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Abstract. Damage diagnosis plays a crucial role in Structural Health Monitoring 
(SHM) by facilitating the identification, localization, and estimation of the extent of 
defects in structures. Lamb waves, known for their sensitivity to defects, are widely 
employed in SHM methods for thin-walled structures. Most of those traditional 
methods require extracting damage indices from Lamb wave signals. This operation 
involves substantial post-processing and implies that part of the diagnostic 
information is lost. To solve those limitations and improve the damage diagnosis 
accuracy, machine learning methods have recently been proposed in the literature. 
However, the reluctance of the industrial sector to adopt conventional black-box 
models due to their lack of explainability poses a challenge. 

This study proposes a physics-informed machine-learning approach to address 
the limitations of standard black-box methods. Particularly, a Physics-Informed 
Neural Network (PINN) is implemented to predict the density of an aluminium plate 
based on measurements of plate displacements caused by Lamb wave excitation. This 
is made possible by the implementation of a specific loss function, which leverages 
physical knowledge in the form of the partial differential equation governing Lamb 
waves. 

Predicting the plate density based on measured displacements eliminates the 
need for artificial damage indices, utilizing the density variation itself to detect and 
localize damage. Additionally, the outputs of the PINN, rooted in physics equations, 
offer enhanced explainability compared to standard black-box models. The versatility 
of this framework extends to predicting material properties distributions for 
components, and efforts will be directed towards adapting the method for composite 
materials, where the approach may pose additional challenges. 
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Introduction  

Structural Health Monitoring (SHM) is a monitoring strategy that relies on a sensor 
network permanently installed on the structure or component of interest to allow its 
continuous monitoring, significantly reducing the time between two consecutive inspections. 
Among the several non-destructive techniques (NDT) used in the SHM framework, 
ultrasonic-guided waves, and in particular the Lamb waves, proved to be effective for thin-
walled structures [1] [2] [3] [4] by exploiting a piezoelectric (PZT) sensor network for both 
wave excitation and reception. Focusing on Lamb waves, they have been extensively used 
for imaging and tomographic methods [5] [6] [7]. However, these methods require the 
extraction of features from the signals to obtain damage indexes (DIs) [1] [8] [9]. Similarly, 
machine learning (ML) algorithms are being applied due to the necessity of having real-time, 
or almost real-time, performance for SHM purposes. However, conventional ML approaches 
often are supervised methods and do not solve the need for a pre-processing phase to extract 
damage features from signals [10] [11] [12].  

Therefore, there is a need for alternatives belonging to the unsupervised framework 
scheme. It is in this framework that Physics-Informed Neural Networks (PINNs) are gaining 
growing interest. This class of algorithm combine the information about the system physics, 
thanks to analytical models, with the neural networks’ capacity to learn from the data. This 
is achieved by implementing tailored loss functions based on the Partial Differential 
Equations (PDEs) describing the phenomenon of interest [13] [14] [15] [16].  
In this work, a PINN-based framework is developed focusing on the estimation of the 
material properties relying on Lamb waves signals measured through a PZT sensor network 
avoiding any pre-processing and DIs extraction phase. In the literature, but outside the SHM 
framework, two approaches are proposed for acoustic wave reconstruction (e.g., 
displacement field reconstruction) and inversion (e.g., material properties estimation given 
the displacement field); (i) the first relies on two neural networks trained together, one for 
material distribution prediction and the other for reconstructing the displacement field [17], 
while (ii) the second approach exploits a finite difference solver to predict the displacements, 
exploiting only a neural network for the estimation of material properties [18].  

Therefore, in this work, the two approaches have been tested and compared for 
damage localisation simulating Lamb wave excitations for SHM purposes. Initially, the 
methods are compared for a 1D non-homogeneous clamped-clamped string. Then, the second 
approach was tested to perform damage localisation in a 2D domain represented by a plate 
section subjected to plain strain and constrained with clamps at both ends. In both case 
studies, the wave is a symmetric mode Lamb wave, as commonly used in the SHM field, and 
is excited in the middle of the domain with a tone burst.  

1. Methodology  

1.1 Theoretical Background  

Lamb waves refer to ultrasonic-guided waves that move through slender structures 
like plates and shells. In contrast to bulk waves, Lamb waves are restricted to the structure's 
thickness. This confinement enables them to engage with defects, boundaries, and other 
features within the material. This characteristic enhances their effectiveness in identifying 
flaws in various engineering components, such as aircraft wings, pipelines, and bridges. 
Lamb waves’ behaviour can be described by Eq. 1 
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 ρ𝑢𝑢𝑡𝑡𝑡𝑡 = ∇ ⋅ (σ) + 𝑓𝑓 (1) 

