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Abstract Wepresent an enhanced version of the para-
metric nonlinear reduced-order model for shape imper-
fections in structural dynamics we studied in a previ-
ous work. In this model, the total displacement is split
between the one due to the presence of a shape defect
and the one due to the motion of the structure. This
allows to expand the two fields independently using
different bases. The defected geometry is described by
some user-defined displacement fields which can be
embedded in the strain formulation. This way, a poly-
nomial function of both the defect field and actual dis-
placement field provides the nonlinear internal elastic
forces. The latter can be thus expressed using tensors,
and owning the reduction in size of the model given by
a Galerkin projection, high simulation speedups can be
achieved.We show that the adopted deformation frame-
work, exploiting Neumann expansion in the definition
of the strains, leads to better accuracy as compared
to the previous work. Two numerical examples of a
clamped beam and a MEMS gyroscope finally demon-
strate the benefits of the method in terms of speed and
increased accuracy.
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1 Introduction

The finite element (FE) method has long been a fun-
damental analysis and design tool in many areas of
science and engineering. In structural mechanics, it
is almost mandatory to use FE models to investigate
the behavior of complex systems, which often have
many geometric details thatwould be difficult to handle
with alternative approaches, such as lumped parameter
or analytical models [1]. However, large FE simula-
tions would often require considerable computational
resources and time, so in some cases designersmay pre-
fer to perform real experiments rather than numerical
ones. On the one hand, this need for fast and affordable
FE simulations has given rise to numerical techniques
to improve computational efficiency: Domain decom-
position and substructuring [2,3] and FE Tearing and
Interconnecting (FETI, [4]) are just a few examples. On
the other hand, model-order reduction methods have
emerged, consisting in the construction of a reduced-
order model (ROM), whose number of degrees of free-
dom (dofs) is much smaller than that of the reference
full-order model (FOM). The use of linear ROMs also
in industrial contexts is nowadays well established as
the theory underlying them. Guyan reduction [5] and
modal analysis [6] are two well-known examples in
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mechanical statics and dynamics, respectively, where
FOM’s static deformations and vibration modes (VMs,
also known as eigenmodes or natural modes of the lin-
ear system) are used to construct a reduced basis (RB)
that projects the governing equations onto a lower-
dimensional subspace. Linear ROMs were also suc-
cessfully coupled with substructuring techniques in the
Craig–Bampton and Rubin methods [7,8], which are
available in many commercial software.

For nonlinear FE studies, many solutions have been
proposed over the last decades, but none of them seems
to have prevailed over the others, as each of them offers
certain advantages, requires certain costs and/or targets
specific problems. Overall, however, the literature is
mature enough to provide the analyst with many dif-
ferent options in several practical applications, ranging
frombolted joints [9], gears [10], contacts [11,12], fric-
tion [13] and viscoplasticity [14] to flexible multi-body
dynamics with geometric nonlinearities [15] and sub-
structuring [16].

Nonlinear ROMs can be classified according to
(i) whether they are RB-projection based or not,
(ii) whether they are data- or model-driven and (iii)
their (non-)intrusiveness. In the following, we con-
sider mostly projection approaches, as the one adopted
in this work; alternatively, one could resort to differ-
ent strategies, such as normal form theory or spec-
tral submanifolds. The most recent contributions in
this sense include [17] and [18–20]. In (ii), for data-
driven ROMs we usually refer to ROMs constructed
using previous FOM simulation data (or experimental
data, [21]), as opposed to model-driven methods that
rely on some intrinsic properties of the model itself
for ROM construction, such as modal approaches [22–
25]. As for intrusiveness, we usually denote a ROM as
non-intrusive [26] if it can be used with routines and
solvers of commercial FE software and, conversely, as
intrusive amethod requiring dedicated routines. Specif-
ically, intrusive methods require access and manipula-
tion to element-level quantities, as, for instance, non-
linear generalized forces and Jacobians. Other distinc-
tions can be made in terms of the types of nonlineari-
ties that a given model can handle and the way nonlin-
ear functions are evaluated [27]. All these differences
ultimately affect the two phases that all ROMs have
in common: the offline phase, in which the ROM is
constructed, and the online phase, in which the sim-

ulation responses are retrieved. As the main goal of
ROMs is to reduce computational effort and time, a
key aspect to keep in mind when choosing a method
is the overhead cost to pay in the offline phase; in
the case of data-driven methods, this cost can be as
high as the cost associated with the solution of the
FOM [11]. Generally speaking then, data-driven meth-
ods (usually based on Proper Orthogonal Decompo-
sition, or POD, strategies [28]) are used in scenarios
where the high cost associated with the data gener-
ation can be amortized: typically, this is the case of
multi-query analysis. In this sense, although not as ver-
satile and generally applicable as data-driven POD-
based approaches, model-driven strategies in struc-
tural dynamics are desirable, for no FOM simulation is
required a priori. Rayleigh–Ritz procedures [29], dual
modes [26] and modal derivatives (MDs) [30–32] are
some popular examples.

One way to mitigate the offline overhead costs of
all the aforementioned methods, but especially the
data-driven ones, is to resort to (nonlinear) paramet-
ric ROMs, (NL-)pROMs. Also in this context, the
literature on linear systems is quite well developed
and consolidated. An extensive survey and compari-
son of these methods can be found in [33]. The reduc-
tion of nonlinear parametric partial differential equa-
tions (PDEs) is instead still an active research topic,
which has attracted increasing interest in various dis-
ciplines over the years. Interestingly, the vast majority
of nonlinear parametric model-order reduction meth-
ods is data-driven, POD-based. Some recent examples
include non-intrusive interpolation methods for eval-
uating nonlinear functions with hypersurfaces [34,35]
and use of Gaussian Processes and machine learning
for error evaluation and refinement of the pROM [36]
or interpolation on the Grassmann manifold via tan-
gent spaces [37]. Alternatively, many of these meth-
ods approximate the nonlinear function using hyper-
reduction methods as the discrete empirical interpo-
lation method (DEIM) [38,39] to speed up the eval-
uation, and in this sense, online basis selection and
adaptive algorithms were studied [40,41]. However, as
mentioned above, POD (and DEIM) needs a number of
FOM simulations to construct the ROM. For this rea-
son, [42] implemented amulti-fidelity strategy inwhich
the parametric dependence was reconstructed using a
large number of low-fidelity models and a minimal
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number of high-fidelity evaluations. Other approaches
exploit machine learning to construct an input–output
relationship, with convolutional neural networks [43]
and autoencoders [44], which require the training of a
network, again, using preexisting data. Note that most
of the abovemethods lead to pROMs that are only eval-
uated in the online phase, i.e., no simulation is actually
performed1, but the solutions at the known parameter
locations are “interpolated” to obtain the result.

Although model-driven NL-pROMs seem to be less
popular, they offer the undeniable advantage of being
simulation-free, thus considerably cutting down the
offline costs. Interesting recent examples are loosely
based on the extension of methods for linear sys-
tems, such as the nonlinearmomentmatching (NLMM)
scheme [45–47]. In Ref. [48], a nonparametric ROM is
constructed with NLMM and DEIM for each parame-
ter instance sampled from the parameter space. These
models are then “adjusted” onto a common subspace
where they are interpolated to produce the pROM. This
strategy, however, requires the solution of a set of non-
linear algebraic equations on the FOM at different time
instances, for different signal generators, and at each
point on the parameter grid. For large systems, the
computational effort could still be significant, although
lower than that of POD methods.

In this paper, we propose a NL-pROM for geo-
metric nonlinearities and parametrized shape defects
to study the behavior of imperfect structures. This is
motivated by the fact that as it is observed in many
engineering applications, even small imperfections can
significantly change characteristics and performances
of a system, as, for instance, in the case of MEMS
devices [49,50] and mistuning of gas turbine blades
[13]. Other ROMs have already been developed in this
sense [51,52], but limited to localized defects. Regard-
ing geometric nonlinearities, we recall that in the case
of continuum finite elements with linear elastic consti-
tutive law and total Lagrangian formulation, as in our
study, the nonlinear elastic forces are a polynomials
which can be represented using tensors, so that quali-

1 By simulation, we refer to the solution of a set of equations
describing a system in any kind of analysis setting (e.g., in time
or frequency domain).

tatively2 the FOM governing equations write3

MüF + Cd u̇F + K2
FuF + K3

F : (uF ⊗ uF ) +
+ K4

F (uF ⊗ uF ⊗ uF ) = fext(t) (1)

whereM,Cd ∈ R
n×n are the mass and damping matri-

ces, uF , u̇F , üF ∈ R
n are the displacement, veloc-

ity and acceleration vectors, and fext(t) ∈ R
n is an

external forcing, being n the FOM number of dofs.
K2

F ∈ R
n×n , K3

F ∈ R
n×n×n and K4

F ∈ R
n×n×n×n

are the stiffness tensors for the linear, quadratic and
cubic elastic internal forces.

