiles are shown in Fig. 8a. This discrepancy increases for the Dionysus transfer, where the final mass obtained

with GPOPS-II can be a few hundred kilograms larger (e.g., 𝑚 𝑓 = 2823 kg and 𝑡 𝑓 = 3534 days for GPOPS-II vs.

𝑚 𝑓 = 2650 kg and 𝑡 𝑓 = 3514 days for SCP in Fig. 8b). Apparently, GPOPS-II finds a different optimal solution for the

provided initial guess, probably due to the trust-region constraint and the successive linearization within SCP. Yet, SCP

requires only approximately 20 – 25 s (2000 SG344) and 30 – 40 s (Dionysus) to solve the problem. In contrast, the

CPU time for GPOPS-II is often one or even two orders of magnitude higher. The propagation error (i.e., the difference

between the optimized states and the propagated states) is similar for SCP and GPOPS-II and of the order 102 – 103 km.

The problem size increases only slightly for the moving target problem. For example, 𝑡 𝑓 and the slack variable 𝜻 are

now part of the solution vector for SCP, and the additional term in Eq. (40) is to be integrated. As a consequence, we

found only a small rise of approximately 5 % in CPU time for the moving target problem in our simulations compared to

the standard SCP method when solving the fuel-optimal problem (see blue bars in Fig. 7).

C. Moving Target and No-Thrust Constraints

Naturally, dynamic endpoint and no-thrust constraints can be combined into one optimization. In this case, the

CPU time is dominated by the no-thrust periods due to the increased computational effort; letting the final boundary

conditions vary with time does not require significantly more CPU time.

Considering the previous case where we obtain a time of flight of 749 days and a final mass of 21.56 kg for the 2000
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Fig. 8 Comparison of thrust profiles obtained with SCP and GPOPS-II for the moving target problem and the
transfers to 2000 SG344 and Dionysus.

SG344 transfer, these values change to 𝑡 𝑓 = 756 days and 𝑚 𝑓 = 21.50 kg if no-thrust periods are included. The time of

flight for the Dionysus transfer is nearly identical, and the final mass decreases slightly from 2650 kg to 2632 kg. The

corresponding plots of the state and control trajectories look similar and are therefore omitted. Naturally, different input

parameters (e.g., initial guess, trust-region parameters) may yield (slightly) different results as the algorithm may find

different optimal solutions.

VI. Conclusion
In this work, methods are proposed to include no-thrust periods and time-varying endpoint constraints in the

sequential convex programming approach. It was shown that planetary ephemeris for dynamic endpoint constraints can

be incorporated to increase the flexibility and capability of convex low-thrust trajectory optimization methods. The

resulting nonlinear final boundary condition in the moving target problem can be handled by SCP even if a poor initial

guess is provided. The rapid calculation speed compared to nonlinear programming solvers makes SCP an excellent

choice for preliminary studies. As no-thrust constraints can directly be included in the optimization process without a

significant increase in computational effort and decrease in convergence, the proposed approach can be considered

another step towards computing more mission-compliant trajectories using convex programming techniques.
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