Eq. 1  

where ρ is the density, 𝑓𝑓 is the forcing vector, 𝑢𝑢𝑡𝑡𝑡𝑡 is the second derivative of the displacement 
with respect to the time variable 𝑡𝑡, and ∇ ⋅ is the divergence operator applied to stress tensor 
𝜎𝜎. The stress tensor hinders the material properties through the constitutive relationship for 
elastic material by linking the Young’s modulus 𝐸𝐸 and the Poisson ratio ν with the 
displacement vector 𝑢𝑢. Eq. 1 can be used to describe Lamb wave propagation in one-
dimensional, two-dimensional, and three-dimensional domains. For the sake of simplicity, 
only the theoretical steps for the mono-dimensional wave equation are described in this work, 
which represents an axial wave that propagates along the 𝑥𝑥 coordinate through a one-
dimensional string with the two ends fully constrained, e.g., clamped.  

The introduction of variable material properties, essential for representing real 
scenarios such as damages and holes within the components, can be achieved by making 
explicit the constitutive law for elastic materials in Eq. 1. This allows the definition of the 
wave speed 𝑐𝑐(𝑥𝑥) as in Eq. 2, where the wave speed is a function of the 𝑥𝑥 location on the 
string. For the sake of simplicity, the variable wave speed can be considered as the product 
of a constant term 𝑐𝑐0, that is defined by the ratio between Young’s modulus 𝐸𝐸 and density 𝜌𝜌, 
with a variable parameter 𝛾𝛾(𝑥𝑥) that is a function of the position on the string. The parameter 
𝛾𝛾(𝑥𝑥) lies in the domain [0; 1] and, therefore, is representative of the actual distribution of the 
material properties along the domain. For instance, if there are no flaws, the actual value of 
the material properties should be equal to the nominal one (𝛾𝛾 = 1 for every point in the 
domain) while cracks or any damage will reduce the stiffness of the material, leading to 𝛾𝛾 <
1 where the damage is present. 
 
 c(x)2 = γ(x)c02 = γ(x)

E
ρ

(2) 
Eq. 2 

 

Therefore, the general wave equation (Eq. 1) can be rewritten in its one-dimensional 
form as reported in Eq. 3, where 𝑢𝑢 is the displacement in the 𝑥𝑥 direction and 𝑓𝑓 is the force 
applied in the same direction. 
 
 
 

𝑢𝑢𝑡𝑡𝑡𝑡 = 𝑐𝑐02
∂
∂𝑥𝑥

�γ(𝑥𝑥)
∂𝑢𝑢
∂𝑥𝑥
� +

𝑓𝑓
ρ

  (3) 
Eq. 3 

 

1.2 Workflow  

To solve the inversion problem for the wave equation and, thus, to perform damage 
identification, this work relies on Physics-Informed Neural Networks (PINN). In this 
framework, neural networks adapt data to the governing laws of physics of the system of 
interest. This is achieved by incorporating the equations describing the underlying physical 
phenomena as constraints, e.g., loss function, during the neural network training process. 
PINNs are advantageous for efficiently solving partial differential equations, modelling 
complex systems, and adapting to various data types [13] [14] [15] [16]. 

The first step is to develop tools able to solve the wave equation, with the aim of 
being implemented in the PINN framework. For brevity, only the procedure used to realise 
the finite difference solver for the mono-dimensional wave equation of Eq. 3 is shown. 



4 

The domain selected is a one-dimensional string of length 𝐿𝐿𝑥𝑥 with the edges fully 
constrained and, thus, the displacement 𝑢𝑢 at those points is set to zero. The wave equation is 
then solved in the finite difference framework using the following stencils for the partial 
differential equation (Eq. 4), and boundary (Eq. 5) and initial (Eq. 6) conditions: 
 
 

𝑢𝑢𝑖𝑖𝑛𝑛+1 =  2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1  +  𝑐𝑐2
𝑑𝑑𝑡𝑡2

2𝑑𝑑𝑥𝑥2
[(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑖𝑖+1)(𝑢𝑢𝑖𝑖+1𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛)] + 

−𝑐𝑐2
𝑑𝑑𝑡𝑡2

2𝑑𝑑𝑥𝑥2
[(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑖𝑖−1 )(𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖−1𝑛𝑛 )] + 

𝑑𝑑𝑡𝑡2

𝜌𝜌
𝑓𝑓𝑖𝑖𝑛𝑛)

 

Eq. 4 

(4) 

 𝐵𝐵𝐵𝐵:𝑢𝑢0𝑛𝑛 = 0; 𝑢𝑢𝑁𝑁𝑥𝑥
𝑛𝑛 = 0  (5) 