Conceptually, the method retraces the one we pre-
sented in [53], but it is based on a different deforma-
tion scheme (of which our earlier work resulted to be
a sub-case). An overview of the individual steps of
the method is shown in Fig. 1. The user defines as
input data the nominal structure (in terms of geom-
etry, material properties and FE mesh) and a num-
ber m of displacement fields representing the shape
defects, which are intended as small deviations from
the nominal geometry (Fig. 1a). These can be known
analytically, from experimental measurements or pre-
vious simulations, and finally, they can be discretized
with displacement field vectors Ui and collected in
a matrix U = [U1, . . . ,Um]. Each defect can then
be leveraged in amplitude by the parameter vector
ξ = [ξ1, . . . , ξm]T (Fig. 1b) so that the final defected
geometry represented by the model is given by the
global defect displacement field ud = Uξ , i.e., a lin-
ear superposition of the selected defects (Fig. 1c).With
this information about the nominal structure and shape
defects, we assemble the RB using a modal approach
with VMs, MDs and defect sensitivities (DSs). We
then construct the reduced stiffness tensors, once and
for all, projecting the element-level tensors with the
selected RB (Fig. 1d). In this way, linear, quadratic
and cubic elastic forces can be evaluated directly with
respect to the reduced coordinates and shape defect
magnitudes without switching between the full- and

2 Due to memory limitations, third- and fourth-order stiffness
tensors cannot be computed for the FOM, but they can be con-
structed in reduced form directly operating at element level [27].
3 ⊗ denotes the outer product, and : and denote the double
and triple contraction operations. Using Einstein notation, we
have that X = x ⊗ x ⊗ x (being x a vector) corresponds to
XI J K = xI xJ xK , a = B : C (being B and C a 3- and a 2-
dimensionalmatrix, respectively) to aI = BIi jCi j and, similarly,
a = B C to aI = BIi jkCi jk (where B and C are now 4- and 3-
dimensional, respectively).
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Fig. 1 Overview of the proposed method, schematically illustrated for a pinned beam

reduced-order space when evaluating the nonlinear
function. Our strategy can then be classified as model-
driven (simulation-free). Finally, in the online phase,
the simulation is performed with the reduced govern-
ing equations (Fig. 1e). Notice that the model is used
to run a simulation, not to evaluate a solution as in
interpolation-like techniques: As such, different forc-
ing terms and also different analysis types (e.g., tran-
sient, frequency response) are possible. All of this is
possible thanks to themodified definition of theGreen–
Lagrange strain tensor we use. Specifically, our strain
tensor embeds two subsequent transformations: (i) the
one from nominal to defected geometry (which, at the
end, will be parametrized) and (ii) the one from the
defected configuration to the deformed/final one. The
deformation produced by the latter is the one we mea-
sure, so no strain/stresses are introduced by the pres-
ence of the defect in (i); however, the deformation of
(ii) will depend on (i). The formulationwe obtain, how-
ever, contains rational terms which cannot be used for
a tensorial representation (which can describe polyno-
mials only). Given the assumed small entity of the
shape defects, we advocate the use of a Neumann
expansion to approximate the Green–Lagrange tensor,
obtaining again a polynomial form. Applying standard
FE procedures, we finally get to the expression of the
reduced elastic internal forces, which will parametri-
cally depend on the defect amplitudes ξ . In this frame-
work, we show that the model in [53] (whose deforma-
tion formulation was based on [54]) corresponds to a

lower-order Neumann expansion with integrals evalu-
ated on the nominal volume, and that the higher-order
approximationwe propose here leads to better accuracy
and to a larger applicability range.

The work is organized as follows: The modified
strain formulation is given in Sect. 2 and approximated
using Neumann expansion in Sect. 3. In Sect. 4, the
FE discretization is developed and then used in Sect.
5 to construct the reduced-order stiffness tensors. The
choice and computation of the RB is described in Sect.
6. Finally, numerical studies in Sects. 7 and 8 demon-
strate the effectiveness of the proposed approach on a
2D FE clamped beam and on a MEMS gyroscope and
computational times are discussed.

2 Strain formulation: a two-step deformation
approach

Strategies to represent the motion of imperfect struc-
tures by splitting the total displacement into a constant
part, representing a geometrical imperfection, and a
variable part, representing the actual displacement, are
not new and have been successfully used in many ana-
lytical studies with applications to beams and plates
[54–56]. In Ref. [55], a shallow shell model is obtained
from the von Karman plate model by introducing an
additional out-of-plane displacement field directly in
the definition of the strains and neglecting higher-order
terms; in [54], a similar strategy was used for imper-
fect beams, where the cancellation of h.o.t. was justi-
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fied by removing the contribution of the deformations
artificially produced by the introduction of the defect.
In both cases, the imperfection was taken as a natural
mode of the system. In Ref. [56], such limitation was
removed and plates were studied expanding the defect
using an arbitrary number of natural modes. Using a
different approach, the authors introduce the imperfec-
tion directly in the governing equations, adding exter-
nal forces to restore static equilibrium and, finally,
enforcing stresses to zero (as the defected configuration
is stress-free). In this work, we follow an alternative
approach, based on a two-step deformation scheme,
which applies to solid mechanics in general.

Let us consider the scheme depicted in Fig. 2. A
nominal body of coordinates x0 = {x0, y0, z0} under-
goes afirst deformationdescribedby themapF1,which
brings the body in a new configurationwith coordinates
xd = {xd , yd , zd} = F1(x0). The displacement cor-
responding to this operation is ud = {ud , vd , wd} =
xd − x0. We will refer to this second configuration as
the defected configuration. As it will be detailed later,
in our method ud will be a user-defined displacement
field representing a small shape defect which, super-
imposed to the nominal geometry, defines the configu-
ration with respect to which we measure deformation.
There is no apriori restriction for the choice of the shape
of the field ud (which can also change the location of
the boundaries)4, as long as no topological changes
are introduced (e.g., holes). Let us now consider a sec-
ond deformation, described by the map F2, from the
defected configuration to the final one, with coordi-
nates x(t) = {x(t), y(t), z(t)} = F2(xd , t). We will
refer to the latter as to the deformed or final configura-
tion, whose displacement is given by u = {u, v, w} =
x − xd .

Considering the infinitesimal line segment dx0 in the
nominal geometry, we can define the line segments dxd
and dx in the defected and deformed configurations as

dxd = F1dx0, (2a)

dx = F2dxd = F2F1dx0, (2b)

where the deformation gradients F1 and F2 are given
by

4 F1(x0) can be thought as a transformation corresponding to
a static analysis with imposed forces and/or boundary displace-
ments.

F1 = ∇0xd = ∂xd
∂x0

= I + ∂ud
∂x0

= I + Dd , (3a)

F2 = ∇dx = ∂x
∂xd

= I + ∂u
∂xd

= I + D2 (3b)

and where Dd and D2 are the displacement derivative
matrices of thefirst and second transformations, respec-
tively. Using the chain rule, we can also define

D = ∂u
∂x0

= ∂u
∂xd

∂xd
∂x0

= D2F1, (4)

so that D2 = DF−1
1 can be referred to the nominal

coordinates.
Using Eqs. (2)–(4), the stretch between deformed

and defected configurations writes

S = dxT dx − dxTd dxd
= dxT0 F

T
1 (FT

2 F2 − I)F1dx0
= dxT0 (D + DT + DTD + DT

d D + DTDd)dx0. (5)

Measuring the deformation with respect to the defected
configuration, the second-order strain tensor E2 is
defined as

S = 2dxTd E2dxd = 2dxT0 F
T
1 E2F1dx0, (6)

which, rearranged, leads to

E2 = 1

2

(
FT
2 F2 − I

)

= 1

2
F−T
1 (D + DT + DTD + DT

d D + DTDd )F
−1
1 . (7)

Looking at Eqs. (5) and (7), it can be easily verified that
E2 correctly satisfies the minimum requirements for a
strain measure to vanish under a rigid body translation
(F2 = I) and/or rotation (FT

2 F2 = RTR = I, R being
an orthonormal rotation matrix), for any F1. Equation
(7) is indeed an exact expression for the strains from
defected to final configuration. Notice, however, that in
this form, all the quantities are computed with respect
to the nominal coordinates x0.

3 Strain approximations

The introduced strain measure, being referred to the
nominal geometry only, paves the way for the pre-
computation of the stiffness tensors, as it will be shown
in the following sections. However, as mentioned in
the introduction, a tensorial formulation can be applied
only when the internal forces display a polynomial
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Fig. 2 Scheme for the
considered deformation
setting. A nominal structure,
of coordinates x0, undergoes
a deformation described by
the transformation map F1.
The structure is now in the
deformed configuration
(coordinates xd ). A second
transformation F2 and the
displacement u describe the
deformation from the
defected configuration to
the final one

dependence on the displacements, which in the present
case include both ud and u. The inverse of the deforma-
tion gradientF1 in Eq. (7) entails a rational dependence
on ud and therefore needs some attention. Let us con-
sider the following known result: Neumann expansion
IfP is a squarematrix and theNeumann series

∑+∞
n=0 P

n

is convergent, we have that

(I − P)−1 =
+∞∑
n=0

Pn (8)

A spectral norm5 ε = ‖P‖2 < 1 is a sufficient condition
for the convergence of the Neumann series. Moreover,
it can be shown [57] that truncating the sum to order N
the norm error δN is bounded as

δN =
∥∥∥∥∥(I − P)−1 −

N∑
n=0

Pn

∥∥∥∥∥
2

≤ εN+1

1 − ε
= δlim . (9)

Letting P = −Dd , we can expand F−1
1 using the

Neumann series as

F−1
1 = (I + Dd)

−1 ≈
N∑

n=0

(−Dd)
n . (10)

The series, under the assumption of small defects
(i.e., ‖Dd‖2 	 1), is guaranteed to converge. More-
over, we can truncate the sum in Eq. (10) to N = 1,
obtaining:

E2,N = 1

2
(I − Dd)

T (D + DT + DTD

+DT
d D + DTDd)(I − Dd), (11)

which, solving the product, can be rewritten as:

5 The spectral norm of a matrix A is defined as the square root
of the largest singular value of A∗A, being A∗ the conjugate
transpose of A, that is: ‖A‖2 = √

λmax (A∗A)

E2,N = 1

2

(
D + DT + DTD + ��DT

d D + ���DTDd

−��DT
d D − DT

d D
T − DT

d D
TD − DT

d D
T
d D − ����DT

d D
TDd

−DDd − ���DTDd − DTDDd − ���DT
d DDd − DTDdDd

+���DT
d DDd + ����DT

d D
TDd + DT

d D
TDDd

+DT
d D

T
d DDd + DT

d D
TDdDd

)
(12)

where we stroke out terms that cancel each other.
Finally, neglecting the termsO(D2

d), i.e., assuming that
the first transformation F1 is linear, Eq. (12) reduces
to:

E2,N1 = 1

2

(
D + DT + DTD − DT

d D
T

−DDd − DT
d D

TD − DTDDd

)
(13)

The modified Green–Lagrange strain tensor E2,N1 is a
polynomial function of the derivatives of the displace-
ment fields u and ud and can be thus used to compute a
ROM using tensors. Notice that defect-induced strains
are not present when there is no deformation, that is
E2,N1 = 0 (being proportional to D) when u = 0.

