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Abstract: In this work, we prove a two-scale homogenization result for a set of diffusion-coagulation
Smoluchowski-type equations with transmission boundary conditions. This system is meant to describe the
aggregation and diffusion of pathological tau proteins in the cerebral tissue, a process associated with the onset
and evolution of a large variety of tauopathies (such as Alzheimer’s disease). We prove the existence, uniqueness,
positivity and boundedness of solutions to the model equations derived at the microscale (that is the scale of sin-
gle neurons). Then, we study the convergence of the homogenization process to the solution of a macro-model
asymptotically consistent with the microscopic one.
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1 Introduction

Let us consider a bounded open set Q in R® with a smooth boundary 0Q. This domain is decomposed into
long cylindrical cavities, periodically distributed with period €, having generators parallel to the z-axis. More
precisely, given a bounded domain D in R?, let us set Q:=D X [0,L] with x € D and z € [0, L]. We denote
by I';, :=0D X [0, L] the lateral boundary and by I';:=D X {0,L} the upper and lower sides of dQ. Let ¥ =
[0,1] x [0,1] be the unit periodicity cell in R? having the paving property, i.e. the disjoint union of translated
copies of Y can indeed cover the whole space. Let X be an open subset of ¥ with a smooth boundary R = 90X,
such that X C IntY, and Z = Y\X. Then, we define G, to be the set of all translated images of exX:

Goi= U{etk+X) | ek +X) C Dk € 2}

and D, = D\G,, as well as
R.:=U {d(e(k+)_()) le(k+X) C D,k € zz}.

Thus, the geometric structure of the domain in R3 is given by: I1,.:=G, x [0,L], Q.:=D, x [0, L], and
I'.:=R, X [0, L]. We refer to Figure 1 to illustrate the geometry of the problem.

Throughout this paper, € will denote the general term of a sequence of positive reals which converges to
zero. Let us introduce two nonnegative vector-valued functions, u¢: [0, T] X I, — RM, ué(t, x, z) = (uf ey ujw)
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Figure 1: Geometry of the problem.

and v°: [0, T] X Q, — RM ve(t, x,z) = (Uf s vfw) which solve the following system of discrete Smoluchowski-
type equations [1] with transmission boundary conditions.
For1 <m < M we have:

ous ~ .
6tm — €' Dy Al — D 02us, =L, (w) + f(t,x, 2) in [0, T] X 1,
ave .
alf" —d, Av; = N, (1°) in[0,T] X Q.
€Dy Vyts - v, = —C (X, 2) (U5, — 05) on [0, T] X T,
< dy VU5 - Ve = €Dy Vs - v, on [0, TIXT, D
Vo v =0 on [0, T XTI,
o,u;, = d,v;, =0 on [0, TIxTg
us (0,x,2) = Us (x,2) in I,
v5(0,x,2) =0 inQ,
where
M
L) = —Z al,jufuj 1.2)
j=
1 m—1 M
L, W) = 3 ajm—j u? u;_l Z am’jufnuj A<m<M) 1.3)
j=1 j=1
1
Ly() =5 > u ug 1.4)
j+k>M
i
M
Ny (v°) = = )’ by oS (15)

j=1
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m—1 M
Np(0) = % D by UV = D b U5t (1< m < M) (16)
j=1 j=1
1
Ny(@) = 5 Zbﬂqﬁ 1.7)
j+k>M
k<M
j<M
and
fet, x,z2) ifm=1
fot,x,z) =
" 0 ifl<m<M
. U (x,2) > 0 ifm=1
Um(x, zZ) =
0 ifl<m<M