Eq. 5  

 𝐼𝐼𝐼𝐼:𝑢𝑢𝑖𝑖0 = 0; 𝑢̇𝑢𝑖𝑖0 = 0 (6) 
Eq. 6 

 
where 𝑖𝑖 is the index for the space position node and can assume values between 0 and 𝑁𝑁𝑥𝑥, 
while 𝑛𝑛 is the index for time, varying between 0 and 𝑁𝑁𝑡𝑡. Consider that 𝑁𝑁𝑡𝑡 + 1 is the number 
of time nodes and 𝑁𝑁𝑥𝑥 + 1 is the number of spatial nodes of the grid, consequently 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 
are defined as the step in space and time, respectively in Eq. 7 and in Eq. 8 where 𝐿𝐿𝑥𝑥 is the 
length of the domain in 𝑥𝑥 direction, while 𝐿𝐿𝑡𝑡 is the end time of the simulation. 
 
 
 dx =

Lx
𝑁𝑁𝑥𝑥

(7) 
Eq. 7 

 

 dt =
𝐿𝐿𝑡𝑡
𝑁𝑁𝑡𝑡

(8) 
Eq. 8 

 

Consider that the mono-dimensional wave equation is too simple to model Lamb 
wave behaviour, hence during thesis work a more complex solver has been developed for the 
two-dimensional case study. The solvers have been validated using the Abaqus software 
package. 

1.3 Physics-Informed Framework Definition   

The two methods developed make use of a neural network that predicts the 
distribution of the material on the domain, but they differ in how the loss function is defined. 
The prediction of material distribution is the focus of the two PINN-based methods. For the 
networks, the spatial position is the input, and the output is the material distribution 𝛾𝛾(𝑥𝑥).  
The first approach, namely the Method 1, a neural network is used to solve the inverse 
problem based on the measured displacement 𝑢𝑢𝑚𝑚 [19], therefore, predicting the material 
properties distribution 𝛾𝛾. The loss function is the residual of the partial differential equation.  
The alternative approach, called Method 2, couples a PINN with a numerical solver and is 
developed starting from the work presented in [18], adapting the latter to deal with Lamb 
waves. Such a method is selected due to the reduction in complexity of the optimization 
process since this method relies on a finite difference solver that computes the wave field 𝑢𝑢 
using the material distribution 𝛾𝛾 predicted from the PINN. Therefore, the partial differential 
equation is always satisfied, and the loss function is calculated as the difference between the 
measured displacement 𝑢𝑢𝑚𝑚 and the predicted one. A schematic of these approaches is given 
in Fig. 1(a) for Method 1 and in Fig. 1(b) for Method 2. 
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(a) 

 

(b) 

Fig. 1. Schematics of (a) Method 1 and (b) Method 2, e.g., physics-informed method coupled with finite 
difference solver. 

2. Case studies 

In this section, the two case studies analysed are described. The first one is a one-
dimensional non-homogeneous clamped-clamped string, while the second one is a plate 
section subjected to plain strain and constrained with clamps at both ends. The first case study 
is used to compare the two methods presented in Section 1.3 Physics-Informed Framework 
Definition. Instead, only the Method 2 is tested with the second case study. 

2.1 1D Case Study: String 

The simulation of a wave in a one-dimensional domain is comparably simple to 
propagating Lamb waves in a plate and thus it makes the one-dimensional case a perfect 
environment to compare the two methods.  

An aluminium string clamped at both ends is considered, with a length of 𝐿𝐿𝑥𝑥 =
10 𝑐𝑐𝑐𝑐. A force is applied in the middle using a sine wave modulated with a Hanning window 
with a specified number of cycles, 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3, to reproduce the lamb wave excitation. There 
are 9 sensors, equally spaced along the string, and no sensor is placed on the clamped ends 
as shown in Fig. 2. A 1 𝑐𝑐𝑐𝑐 length damage, represented by a 𝛾𝛾 = 0.5, is present in the string 
and is centred at 7 𝑐𝑐𝑐𝑐 from the left end of the string. 

The neural network selected is an FFNN for both methods, with 𝑥𝑥 as input and 𝛾𝛾 as 
output, it has 4 hidden layers of 5, 10, 10, and 5 neurons per layer. The excitation force 
frequency is set to 25 𝑘𝑘𝑘𝑘𝑘𝑘 for Method 1 for numerical stability and to 300 𝑘𝑘𝑘𝑘𝑘𝑘 for Method 
2. 
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Fig. 2. Mono-dimensional case study: the red dots represent the sensor placement while the arrow is the 

excitation force, which is applied in the centre of the string. 

2.2 2D Case Study: Plate Section 

Method 2 is tested on a two-dimensional case study to correctly model Lamb waves, 
which is not feasible in the mono-dimensional model.  