Remark 1 (on Budiansky approximation). The strain
formulation in [54], used by Budiansky to study buck-
ling in the presence of defects, was obtained by sub-
tracting the strain that a defect would produce on the
nominal structure from the strain of the deformed struc-
ture measured with respect to the nominal configura-
tion. It can be shown that truncating theNeumann series
to the zeroth order (i.e., setting N = 0, so thatF−1

1 = I)
and using Eqs. (7) and (10), the strain writes:

E2,N0 = 1

2

(
D + DT + DTD + DT

d D + DTDd

)
, (14)
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which is the same strain tensor we adopted in [53] fol-
lowing Budiansky’s approximation.

4 Finite element formulation

In this and the next section, we derive in detail the
FE formulation leading to the parametrized reduced
internal elastic forces (Eqs. (27) and (28a)), which are
used in the following numerical tests. We start deriv-
ing the elastic internal forces (at element level) for the
FE discretization of the full-order model based on the
strain as defined in Eq. (13). We remark that this full
model represents just an approximation of the reference
full-order model FOMd (where the defect is embed-
ded directly in the mesh by shifting the position of
the nodes). Although not offering any direct advantage
over FOMd , this full model will allow us to compute
the parametric ROM, as it will be explained in Sect. 5.

First, it is convenient to switch to Voigt nota-
tion, exploiting the symmetry of E2,N1. Let θ =
{u,x u,y u,z v,x v,y v,z w,x w,y w,z}T be the vectorized
formofD and, similarly, θd the vectorized formofDd .6

Calling ue ∈ R
ne and ued ∈ R

ne the nodal displacement
and defect vectors, respectively, of a continuum finite
elementwith ne dofs andG ∈ R

9×ne the shape function
derivatives matrix, the displacement derivative vectors
can be written as functions of the displacements:

θ = Gue, and θd = Gued .

Equation (13) rewrites:

Ev,N1 =
(
H + 1

2
A1(θ) + A2(θd)

+ A3(θd)A1(θ)
)
θ = B(ue,ued)u

e, (15)

where (•)v denotes Voigt notation and

H =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0

⎤
⎥⎥⎦ , (16a)

A1 =

⎡
⎢⎢⎣

u,x 0 0 v,x 0 0 w,x 0 0
0 u,y 0 0 v,y 0 0 w,y 0
0 0 u,z 0 0 v,z 0 0 w,z
u,y u,x 0 v,y v,x 0 w,y w,x 0
u,z 0 u,x v,z 0 v,x w,z 0 w,x
0 u,z u,y 0 v,z v,y 0 w,z w,y

⎤
⎥⎥⎦ , (16b)

6 For the derivatives of the displacement components, we use
the notation u,x = ∂u

∂x0
and ud,x = ∂ud

∂x0
(similar definition for v,

w and the other spatial coordinates).

A2 = −1

×

⎡
⎢⎢⎣

ud,x vd,x wd,x 0 0 0 0 0 0
0 0 0 ud,y vd,y wd,y 0 0 0
0 0 0 0 0 0 ud,z vd,z wd,z

ud,y vd,y wd,y ud,x vd,x wd,x 0 0 0
ud,z vd,z wd,z 0 0 0 ud,x vd,x wd,x
0 0 0 ud,z vd,z wd,z ud,y vd,y wd,y

⎤
⎥⎥⎦ , (16c)

A3 = −1/2

×

⎡
⎢⎢⎣

2ud,x 0 0 vd,x wd,x 0
0 2vd,y 0 ud,y 0 wd,y
0 0 2wd,z 0 ud,z vd,z

2ud,y 2vd,x 0 ud,x + vd,y wd,y wd,x
2ud,z 0 2wd,x vd,z ud,x + wd,z vd,x
0 2vd,z 2wd,y ud,z ud,y vd,y + wd,z

⎤
⎥⎥⎦

(16d)

such that

D + DT + DTD ←→ (2H + A1(θ))θ,

−DT
d D

T − DDd ←→ 2A2(θd)θ,

−DT
d D

TD − DTDDd ←→ 2A3(θd)A1(θ)θ .

Exploiting the property by which A1(θ)δθ =
A1(δθ)θ , the virtual variation of the strain in Eq. (15)
writes

δEv,N1 = (H + A1 + A2 + 2A3A1)Gδue

= B(u,ud)δue, (17)

where B is the strain–displacement matrix and where
we dropped the explicit dependencies on θd and θ to
ease the notation. The virtual work of internal forces
on one element is given by

We
int =

∫

V e
d

δET
v,N1Sv dV

e
d

= (δue)T
∫

V e
d

BTSv dV e
d , (18)

where Sv = CEv is the Piola–Kirchhoff stress in Voigt
notation, being C the linear elastic constitutive matrix,
and where V e

d is the volume of the element in the
defected configuration. The expression for the element
internal forces f eint follows from the virtual work:

f eint =
∫

V e
d

BTCEv,N1 dV
e
d ,

=
∫

V e
d

B(ue,ued)
T CB(ue,ued)u

e dV e
d . (19)
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Theglobal internal force vector fint canbe thenobtained
assembling the element-level f eint using standard FE
procedures. Finally, the tangent stiffness matrix can be
computed as usual taking the virtual variation of the
internal forces (see “Appendix B”). Equations (15) and
(19) can be used to perform tests and/or simulations of
the full model and to compare the results to the corre-
sponding FOM-d in order to assess the quality of the
approximation before the reduction of themodel. In the
next section, theDpROMderived from this formulation
is presented.

4.1 Element-level tensors

Equation (19) in full can be written as

f eint =
∫

V e
d

GT (H + A1 + A2 + 2A3A1)
T

×C
(
H + 1

2
A1 + A2 + A3A1

)
Gue dV e

d . (20)

In the present form, the displacement vectors ue and
ued are encapsulated in the expressions of A1, A2 and
A3. As our aim is to compute the stiffness coefficients
of the elastic forces, we need to make them explicit in
Eq. (20). We can write:

A1 = L1 · θ = L1 · (Gue), (21a)

A2 = L2 · θd = L2 · (Gued), (21b)

A3A1 = (L3 · θd) · θ = (L3 · (Gued)) · (Gue), (21c)

where L1,L2 ∈ R
6×9×9 and L3 ∈ R

6×9×9×9 are con-
stant sparse matrices (see “Appendix A”).

We can separate the contributions in Eq. (20) as

f e1 =
∫

V e
d

GT
(
HTCH + HTCA2

+AT
2 CH + AT

2 CA2

)
Gue dV e

d , (22a)

f e2 =
∫

V e
d

GT
(1
2
HTCA1 + AT

1 CH + 1

2
AT
2 CA1

+AT
1 CA2 + 2AT

1 A
T
3 CH + HTCA3A1

+2AT
1 A

T
3 CA2 + AT

2 CA3A1

)
Gue dV e

d ,

(22b)

f e3 =
∫

V e
d

GT
(1
2
AT
1 CA1 + 2AT

1 A
T
3 CA3A1

+AT
1 A

T
3 CA1 + AT

1 CA3A1

)
Gue dV e

d , (22c)

where f e1 , f
e
2 and f e3 are the linear, quadratic and cubic

terms in the displacement ue, respectively. These can
be recast in tensorial form as

f1 = K2 (ued) · ue, (23a)

f2 = K3 (ued) : (ue ⊗ ue), (23b)

f3 = K4 (ued) (ue ⊗ ue ⊗ ue), (23c)

where

K2 (ued) = K2n + K3d · ued + K4dd : (ued ⊗ ued),
(24a)

K3 (ued) = K3n + K4d · ued + K5dd : (ued ⊗ ued),
(24b)

K4 (ued) = K4n + K5d · ued + K6dd : (ued ⊗ ued).
(24c)

The element-level tensors in Eq. (24) are named using
the left-subscript to denote their dimensionwith a num-
ber and with a letter to specify if the tensor does not
multiply the defect vector ud (letter “n”), if it multi-
plies ud once (letter “d”) or twice (letters “dd”). In par-
ticular, a tensor denoted by the letter “n” corresponds
to the tensor computed for the nominal geometry. For
instance, K3d ∈ R

ne×ne×ne is the third-order tensor
multiplying ud once and K2n ∈ R

ne×ne is the nominal
second-order tensor. Finally, we remark once more that
these are element-level tensors that, in theory, could be
assembled to form the FOM tensors. In practice, how-
ever, FOM tensors would require a prohibitive amount
of memory and are never computed.

5 DpROM formulation

5.1 Reduced tensors and internal forces

We now derive the reduced internal forces and tensors
via Galerkin projection. Let V ∈ R

n×m be the RB for
uF ∈ R

n , with m 	 n vectors (or modes), and let
U ∈ R

n×md be a basis ofmd user-defineddefect shapes,
collected column-wise, for uF

d ∈ R
n . The selection for

the modes in V will be discussed in Sect. 6. We have
then thatuF ≈ Vη,uF

d = Uξ and, referring to element-
level quantities, we can reduce ue and ued as:

ue ≈ Veη, with Ve ∈ R
ne×m, η ∈ R

m, (25a)
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ued = Ueξ , with Ue ∈ R
ne×md , ξ ∈ R

md (25b)

being Ve and Ue the partitions of V and U pertaining
to the element and η and ξ the reduced coordinates.