In the system of equations above, v, is the outer normal on I', with respect to Q. f°(t,x,z) €
cl(o, 7] x I,), ¢;x,2) € LT )(i=1,...,M) and Ui(x,2) € L*>(I1,) are given positive functions. In (1.1), the
unknowns us, and vy, (1 <m < M) represent the concentration of m-clusters, that is, clusters consisting of m
identical elementary particles (monomers), while u7 and vj, take into account aggregations of more than M — 1
monomers. We assume that the only reaction allowing clusters to coalesce to form larger clusters is a binary
coagulation mechanism, while the approach of two clusters leading to aggregation results only from a diffusion
process. In particular, we indicate with D, Di, d; (1 <1< M) the positive diffusion coefficients of i-clusters in
different regions of the domain and along different directions. The kinetic coefficients a; ; and b; ; represent a
reaction in which an (i + j)-cluster is formed from an i-cluster and a j-cluster. Therefore, they can be interpreted
as ’coagulation rates’ and are symmetric a; j=a;; > 0, bi, i= b]-’,- >00,j=1,...,M).

Our main statement shows that it is possible to homogenize the system of Equations (1.1) as € — 0.

Theorem 1.1. Let v% (t,x,2) and u; (t,x,z) (1 <m < M) be a family of weak solutions to the system (1.1)
(see Definition 2.1). The sequences Ui VXU;, us, €quf,. (1 <m < M), two-scale converge to: v,(t,X,z),
V, u,(t, x,2) + Vyz”)m(t,x, ¥,2), uy(t,x,y,2), Vyum(t, X,y,z), respectively. The limiting functions v, €
ﬁ&RHﬁmmW&RLMMJ%emmﬂxQﬂWWMJ%eHmJMQﬂWmﬂm&ﬁﬂmx
Y)) are the unique solutions of the following two-scale homogenized systems.

For1 < m < M we have:

1Z| aaLt’”(t, X, 2) = divy[dy A V,,0,,(6,X, 2)| = d,y 12] 020,,(t, X, 2)

1.8)
= /cm(x, Z) (W, (t, X, y,2) — U,(t, X, 2)), do(y) + |Z| N, (0) in [0, T] X Q
r
[AV,v,(tx,2)]-v=0 on [0,T] XTI, 1.9)
0,0,(t,x,2) =0 on [0,T] XTIy (1.10)
U,t=0,x,2) =0 in Q 111

where
M
Nl(U) = _Z bl,jul(t’ X, Z) U](t9 Xs Z)
j=1

M

m-1
1
N(©) = 5 D by (X2 U (6.X,2) = 3 by (6. X, D)t x,2) (1< m < M)
j=1 j=1
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1
Ny () = 3 Z b; i vi(t, x,2) vy (t, X, 2)
k=M

k<M
J<M

In (1.8) and (1.9), A is a matrix with constant coefficients defined by

Z
with &; being the ith unit vector in R3, and (w;),;; the family of solutions of the cell problem

—divy[Vywi +]=0 inZ
(Vyw;+8)-v=0 onT

y-wy) Y- periodic

appearing in the limiting function

3

D63, = 3 w0) Wn(ex7) (A<m<M)
i=1 i

Furthermore, for 1 < m < M we have:
ou, 5 32
ot 6%3:2) = Dy Ay (6,X, Y, 2) = Dy O U (£, X, Y, 2)

=L, + f,(t,x,y,2) t>0, ,2)€Q, yeX
D, Vyum(t,x,y, zZ)-v

= —Cp(X, 2) (U (t, X, ¥, 2) — v, (t, X, 2)) . t>0, x,20€Q, yel

O, Un(t,x,y,2) =0 t>0, x,27€Dx{0,L}, yeX
Un(t =0,X,,2) = Up(x, y,2) 2 EQ, yeX
where
M
L= —Z al’jul(t, X, y,2) uj(t, X, ¥,7)
=
—1 M
Ly = (t ) Ut )= (t )u(t ) A<m<M)
(U —ijz:;a,;m_juj X, Y, 2) Uy (6, X, Y, 2 ];am,jum XY D UL, X, Y, 2 m
1
LyW) = 2 2 a; Uj(t,X,y,Z) w(t, x,y,2)
Jjtk>M
k<M
<M
and
ft.x,y,2) fm=1
fm(ts)(,y, Z) =
0 fl<m<M
U,(x,y,2) >0 ifm=1
U,X,y,2) = 16y f