The domain selected is a plate section with two sides clamped and the other two free 
to move, the two dimensions are the thickness and length of the plate, the other dimension is 
not considered due to the plane strain condition. The plate section is made of aluminium and 
has the following dimensions 5 × 5 × 0.1 𝑐𝑐𝑐𝑐. The excitation force is placed in the middle 
with frequency 𝑓𝑓 = 400 𝑘𝑘𝑘𝑘𝑘𝑘 with a configuration that excites the A0 mode. Four equally 
spaced sensors are placed on the upper surface and no sensor is placed at the clamped sides 
as represented in Fig. 3. The neural network selected is the same as the one described in the 
previous case. The material distribution is considered constant along the thickness, and 
damage is simulated by imposing 𝛾𝛾 = 0.5 for 𝑥𝑥 ∈ [3; 3.75]. 
 

 
Fig. 3. Bi-dimensional case study: the red dots represent the sensor placement while the arrows are the 

excitation forces, applied in the centre of the plate section. 

3. Results and discussion 

The results of the two methods presented in Section 1.3 Physics-Informed Framework 
Definition, namely Method 1 and Method 2, for the two case studies described in Section 2. 
Case studies. 

Starting with the 1D case study, Fig. 4 shows the results of (a) Method 1 and (b) 
Method 2. The methods proved to be sensitive to the presence of the damage by showing a 
variation of the estimated material properties distribution. However, it can be noted that 
Method 2 outperforms Method 1 in terms of accuracy by closely following the actual 𝛾𝛾, 
represented in orange, for both damage position and quantification of the loss of the material 
properties. 

However, the increase in computational cost due to resorting to the finite difference 
solver at each iteration of the training process is not negligible: Method 1 completed training 
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in 500 𝑠𝑠, while Method 2 needed 2000 𝑠𝑠 to achieve convergence. Thus, the improved 
accuracy comes at the cost of having a four times higher computational cost. 

 

(a) 

 

(b) 

Fig. 4. Prediction of material properties distribution for (a) Method 1 and (b) Method 2 for the mono-
dimensional case study. 

Eventually, only the second method, e.g., Method 2, is applied in the 2D case study thanks 
to its proven higher accuracy with respect to the other method. Fig. 5 shows the prediction 
of the proposed method, represented in blue, against the actual 𝛾𝛾 distribution, in orange. As 
for the mono-dimensional case study, Method 2 proves to be reliable since it can predict the 
reduction in material properties and the extent of the damage. Even in this case, the great 
flaw of this method is the computational time since the increased complexity of the finite 
difference solver, which is due to the increased dimensionality of the problem, raises the 
training time to 20000 𝑠𝑠 (which is ten times higher than for the 1D case). 
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Fig. 5. Prediction of the material properties for Method 2 in the bi-dimensional case study. 

To conclude, this work proves that Method 2 can guarantee higher performances with 
respect to Method 1, with the drawback of a significantly increased computational cost. The 
training time increases noticeably with the increased dimensionality of the problem, 
questioning the application of this method for more complex case studies. However, the high 
accuracy of this approach justifies the efforts for future improvements towards a reduction 
of the computational effort required by this method. 

4. Conclusion  

In this study, two physics-informed machine learning methods for damage detection 
are presented. Specifically, the methods are designed for thin-walled structures and exploit 
Lamb waves without relying on feature extraction. The methods exploit a Physics-Informed 
Neural Network (PINN) for the prediction of the material properties distribution of the 
component under analysis. 

The first method, namely Method 1, uses the measured displacements to predict the 
material properties distribution by minimising the residual of the partial differential equation 
governing Lamb wave propagation. The other method, e.g., Method 2, exploits a finite 
difference solver to obtain the displacement field based on the estimation of the distribution 
of the material properties, which is optimised based on the minimisation of the error between 
the measured displacement and the one obtained with the solver. 

Two case studies were analysed: a 1D and a 2D case study. In the mono-dimensional 
case, both methods effectively detected the damage location in a clamped-clamped string. 
However, the first method had limitations in accurately quantifying material properties in the 
damaged region and suffered from numerical stability problems. The second method 
overcame these limitations but had increased computational demands by about 4 times.  

Regarding the two-dimensional case, only the second method was tested on a plate 
under plane strain, demonstrating its ability to detect the damage location and evaluate wave 
speed changes in the damaged area at the expanses of a computational cost of 10 times the 
one for the 1D case study for the same method. Both the good performances and the high 
computational demand of Method 2 are due to the embedded finite difference solver. 
Therefore, it is mandatory to improve efficiency for effectively implementing this method 
for SHM purposes. Some options can be the use of gradient clipping methods, loss function 
weighting, GPU  training, and GPU implementation of finite difference solvers. 

As a prospective expansion, evaluating the method's capacity for damage detection 
using sensor data obtained from an actual plate equipped with piezoelectric sensors could 
enhance its assessment in a real-world context. 
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Eventually, this work paves the way for the application of unsupervised physics-
informed machine learning in the framework of Lamb waves-based damage detection for 
SHM purposes. 
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