Plugging Eqs. (21) and (25) into Eq. (22), we can
directly identify the reduced-order tensor coefficients
for η and ξ (and their combinations). Defining the pro-
jections of shape function derivative matrixG over the
two basis as Γ = GVe andϒ = GUe, using Einstein’s
notation we obtain:

Qe
2n I J =

∫

V e
d

Γi I H jiC jk HklΓk J dV e
d , (26a)

Qe
3d I J K =

∫

V e
d

Γi I
(
HjiC jk L2klaϒaK

+ L2 j iaϒaKC jk Hkl
)
Γl J dV e

d ,(26b)

Qe
4dd I J K L =

∫

V e
d

Γi I L2 j iaϒaKC jk

×L2klbϒbLΓl J dV e
d , (26c)

Qe
3n I J K =

∫

V e
d

Γi I

(1
2
HjiC jk L1klaΓaK

+L1 j iaΓaKC jk Hkl

)
Γl J dV e

d , (26d)

Qe
4d I J K L =

∫

V e
d

Γi I

(1
2
L2 j iaϒaLC jk L1klbΓbK

+L1 j iaΓaKC jk L2klbϒbL

+2L3 j iabϒbLΓaKC jk Hkl

+HjiC jk L3klabϒbLΓaK

)
Γl J dV e

d ,

(26e)

Qe
5dd I J K LM =

∫

V e
d

Γi I

(
2L3 j iabϒbLΓaKC jk

×L2klcϒcM + L2 j iaϒaLC jk

×L3klbcϒcMΓbK

)
Γl J dV e

d , (26f)

Qe
4n I J K L = 1

2

∫

V e
d

Γi I L1 j iaΓaKC jk

×L1klbΓbLΓl J dV e
d , (26g)

Qe
5d I J K LM =

∫

V e
d

Γi I

(
L1 j iaΓaKC jk L3klbc

×ϒcMΓbL + L3 j iabϒbMΓaKC jk

×L1klcΓl L

)
Γl J dV e

d , (26h)

Qe
6dd I J K LMN = 2

∫

V e
d

Γi I L3 j iabϒbMΓaL

×C jk L3klcdϒdNΓcKΓl J dV e
d , (26i)

where, for convenience, tensor dimensions of size m
are denoted by capital letter subscripts and dimensions
of size md by underlined capital letter ones. So, for
example, Qe

4dd ∈ R
m×m×md×md .

The global reduced tensors of the full structure can
then be computed directly summing up the element
contributions as

Q	 =
Nel∑
e=1

Qe
	

where Qe
	 is one of the element-level tensors in Eq.

(26a), Q	 is the assembled tensor for the FOM, and
Nel is the total number of elements. Notice that this
procedure is highly parallelizable, as Qe

	 can be com-
puted separately and summed up in the end. Reduced
(global) internal forces fint,r can therefore be defined
as

fint,r = Q2 (ξ) · η + Q3 (ξ) : (η ⊗ η)

+ Q4 (ξ)
... (η ⊗ η ⊗ η), (27)

where

Q2 (ξ) = [
Q2n + Q3d · ξ + Q4dd : (ξ ⊗ ξ)

]
, (28a)

Q3 (ξ) = [
Q3n + Q4d · ξ + Q5dd : (ξ ⊗ ξ)

]
, (28b)

Q4 (ξ) = [
Q4n + Q5d · ξ + Q6dd : (ξ ⊗ ξ)

]
, (28c)

while the reduced tangent stiffness matrix Qt can be
written simply as

Qt I J = Q2 I J + ( Q3 I J j + Q3 I j J )η j

+( Q4 I J i j + Q4 I i J j + Q4 I i j J )ηiη j . (29)

Upon inspection of Eq. (27), it can be seen that elas-
tic internal forces are cubic in η and quadratic in ξ , thus
producing quintic terms in (η, ξ).

Remark 2 (on tensor computation). Equations (26a)
give directly the stiffness tensors in reduced form, and
this is in general highly desirable as their integration
over the element volume takes multiple evaluations
(e.g., through Gauss quadrature). Since the computa-
tional complexity highly depends on the number of dofs
of the tensor, it is preferable to integrate directly the
reduced ones as long as the number of reduced coor-
dinates m is lower than the number of element’s dofs
ne (e.g., ne = 60 for a serendipity hexahedron with
quadratic shape functions). In case m > ne, it is com-
putationally more efficient to compute the element ten-
sors first (using Eqs (26a) and replacing both Γ and

123



3048 J. Marconi et al.

ϒ with G) for Gauss integration and then project the
element tensors using V and U accordingly. A similar
reasoning can be done formd , but under the very likely
hypothesis thatmd 	 ne, it results almost always con-
venient to adopt the reduced form.

5.2 Volume integration

The tensors in Eqs. (27)–(28a) must be computed over
the defected volume Vd . As such, the model cannot be
profitably used, as for each new instance of the param-
eter vector ξ , the volume Vd would change and a new
integration would be required. This way, one would
need to compute a new ROM for each parameter real-
ization, which is in direct contrast to the very idea of
pROM. To circumvent this problem, one can adopt the
following approximation.

Let Qe
	

∫ be the generic expression of an element

tensor to be integrated over the volume V e
d . We can

compute the global reduced tensor Q	 as:

Q	 =
Nel∑
e=1

∫

Vd
Qe

	
∫ dVd

=
Nel∑
e=1

∫

Vo
Qe

	
∫ det(F1) dVo. (30)

where Nel is the total number of elements. The deter-
minant of F1 can now be approximated retaining only
first-order terms. To the purpose of illustration, let us
consider the following 2D example where the global
defect is given by the linear superposition of two shape
defects, that is:

ud(x0, ξ) =
{
ud
vd

}
=

[
f (1)
u (x0) f (2)

u (x0)
f (1)
v (x0) f (2)

v (x0)

] {
ξ1
ξ2

}

=
[
f (1), f (2)

]
ξ , (31)

where we denote with f (i) = [ f (i)
u , f (i)

v ]T the vector
of the functions describing the i-th shape defect for the
x-displacement ud and the y-displacement vd , respec-
tively. We can approximate the determinant of F1 as

det(F1) = 1 + ud,x + vd,y + ud,xvd,y − ud,yvd,x

det(F1) = 1 + ξ1

(
f (1)
u,x + f (1)

v,y

)
+ ξ2

(
f (2)
u,x + f (2)

v,y

)

+ξ21

(
f (1)
u,x f

(1)
v,y − f (1)

u,y f
(1)
v,x

)
+ ξ22

(
f (2)
u,x f

(2)
v,y − f (2)

u,y f
(2)
v,x

)

+ξ1ξ2

(
f (1)
u,x f

(2)
v,y + f (2)

u,x f
(1)
v,y − f (1)

u,y f
(2)
v,x − f (2)

u,y f
(1)
v,x

)

det(F1) ≈ 1 + ξ1

(
f (1)
u,x + f (1)

v,y

)
+ ξ2

(
f (2)
u,x + f (2)

v,y

)
,

where we neglected higher-order terms, consistently
with the assumption of small defects (already intro-
duced for the Neumann expansion of the strains). Gen-
eralizing this result for md defects, we can write

det(F1) ≈ 1 +
md∑
i=1

ξi

(
div f (i)

)
, (32)

so that Eq. (30) can be approximated as:

Q	 ≈ Q′
	 +

md∑
i=1

ξi
(
Q′′

	 i

)
, (33)

where

Q′
	 =

Nel∑
e=1

∫

Vo
Qe

	
∫ dV0, (34a)

Q′′
	 i =

Nel∑
e=1

∫

Vo
Qe

	
∫

(
div f (i)

)
dVo. (34b)

Q′
	 is the tensor evaluated on the nominal volume and
Q′′

	 i is the contribution of the i-th defect, which can
be computed again once and for all offline, referring
to the nominal volume. The additional computational
burden to compute Q′′

	 i grows less than linearly with
the number of defects, since in a quadrature integra-
tion scheme we can use the Qe

	
∫ evaluated at integra-

tion points for both Eq. (34). The additional compu-
tations therefore involve only scalar by tensor multi-
plications and tensor sums, so that most of the added
computational time is merely due to memory access
management. Notice that one could also compute all
the additional tensors needed to describe det(F1) with
no approximation (even though this is in most cases
unnecessary, for h.o.t. do not improve accuracy sig-
nificantly). However, the first-order approximation we
presented has the advantage to introduce only one new
term for every additional defect.

Remark 3 (on computational efficiency). The correc-
tive terms Q′′

i in Eq. (33) are null for an isochoric
transformation between nominal and defected domains
(det(F1)=1). In practice, one can set up a procedure to
avoid the computation of these terms to speed up the
construction of the reduced tensors.
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Remark 4 (on Budiansky approximation). According
to the framework presented in [54] and used in [53],
integration can only be carried out on the nominal
volume V0. This constitutes an additional approxima-
tion on top of the lower-order expansion discussed in
Remark 1. As it will be later shown in Sect. 8, when
the imposed defect does not represent an (almost) iso-
choric transformation and/or is not sufficiently small,
integration over V0 is a too coarse approximation and
yields large errors.

5.3 Equations of motion

Finally, the equations of motion for the parametric
reduced-order system write:

Mr ¨η(t) + Cr ˙η(t) + fint,r (η(t), ξ) = fext,r (t), (35)

where Mr = VTMdV and Cr = VTCdV are the
reduced mass and damping matrices and fext,r (t) =
VT fext(t) the reduced external forces acting on the sys-
tem. Notice that sincemass and dampingmatricesmust
be integrated over Vd , new matrices must be computed
for each new parameter realization. However, being
these matrices constant during the analysis, this addi-
tional cost is negligible.

5.4 Truncated version

Before concluding this section,we present a lighter ver-
sion of the proposedmodel, with the aim to alleviate the
offline computational burden. Considering Eq. (13), we
can make the further assumption that O(DdD2) terms
can be neglected, obtaining

E2,N1t = 1

2

(
D + DT + DTD − DT

d D
T − DDd

)
.(36)

All the subsequent equations are consequently modi-
fied by putting A3 = 0 and L3 = 0, resulting in the
fact that the tensors in Eq. (26a) can be simplified. In
particular, the last two terms in Q4d (Eq. (26e)) and
the entire Q5d , Q5dd and Q6dd tensors are null. In this
sense, the reduced elastic internal forces in Eq. (27) are
“truncated.” As fifth- and sixth-order tensors are the
most expensive to construct, neglecting them greatly
reduces offline costs. As it will be shown in Sect. 8,
this further approximation, although empirical, does
not appreciably deteriorate the quality of the results.

5.5 Models and nomenclature

In Sects. 7 and 8, we study two numerical examples
using different levels of approximation for our defect
parametric ROM, DpROM. Specifically, we use the
zeroth-order Neumann expansion for the strains (Eq.
(14)), the first-order one (Eq. (13)) and its truncated
version, discussed in the previous section. The three
variations will also be tested in the case of integration
over Vd and over V0 (which is a further approxima-
tion). The acronyms to denote each model are shown
in Table 1, where, for convenience, information about
the RB of each model (discussed in the next section)
is also reported. Finally, notice that the model we pre-
sented in [53] corresponds to DpROM-0n .

6 Reduction basis

To construct the system described so far, it is neces-
sary to select the bases V and U. The latter is sim-
ply a collection of user-defined displacement vectors,
each representing one specific defect, so that the final
defected shape is given by a linear superposition (see
Eq. (25b)). The (properly said) RB is V, whose choice
may not be trivial, as it must correctly represent the
system response over a range of parameters without
the possibility to be changed (since a change would
require to recompute the stiffness tensors). As previ-
ously done in [53], our choice is to use a modal-based
approach including VMs, MDs and defect sensitivities
(DSs) [58] in the RB, as this solution offers a way to
construct a basis in a direct way, that is without con-
voluted basis selection strategies, the need of comput-
ing all (or an excessively high number of) eigenvectors
or the need for previously computed simulations. We
remark, however, that, in principle, one could use also
other RBs, as long as they are valid over the parameter
space.

Let us consider the following eigenvalue problem
(
Kt − ω2

i M
)

Φ i = 0 (37)

where Kt = Kt (u,ud) is the tangent stiffness matrix,
M the mass matrix, ωi the i-th eigenfrequency and Φ i

the corresponding eigenvector. Staticmodal derivatives
θ i j (MDs) are computed neglecting the mass term, by
taking the derivative of Eq. (37) with respect to η j and
evaluating the resulting expression at equilibrium (i.e.,
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Table 1 Acronyms for the different models considered in the numerical studies

Model Description

FOMd Full-order model with defect included by shifting the mesh nodes from the nominal configuration

(no approximation). It is the reference model

ROMd Reduced-order model computed from FOM-d. Its reduction basis comprises VMs and MDs

DpROM-0	 Defect parametric reduced-order model, based on the zeroth-order Neumann expansion (see Eq. (14))

Its reduction basis comprises VMs, MDs and DSs. Tensors are up to the fourth order (see [53])

DpROM-1	 Defect parametric reduced-order model, based on the first-order Neumann expansion (see Eq. (13))

Its reduction basis comprises VMs, MDs and DSs. Tensors are up to the sixth order (see Eq. (26a))

DpROM-1t	 Truncated version of DpROM-1	 (see Sect. 5.4). Tensors are up to the fourth order.

	 = d Indicates that the model is computed integrating over the defected volume Vd (see Sect. 5.2)

	 = n Indicates that the model is computed integrating over the nominal volume V0. This is allowed for isochoric

transformations and is otherwise an approximation (see Sect. 5.2)

η j = 0) and for ξ = 0:

θ i j = ∂Φ i

∂η j

∣∣∣∣
0

= −K−1
0

∂Kt (Φ jη j , 0)
∂η j

∣∣∣∣
0
Φ i , (38)

being K0 = Kt (0, 0). Retaining mΦ VMs in the basis
V, mΦ(mΦ + 1)/2 MDs can be computed.

Defect sensitivities (DSs) �i, j can be obtained fol-
lowing a similar procedure, differentiating each VM
Φ i with respect to each defect amplitude ξ j :

�i, j = ∂Φ i

∂ξ j

∣∣∣∣
0

= −K−1
0

∂Kt (0,U jξ j )

∂ξ j

∣∣∣∣
0
Φ i . (39)

A total of mdmΦ DSs can be computed this way,
being md the number of defects in U. Expressions for
the tangent stiffness derivatives are given in “Appendix
B.”

Remark 5 (on higher derivatives). Given the increased
accuracy of the model, larger defect magnitudes can
be considered as compared to [53]. To fully exploit
the increased applicability range, a richer RB might be
necessary, reason why we here introduce second defect
sensitivities (DS2s) andMDs sensitivities (MDSs). Let
us take the derivative of Eq. (38) with respect to the k-th
defect amplitude ξk . We define the MDS θ i j,k as:

θ i j,k = ∂θ i j

∂ξk

∣∣∣∣
0

= −K−1
0

(
∂Kt

∂ξk

∣∣∣∣
0
θ i j

+ ∂2Kt

∂η j∂ξk

∣∣∣∣
0
Φ i + ∂Kt

∂η j

∣∣∣∣
0
�i,k

)
. (40)

Notice that θ i j,k �= θ j i,k . In the same manner, the sec-
ond defect sensitivities (DS2s) with respect to ξk write:

�i, jk = ∂�i, j

∂ξk

∣∣∣∣
0

= −K−1
0

(
∂Kt

∂ξk

∣∣∣∣
0
�i, j

+ ∂2Kt

∂ξ j∂ξk

∣∣∣∣
0
Φ i + ∂Kt

∂ξ j

∣∣∣∣
0
�i,k

)
. (41)

It is evident that the blind inclusion of DS2s
and/or MDSs in the RB would add an unacceptable
number of unknowns, especially when considering
MDSs. Depending on the type of the analysis (lin-
ear/nonlinear), on the kind of the defect (i.e., affect-
ing the linear or the nonlinear dynamics) and on the
entity of the defect itself (large/small), one can decide
whether to include some vectors or not. Pre-selection
strategies to reduce the basis size, as the one presented
in [59] and [32], are beyond the scopes of this work and
are not treated hereafter.

7 Numerical tests-I

We consider now a FE model of an aluminum beam, of
length lx = 2 m, thickness ty = 50 mm and width
wz = 0.2 m, clamped at both ends. We use a 2D
plain strain model, with a mesh of 80 quadrilateral
elements with quadratic shape functions (630 dofs). A
Rayleigh damping matrix Cd = αMd + βK0 is intro-
duced by imposing a quality factor Q1 = Q2 = 100
on the first and second modes of the linear system
(α = 3.1, β = 6.3 · 10−6). A nodal load F is applied
to the mid-span of the beam (with F = 1 kN and
F = 4 kN for the forced responses). A single shape
defect defined as the vertical translation of the nodes
vd(x, ξ) = ξ ty sin(π/ lx x) is imposed, deforming the
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nominal geometry of the straight beam into a shallow
arch. Notice that this kind of defect represents an iso-
choric transformation, therefore integration over the
nominal volume V0 is used for this example (see Sect.
5.2).

Again, refer to Table 1 for the acronyms used for
the models of this and the next numerical study. For
ξ = {0, 0.25, 0.5, 0.75, 1}, backbones and frequency
responses (FR) are computed for ROMd , DpROM-1n
and DpROM-0n , constructed using 5 VMs, 15 MDs
and 5 DSs (only for DpROMs), i.e.,

V = [Φ1, . . . ,Φ5, θ11, θ12, . . . , θ45, θ55,

�1,1, . . . ,�5,1], (42)

for a total of 25 RB modes (i.e., mΦ = 5 VMs,
mΦ(mΦ +1)/2 = 15MDs andmdmΦ = 5 DSs, being
U ∈ R

n×md and md = 1).

Remark 6 (on basis choice). Reduction with MDs was
historically introduced as an extension of time-domain
linear modal analysis to the field of (mild) geomet-
ric nonlinearities [30]. As such, the selection criterion
is frequency-based, meaning that modes are chosen
accordingly to the spectral content of the forcing. Usu-
ally, vibration modes are retained up to 3-5 times the
highest frequency of interest, as a rule of thumb. All
the MDs related to the retained VMs are then included
(as well as all the DSs for the DpROMs). Also, notice
thatMDs, loosely speaking, represent the second-order
Taylor expansion of the solution [30,32] and results
are thus expected to deteriorate for high amplitudes
of the response. In the present case, being our anal-
ysis restricted to the first mode, we include all the
vibration modes up to the fifth, being ω05/ω01 ≈ 9.
This is a rather conservative choice which allows us to
study the parametric variations of the model with rela-
tive comfort and up to relatively large levels of vibra-
tions. Indeed, it could be shown that retaining VMs up
to the third (ω03/ω01 ≈ 3.7) is already sufficient to
retrieve a good accuracy, showing slight departure at
larger amplitudes. (With reference to the results in Fig.
3, FOM and ROM backbones start departing for nor-
malized amplitudes greater than 0.8, ultimately leading
to a 1Hz difference at an amplitude of 1.2.) Interest-
ingly, the aforementioned empiric rules used to select
VMs find theoretical confirmation in [17,60], where
it is argued that a slow–fast decomposition assump-
tion has to be made for the MD-based quadratic mani-
fold approach to work, indicating a threshold ratio of 4

between the linear eigenfrequencies (i.e., ωp/ωs ≥ 4,
p �= s). However, to the best of the authors’ knowl-
edge, there is no guarantee that this limit remains valid
also in theMD-based linear manifold approach used in
this work (i.e., where MDs are appended to the RB and
additional independent reduced coordinates are intro-
duced).

The harmonic balance (HB) method was used (with
7 harmonics) using the NLvib MATLAB tool [61]
(slightly modified to adapt the direct use of tensors)
and our in-house MATLAB FE code. To validate the
results of theROMs, the shootingmethod is used to find
the backbones of the corresponding FOM-d. Results
are shown in Fig. 3. Computations were carried out in
MATLAB 2020a on a local machine equipped with an
Intel(R) Xeon(R) Silver 4214 CPU @2.20 GHz and
256 GB RAM @2666 MHz. Tensors were built in a
Julia subroutine, called by the main MATLAB code,
which uses the TensorOperations package [62] for the
tensor contraction.At present, the tensor construction is
implemented serially, therefore leaving space for pos-
sible future speedups exploiting parallel computing, as
mentioned earlier. We remark once more that tensors
in Eq. (28a) are evaluated offline before performing
HB/shooting: Online evaluations use only the second-
, third- and fourth-order reduced stiffness tensors for
both ROMd and the DpROMs.

As it can be observed, the shift from hardening to
softening behavior is well captured by all the mod-
els, with a minor loss of accuracy of the DpROMs
as ξ increases. In particular, DpROM-0n shows a sig-
nificant frequency offset of the first linear eigenfre-
quency which remains constant throughout the back-
bone curve. (The same happens for the FRs, but we
omitted to plot them for the sake of figures clarity.) The
main goal of the present test was to assess the accuracy
of themethod verifying the results against the FOMand
over a range of frequencies. However, computational
times are collected in Table 2 for completeness. Run
times for the shooting method with the (Dp)ROMs are
included for comparison. These figures, however, must
be taken just as an indication, first because of the differ-
ence between FOMandROMs in terms of convergence
during continuation (ROMs are less likely to incur into
numerical artifacts) and, second, because speed and
convergence of this kind of analysis are highly sensitive
to several parameters and finding the best combination
by trial-and-error usually leads to sub-optimal perfor-
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(b)

(a)

Fig. 3 aModel-I: Nominal mesh and defected mesh with ξ = 1
(and a ×5 scale factor). b Frequency responses and backbone
curves for different defect amplitudes ξ using the harmonic
balance method (7 harmonics) for: ROMd ( ), DpROM-1n
( ), DpROM-0n ( , only backbones). Backbones have
been computed also for the FOMd ( ) using the shooting
method for validation. The vertical displacement of the mid-span

of the beam is shown (first harmonic coefficient of the Fourier
series, normalized over the beam thickness ty). For each plot, the
detuning parameter is σ = f − f01,d , being f [Hz] the forcing
frequency and f01,d [Hz] the first eigenfrequency of the FOMd
(corresponding to the selected ξ ). The bottom-right figure col-
lects the backbone curves for comparison. (Color figure online)

Table 2 Average computational times. The data of the two
DpROMs, being very similar, are clustered together. For the
FR, the times refer to the higher forcing (F = 4 kN). ROMd ,
DpROM-1/0n and FOMd have 20, 25 (due to the 5 additional

DSs) and 630 dofs, respectively. Notice that, being the size of
the FOMd very small, no significant conclusions in terms of
speedups can be drawn from this data (refer to the next section
for a detailed discussion)

Model–I ROMd DpROM-1/0d FOMd

Harmonic balance (HB) Frequency response 649 s 673 s –

Backbone 237 s 273 s –

Shooting Backbone 31 min 35 min 83 h 18 min

ROM construction 0.97 s 6.5 s / 2 s –
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(a)

(b)

Fig. 4 a Model-II, a MEMS gyroscope. Drive and sense direc-
tion are indicated by arrows. b Meshed model, with 14,920
quadratic hexahedra, for a total of 87,767 nodes and 261,495
dofs. Approximate dimension are given

mances. Last but not least, the size of the FOM in this
case is too low to really appreciate the savings in terms
of ROM construction.

8 Numerical tests-II

8.1 MEMS gyroscope

The last example we present is a prototype MEMS
mono-axial gyroscope, shown in Fig. 4a. The device
consists in a mass suspended by four S-shaped springs,
connected to the ground on the bottom of the anchors.
It is a monolithic piece, produced via deep reactive-
ion etching (DRIE), a process which removes material
from a plane silicon wafer to obtain the final geometry.
The etching procedure is the main cause of production
shape defects of MEMS devices, as it will be detailed
later. In operative conditions, themass is kept inmotion
by comb finger electrodes at the natural frequency of
the drive mode (i.e., a mode featuring motion mainly

in the x-direction), so that in the presence of an exter-
nal angular rate Ω (along the y-axis), a vertical dis-
placement wsense arises due to Coriolis effect along the
z-axis (sense). The latter is then converted into an elec-
trical signal through the parallel plate electrode placed
on the ground below the mass, providing the measure
for the angular rate. In general, a defect or a combi-
nation of them may create a coupling between the x-
and z-axes so that the drive motion generates an addi-
tional out-of-plane displacement which superimposes
to the Coriolis displacement to be measured. This is
usually referred to as quadrature error since, being
proportional to the drive displacement, it is in phase
quadrature with the Coriolis signal, proportional to the
drive velocity. Though it is possible to tell apart the two
contributions, this is highly undesirable as it requires
dedicated, over-sized electronics to accommodate the
larger displacements. Ultimately, this results in higher
power consumption.

8.2 FE model, defects and simulation details

The FE model is shown in Fig. 4b and describes in
detail the geometry and mesh of the device, count-
ing 14,920 quadratic hexahedral elements for a total
of 261,495 dofs. For the present study, we selected two
typical defects occurring in the production of MEMS
devices, namely the wall angle (shown in Fig. 5a) and
a restriction of the cross section of the beams (Fig.
5b). The first is generated by the fact that the plasma
beam of the DRIE process might be not perfectly per-
pendicular to the working plane, while the second one
typically comes from an overexposure to the chemical
attacks (over-etching). In the spirit of our method, we
can describe the global defects as the superposition of
these two displacement fields (see Eq. (25b)), letting
U = [U1, U2] with the associated amplitude parame-
ter vector ξ = [ξ1, ξ2]T . The wall angle shape defect
U1 = [ud1, vd1, wd1]T is given by

ud1(ξ1, z) = ξ1 tan(αy)z, (43)

and vd1 = wd1 = 0. The tapering of the beams U2 =
[ud2, vd2, wd2]T is defined as

vd2(ξ2, x, y) = 2ξ2
Wb

sin

(
π

Lb
x̃

)
ỹ, (44)

where

x̃ = x − xoff , 0 ≤ x̃ ≤ Lb,
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(a)

(b)

Fig. 5 a First defect shape, U1: constant wall angle αy (only
one beam is shown). The colormap indicates x-displacement. b
Second defect shape, U2: tapering of the suspension beams, 3D
and top views. (Only one beam is shown.) The colormap indicates
y-displacement (absolute value). (Color figure online)

ỹ = y − ymid, 0 ≤ ỹ ≤ Wb/2,

and ud2 = wd2 = 0. Lb and Wb are the length and the
width of the beam, xoff is an offset depending on the
location of each beam, and ymid is the y-coordinate cor-
responding to the middle line of each beam. To ease the
interpretation of the amplitude parameters, in the fol-
lowing ξ1 is reported in degrees to represent the phys-
ical wall angle coming from the product ξ1 tan(αy) in
Eq. (43), while ξ2 is reported as a percentage of the
beam thickness.

We compute the FR of the MEMS gyroscope using
the NLvib MATLAB tool and our in-house MATLAB
FE code. We used a reduction basis with 3 VMs, the
corresponding 6 MDs and 3 DSs per defect (only for
the DpROMs). More details about the RB are given
in “Appendix C.” H = 5 harmonics were selected for
the HB method (with Ns = 3H + 1 time samples per
period, the minimum number of samples by which no
sampling error is introduced in the harmonics up to the

H-th order when considering polynomial nonlineari-
ties up to the third order [63], as in our case). Given
the size of the model, we take as reference the results
of ROMd , as it would be prohibitively time and mem-
ory consuming to compute the frequency response for
FOMd . Apart from the practical issues, we justify this
choice considering on the one side the good results
obtained for lower-dimensional models (as the one pre-
sented in the previous section), and on the other side
considering that, ultimately, our DpROMs will be at
best as good as ROM-d, which is not parametric and
not approximated in its formulation.

The frequency response was obtained forcing the
system in the center of the suspendedmass with a nodal
loaddirected along the x-direction,with amplitude F =
0.4µN, and using aRayleigh dampingmatrixwithα =
105 andβ = 0. Figure 6 reports the FRs around the first
eigenfrequency of the system for the x-displacement u
(drive direction) and the z-displacementw (sense direc-
tion) for all the combinations of ξ1 = {0◦, 0.5◦, 1◦}
and ξ2 = {0%, 0.5%, 1%, 1.5%, 2%}. For the present
study, all the DpROM versions reported in Table 1 are
tested and compared.

8.3 Results

With reference of Fig. 6, considering first the effect of
the wall angle defect only, it is apparent how DpROM-
0n performances quickly degrade as soon as the param-
eter ξ1 is increased. This can be seen both in the error on
the linear eigenfrequency and especially in the overes-
timated w-response, approximately one order of mag-
nitude higher than the reference. This may be due to the
fact that the S-shaped beams are specifically designed
to minimize the cross-coupling between the drive (x-)
and sense (z-) axes created by the wall angle, so that
thew-response is so small (2 orders ofmagnitude lower
than the u-response) that it cannot be accurately cap-
tured by DpROM-0n . The same observations can be
made for DpROM-0d , as the wall angle defect by itself
represents an isochoric transformation. The responses
of all the other tested DpROMs show instead a perfect
match with the reference when ξ2 = 0%.

If the tapering defect only is considered (i.e., with
ξ1 = 0◦), we observe that DpROM-(0/1t/1)n have sim-
ilar responses, with an error on the eigenfrequency that
translates thewhole response by an approximately con-
stant Δ f . This error is expected, as the tapering is
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(a) Drive response.

(b) Sense response (out of plane).

Fig. 6 Frequency responses and backbone curves for different
defect amplitudes ξ1 (shown in degrees) and ξ2 (reported as per-
centage of the beam width) using the harmonic balance method
(5 harmonics) for: ROMd ( ), DpROM-0n ( ), DpROM-
1tn ( ), DpROM-1n ( ), DpROM-0d ( ), DpROM-1td

( ) and DpROM-1d ( ). The displacements u and w of
the center of the mass are shown (first harmonic coefficient of
the Fourier series). For each plot, the percent detuning parameter
σ = ( f − f01,d )/ f01,d × 100 is referred to the corresponding
FOMd first eigenfrequency f01,d . (Color figure online)

a volume-changing defect and integration over V0 is
thus a too coarse approximation. Moreover, the vol-
ume changed by this defect affects the suspension
beams dimensions, to which the eigenfrequencies of
the system are very sensitive. If on the one hand
DpROM-0d still presents relevant errors, on the other
hand DpROM-1td and DpROM-1d show very accurate
results in the full range of the tested ξ2.

For the remaining cases, the trends observed for
the parameters ξ1 and ξ2 individually mix. Notice that
looking at some results (e.g., u-response for ξ1 = 1◦,
ξ2 = 0.5%), it may seem that DpROM-0n gives bet-
ter results than DpROM-1n . This is, however, just a
coincidence, as for DpROM-0n the first defect shifts
the first eigenfrequency to lower frequencies while the
second defect to higher frequencies, so that the two
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Fig. 7 Transient response of the center of the suspended mass of the gyroscope for: ROMd ( ), DpROM-0d ( ), DpROM-1td
( ) and DpROM-1d ( ). The forcing is harmonic with period T0. Case with ξ1 = 1◦, ξ2 = 2%. (Color figure online)

errors in this case cancel out. Indeed, when the volume
correction is used in DpROM-0d , only the first effect
is observed, and the frequencies are shifted to the left.

In Fig. 7, we also show the transient response of
the forced node for ROMd and DpROMsd (case with
ξ1 = 1◦, ξ2 = 0.5%). Each model is forced at its own
first resonance frequency f0 (as it is usually the case
forMEMSgyroscopes)with a harmonic forcing, taking
100 samples per period and for a time span equal to 10
timesT0 = 1/ f0,with F = 50µN.The integrationwas
carried out inMATLABwith our in-house code, using a
Newmark integration scheme. Looking at the responses
along the three axes,we observe that the threeDpROMs
yield correct results but for DpROM-0d along the sense
z-direction (w component). Also, considering the z-
response, we can see that DpROM-1n is slightly better
DpROM-1tn , fact that was not very visible in the FRs.

8.4 Computational times

Table 3 reports the average time for the FR analyses
and for the construction of the different models. To
compare in terms of time ROMd and the DpROMs, it
is convenient to consider the variable costs (Tvar), i.e.,
the ones that have to be sustained for each new param-
eter realization, and the overhead costs (Toh), i.e., the
ones sustained once and for all independently from the
number of realizations. In the case of ROMd , we have
that Tvar = Tconstr+Tsim, being Tconstr the time to con-
struct the model (i.e., RB and tensors computation) and
Tsim the time for one simulation, while Toh = 0. For
ROMd indeed, there are no common overhead costs,
but a new model must be constructed for each new
realization of the parameters. In the case of DpROMs
instead, we have that Tp

var = Tp
sim and Tp

oh = Tp
constr .

(We use the superscript “p” to distinguish the paramet-
ric models from ROMd .) For the parametric models,

we have in fact to pay upfront the cost of model con-
struction, which is generally more expensive than the
one for ROMd , but thereafter only the simulation cost
must be sustained for each new case. The first triv-
ial conclusion is then that there exist a number N̄ of
parameter realizations above which DpROMs become
convenient, that is:

N ≥ N̄ =
⌈

T p
oh

Tvar − T p
var

⌉
. (45)

For N̄ to be positive and finite, it follows that

Tvar > T p
var ←→ Tconstr + Tsim > T p

sim. (46)

From Eq. (46), it can be seen how the convenience
of the parametric model over the nonparametric one
depends on the relative weight between the simulation
and construction times of the latter and the simulation
time of the former, as it can be observed in Table 3 look-
ing at the different speedups7 for the FR and transient
analyses.

That said, it is clearly difficult to draw general and
definitive conclusions on the benefits of the two solu-
tions, ROMd and DpROMs, time-wise. In the experi-
ence of the authors, transient analysis offers the best
gains, as simulation speed is very high, grows almost
linearly with the simulation time span and is less sen-
sitive to the number of dofs than other kind of analysis,
as the ones requiring continuationmethods.When con-
tinuation is required, one could potentially find greater
benefits in using a model with a low number of dofs,
so that ROMd could actually become the best choice.
We remark, however, that for ROMd , we have to take
into account also the construction cost as a variable
cost, and that for large FE models, the sole computa-
tion of structural eigenmodes can already take several
minutes, making this cost very high.

7 Speedups are computed considering the variable costs only,
with respect to ROMd .
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Table 3 Average computational times for the FR with the HB
method and for the construction of each ROM (comprising
the time to compute VMs, MDs, DSs and the tensors). ROMd
counts 9 dofs, while DpROMs 15 dofs. Apart from the construc-

tion costs, items for the DpROMs are clustered and averaged.
Notice that the construction time for ROMd is sustained for each
new parameter realization and contributes to the variable costs.
DpROM names are reported by their respective suffix

Model-II ROMd -0n -1tn -1n -0d -1td -1d

ROM construction 209 s 335 s 333 s 816 s 353 s 357 s 1063 s

HB FR 21.7 s 49.2 s

Transient analysis 0.43 s 0.51 s

Overhead cost – 335 s 333 s 816 s 353 s 357 s 1063 s

Variable cost (FR/transient) 230.7 s/209.4 s 49.2 s/0.51 s

Speedup (FR/transient) –/– 4.7×/410.6×

9 Conclusions

We presented a ROM for geometric nonlinearities that
can parametrically describe a shape imperfection with
respect to the nominal (blueprint) design, named for
brevity DpROM. The imperfection is given by the
superposition of user-defined defect shapes, whose
amplitudes are parameters of the model and can be
changed without reconstructing the model itself. This
result has been made possible thanks to a polynomial
representation of the internal forces resulting from a
two-step deformation process (which brings the nomi-
nal geometry into the defected one and then into the
deformed one) and from the approximation of the
strains obtained by a Neumann expansion. The lat-
ter allowed to eliminate rational expressions under the
hypothesis of small defects, so that the elastic inter-
nal forces are written as simple polynomials both with
respect to the displacement field representing the defect
and with respect to the actual displacement field. Using
a Galerkin projection and a modal-based approach for
selecting the RB, the reduced internal forces have been
recast in tensorial form, where the linear, quadratic
and cubic stiffness tensors are found to be functions
of a parameter vector collecting the amplitudes of the
defects imposed on the structure. Within this frame-
work, we tested different versions of the DpROM for
different degrees of approximation. In particular, we
have shown that the model we had previously devel-
oped using Budiansky’s approach corresponds to the
zeroth-order expansion of our model, integrated over
the nominal volume V0 (i.e., DpROM-0n). Finally, in
the numerical studies we showed that the higher-order
approximation DpROM-1n effectively leads to more

accurate results and that for volume-changing defects,
a large improvement can be achieved by approximating
the tensor integral over the real volume of the defec-
tive geometry (DpROM-(0/1)d ). The truncated version
DpROM-1tn/d was also presented, which has almost
the same accuracy as its complete counterpart, but
without the need to construct tensors with dimension-
ality higher than four. The computational costs were
then critically discussed, taking into account different
types of analysis. In particular, we showed that in tran-
sient studies, we can usually expect very high speedups
from the parametric models. In the case of FR analy-
sis, which we used to assess the quality of the solutions
over a range of frequencies as an alternative to multiple
time analyses, the gains will be more contained. In this
context, to reduce the dofs of both the parametric and
nonparametric ROMs and make FR analysis faster and
thus closer to transient analysis in terms of time and
speedups, we think that an a priori selection of the RB
vectors and hyper-reduction strategies would actually
be very beneficial, and they can constitute the spur for
future investigation.

A. Localization matrices L1, L2 and L3

We report in Tables 4 and 5 the expressions for the
matrices L1, L2 and L3 defined in Eq. 21, for the
plane-strain/stress continuum problem (2D case) and
the three-dimensional continuum problem (3D case).
In the tables, name subscripts aremoved to superscripts
to avoid confusion with the indexes (e.g., L(1)

i jk is a com-
ponent of L1).

123



3058 J. Marconi et al.

Table 4 Elements L(1)
i jk , L

(2)
i jk and L(3)

i jkl of the sparse 3× 4× 4 matrices L1, L2 and of the sparse 3× 4× 4× 4 matrix L3, respectively,
in the 2D case

L(1)
111 = 1, L(1)

321 = 1, L(1)
312 = 1, L(1)

222 = 1, L(1)
123 = 1, L(1)

343 = 1, L(1)
324 = 1, L(1)

244 = 1.

L(2)
111 = 1, L(2)

331 = 1, L(2)
312 = 1, L(2)

232 = 1, L(2)
123 = 1, L(2)

343 = 1, L(2)
324 = 1, L(2)

244 = 1.

L(3)
1111 = 1, L(3)

3211 = 1
2 , L(3)

3121 = 1
2 , L(3)

1331 = 1, L(3)
3431 = 1

2 , L(3)
3341 = 1

2 , L(3)
3112 = 1, L(3)

2212 = 1
2 ,

L(3)
2122 = 1

2 , L(3)
3332 = 1, L(3)

2432 = 1
2 , L(3)

2342 = 1
2 , L(3)

1213 = 1
2 , L(3)

1123 = 1
2 , L(3)

3223 = 1, L(3)
1433 = 1

2 ,

L(3)
1343 = 1

2 , L(3)
3443 = 1, L(3)

3214 = 1
2 , L(3)

3124 = 1
2 , L(3)

2224 = 1, L(3)
3434 = 1

2 , L(3)
3344 = 1

2 , L(3)
2444 = 1.

Table 5 Elements L(1)
i jk , L

(2)
i jk and L(3)

i jkl of the sparse 6× 9× 9 matrices L1, L2 and of the sparse 6× 9× 9× 9 matrix L3, respectively,
in the 3D case

L(1)
111 = 1, L(1)

421 = 1, L(1)
531 = 1, L(1)

412 = 1, L(1)
222 = 1, L(1)

632 = 1, L(1)
513 = 1, L(1)

623 = 1, L(1)
333 = 1,

L(1)
144 = 1, L(1)

454 = 1, L(1)
564 = 1, L(1)

445 = 1, L(1)
255 = 1, L(1)

665 = 1, L(1)
546 = 1, L(1)

656 = 1, L(1)
366 = 1,

L(1)
177 = 1, L(1)

487 = 1, L(1)
597 = 1, L(1)

478 = 1, L(1)
288 = 1, L(1)

698 = 1, L(1)
579 = 1, L(1)

689 = 1, L(1)
399 = 1.

L(2)
111 = 1, L(2)

441 = 1, L(2)
571 = 1, L(2)

412 = 1, L(2)
242 = 1, L(2)

672 = 1, L(2)
513 = 1, L(2)

643 = 1, L(2)
373 = 1,

L(2)
124 = 1, L(2)

454 = 1, L(2)
584 = 1, L(2)

425 = 1, L(2)
255 = 1, L(2)

685 = 1, L(2)
526 = 1, L(2)

656 = 1, L(2)
386 = 1,

L(2)
137 = 1, L(2)

467 = 1, L(2)
597 = 1, L(2)

438 = 1, L(2)
268 = 1, L(2)

698 = 1, L(2)
539 = 1, L(2)

669 = 1, L(2)
399 = 1.

L(3)
1111 = 1, L(3)

4211 = 1
2 , L(3)

5311 = 1
2 , L(3)

4121 = 1
2 , L(3)

5131 = 1
2 , L(3)

1441 = 1, L(3)
4541 = 1

2 , L(3)
5641 = 1

2 , L(3)
4451 = 1

2 ,

L(3)
5461 = 1

2 , L(3)
1771 = 1, L(3)

4871 = 1
2 , L(3)

5971 = 1
2 , L(3)

4781 = 1
2 , L(3)

5791 = 1
2 , L(3)

4112 = 1, L(3)
2212 = 1

2 , L(3)
6312 = 1

2 ,

L(3)
2122 = 1

2 , L(3)
6132 = 1

2 , L(3)
4442 = 1, L(3)

2542 = 1
2 , L(3)

6642 = 1
2 , L(3)

2452 = 1
2 , L(3)

6462 = 1
2 , L(3)

4772 = 1, L(3)
2872 = 1

2 ,

L(3)
6972 = 1

2 , L(3)
2782 = 1

2 , L(3)
6792 = 1

2 , L(3)
5113 = 1, L(3)

6213 = 1
2 , L(3)

3313 = 1
2 , L(3)

6123 = 1
2 , L(3)

3133 = 1
2 , L(3)

5443 = 1,

L(3)
6543 = 1

2 , L(3)
3643 = 1

2 , L(3)
6453 = 1

2 , L(3)
3463 = 1

2 , L(3)
5773 = 1, L(3)

6873 = 1
2 , L(3)

3973 = 1
2 , L(3)

6783 = 1
2 , L(3)

3793 = 1
2 ,

L(3)
1214 = 1

2 , L(3)
1124 = 1

2 , L(3)
4224 = 1, L(3)

5324 = 1
2 , L(3)

5234 = 1
2 , L(3)

1544 = 1
2 , L(3)

1454 = 1
2 , L(3)

4554 = 1, L(3)
5654 = 1

2 ,

L(3)
5564 = 1

2 , L(3)
1874 = 1

2 , L(3)
1784 = 1

2 , L(3)
4884 = 1, L(3)

5984 = 1
2 , L(3)

5894 = 1
2 , L(3)

4215 = 1
2 , L(3)

4125 = 1
2 , L(3)

2225 = 1,

L(3)
6325 = 1

2 , L(3)
6235 = 1

2 , L(3)
4545 = 1

2 , L(3)
4455 = 1

2 , L(3)
2555 = 1, L(3)

6655 = 1
2 , L(3)

6565 = 1
2 , L(3)

4875 = 1
2 , L(3)

4785 = 1
2 ,

L(3)
2885 = 1, L(3)

6985 = 1
2 , L(3)

6895 = 1
2 , L(3)

5216 = 1
2 , L(3)

5126 = 1
2 , L(3)

6226 = 1, L(3)
3326 = 1

2 , L(3)
3236 = 1

2 , L(3)
5546 = 1

2 ,

L(3)
5456 = 1

2 , L(3)
6556 = 1, L(3)

3656 = 1
2 , L(3)

3566 = 1
2 , L(3)

5876 = 1
2 , L(3)

5786 = 1
2 , L(3)

6886 = 1, L(3)
3986 = 1

2 , L(3)
3896 = 1

2 ,

L(3)
1317 = 1

2 , L(3)
4327 = 1

2 , L(3)
1137 = 1

2 , L(3)
4237 = 1

2 , L(3)
5337 = 1, L(3)

1647 = 1
2 , L(3)

4657 = 1
2 , L(3)

1467 = 1
2 , L(3)

4567 = 1
2 ,

L(3)
5667 = 1, L(3)

1977 = 1
2 , L(3)

4987 = 1
2 , L(3)

1797 = 1
2 , L(3)

4897 = 1
2 , L(3)

5997 = 1, L(3)
4318 = 1

2 , L(3)
2328 = 1

2 , L(3)
4138 = 1

2 ,

L(3)
2238 = 1

2 , L(3)
6338 = 1, L(3)

4648 = 1
2 , L(3)

2658 = 1
2 , L(3)

4468 = 1
2 , L(3)

2568 = 1
2 , L(3)

6668 = 1, L(3)
4978 = 1

2 , L(3)
2988 = 1

2 ,

L(3)
4798 = 1

2 , L(3)
2898 = 1

2 , L(3)
6998 = 1, L(3)

5319 = 1
2 , L(3)

6329 = 1
2 , L(3)

5139 = 1
2 , L(3)

6239 = 1
2 , L(3)

3339 = 1, L(3)
5649 = 1

2 ,

L(3)
6659 = 1

2 , L(3)
5469 = 1

2 , L(3)
6569 = 1

2 , L(3)
3669 = 1, L(3)

5979 = 1
2 , L(3)

6989 = 1
2 , L(3)

5799 = 1
2 , L(3)

6899 = 1
2 , L(3)

3999 = 1.

B Tangent stiffness matrix derivatives

The virtual variation wrt u of the internal elastic forces
as defined in Eq. (20) writes

δfint =
∫

Vo

[
GT (H + A1 + A2 + 2A3A1)

T C

×
(
H + 1

2
A1 + A2 + A3A1

)
Gδu

+ GT (H + A1 + A2 + 2A3A1)
T C

×
(
1

2
δA1 + A3δA1

)
Gu+

+ GT (δA1 + 2A3δA1)
T C

×
(
H + 1

2
A1 + A2 + A3A1

)
Gu

]
dVo. (47)

Recalling that A1δθ = δA1θ , we can write
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Fig. 8 RB modes for Model-II, normalized in order to have a maximum displacement of 1 μm and with a scale factor of 50×. The
colormap indicates the displacement magnitude (blue is zero, and red is 1). (Color figure online)

δfint =
∫

Vo

[
GT (H + A1 + A2 + 2A3A1)

T C

× (H + A1 + A2 + 2A3A1)Gδu

+ GT δAT
1 N

]
dVo,

(48)

being

N =
(
I + 2AT

3

)
C

(
H + 1

2
A1 + A2 + A3A1

)
Gu.

(49)
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The second term on the right-hand side of Eq. (48) can
be rewritten to put in evidence the displacement virtual
variation δu as

δ f ′′
I =

∫

Vo
Gi I L1 j ikGklδul N j dVo, (50)

where Einstein notation was used for convenience. The
tangent stiffness matrix therefore writes:

Kt = K′ + K′′ (51)

where

K′ =
∫

Vo
GT (H + A1 + A2 + 2A3A1)

T C

× (H + A1 + A2 + 2A3A1)G dVo, (52)

K ′′
I J =

∫

Vo
Gi I L1 j ikGk J N j dVo. (53)

Substituting u = Φ iηi and ud = U jξ j in Eq. (51), tak-
ing the derivative wrt either ηi and/or ξ j and evaluating
the resulting expressions at equilibrium and with zero
defect amplitudes, as required by Eqs. (38)–(41), we
can write the derivatives of Kt as:

∂Kt

∂η j

∣∣∣∣
0

=
∫

Vo

[
GT

(
HTCA1 j + A1

T
j CH

)
G

+GT [
(L1 · G) ·11 (CHGΦi )

] ]
dVo,

(54a)
∂Kt

∂ξ j

∣∣∣∣
0

=
∫

Vo
GT

(
HTCA2 j + A2

T
j CH

)
G dVo,

(54b)

∂2Kt

∂η j ∂ξk

∣∣∣∣
0

=
∫

Vo

[
GT

(
A2

T
k CA1 j + A1

T
j CA2k

+2A1
T
j A3

T
k CH + 2HTCA3kA1 j

)
G

+GT
[
(L1 · G) ·11 (CA2 + 2AT

3 CH)GΦi

] ]
dVo,

(54c)

∂2Kt

∂ξ j ∂ξk

∣∣∣∣
0

=
∫

Vo
GT

(
A2

T
j CA2k + A2

T
k CA2 j

)
GdVo,

(54d)

where recalling that ηi and ξ j are scalars, we used
A1(GΦ iηi ) = A1iηi and A2(GU jξ j ) = A2 jξ j (same
for A3) to avoid a cumbersome notation, and where ·i j
denotes the contraction of the i-th dimension of the first
term with the j-th dimension of the second term.

C RB for Model-II

Also forModel–II, the RB selection criterion described
in Remark 6 is adopted and eigenmodes up to 3 times

the first eigenfrequency are retained. The reduction
basis is thus formed as:

V = [Φ1, Φ2 ,Φ3, θ11, θ12, θ13 , θ22, θ23, θ33,

�1,1, �2,1 ,�3,1, �1,2, �2,2 ,�3,2], (55)

that is, 3 VMs and all their corresponding MDs and
DSs are included. Figure 8 shows the mode shapes.
Apart from VMs, the interpretation of these vectors is
in general not trivial. One can, for instance, recognize
in θ33 a necessary element to correctly represent the
rotation happening in mode Φ3 and in θ11 the stretch-
ing of the suspension beams required to capture their
nonlinear behavior. To better inspect the contribution
of DSs, we plotted �⊥

i,k , i.e., �i,k orthogonalized with

respect toΦ i (via Gram–Schmidt).�⊥
1,1 is particularly

significant as it represents the out-of-plane motion of
the structure induced on the first VM (x-polarized) by
the presence of thewall angle defect, which is responsi-
ble for the gyroscope quadrature error. Similarly, it can
be observed how �⊥

2,1 represents an in-plane motion
associated with the second VM (z-polarized) due to the
wall angle defect. The contributions of�⊥

i,2 are instead
local and restricted to the suspension beams, as it can
be expected given the local nature of the tapering.
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