0 ifl<m<M

(1.12)

(113

(1.14)

(1.15)

(1.16)

117

(1.18)
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1.1 Motivation

The system of equations in (1.1), known under the generic name of discrete Smoluchowski equations with dif-
fusion, is meant to model the aggregation and diffusion of the pathological tau protein in the brain, a process
associated with the development of a large variety of cerebral diseases called tauopathies. Indeed, pathologi-
cal accumulations of hyperphosphorylated tau protein aggregates, known as neurofibrillary tangles (NFTs), are
detected in several neurodegenerative tauopathies, including Alzheimer’s disease (AD) [2]-[5]. Tau is a highly
soluble, natively unfolded protein which is predominantly located in the axons of neurons of the central nervous
system. Here, its physiological function is to support assembly and stabilization of axonal microtubules. Under
pathological conditions, tau can assume abnormal conformations, due to two transformations: hyperphospho-
rylation and misfolding. In particular, hyperphosphorylation has a negative impact on the biological function of
tau proteins, since it inhibits the binding to microtubules, compromising their stabilization and axonal transport,
and promotes self-aggregation. Thus, misfolded tau monomers constitute the building unit for the formation of
oligomers, which in turn lead to highly structured and insoluble fibrils. For many years, cell autonomous mech-
anisms were believed to be responsible for the evolution of neurodegenerative diseases, implying that the same
aggregation events occur independently in different brain cells. However, accumulating evidence now demon-
strates that the progression of tau pathology reflects cell-to-cell propagation of the disease, achieved through the
release of tau into the extracellular space and the uptake by surrounding healthy neurons [6], [7]. Extracellular
tau then seeds physiological tau in the recipient cells propagating the pathological process through neural path-
ways made by bundles of axons (called tracts). This mechanism, often referred to as ‘prion-like’ propagation of
tau pathology, has led to the idea that extracellular tau could be a novel therapeutic target to halt the spread of
the disease [8]. For this reason, in the present work, we focus on a model which describes, in a simplified way,
the tau diffusion along tracts starting from the microscopic release mechanism.

In this context, the set Il, represents a bundle of axons in the white matter (a tract), while the domain
€. indicates the extracellular region filled by cerebrospinal fluid. The variables u¢, > 0 and v¢, > 0 refer to the
concentration of m-clusters of hyperphosphorylated tau spreading within the neuronal axons (represented by
thelong cylindrical cavities) and in extracellular space, respectively. Concerning the diffusion process, the choice
made in our model to define two coefficients reflects the biological properties of the tau protein that diffuses
differently in extracellular space and in the axon [2]. Moreover, within the neuronal axon, we further distinguish
between two different diffusion coefficients, since tau propagates preferentially along the z-axis of the cylinder
that represents the axon. The initial condition Uf (x, z), given at t = 0 by the concentration of monomers diffusing
within the axons, represents the amount of endogenous misfolded tau protein, while the source term f(t, x, z),
in the system (1.1) for m = 1, indicates the production of hyperphosphorylated tau monomers.

1.2 Background of this work

There is a large literature related to the use of the Smoluchowski equation in various physical contexts (e.g.,
Refs. [9]-[14]), but only a few works concerning its application in the biomedical field [15], [16]. Recently, the
important role of the Smoluchowski equations in modelling at different scales the evolution of neurodegen-
erative diseases, such as AD, has been investigated in Refs. [15], [17]-[23]. In fact, the present work is part of
a broader research effort carried on by various groups of researchers with diverse collaborations on math-
ematical models of the progression of AD, and represents an initial bridge between microscopic models of
tau diffusion developed in biology and macroscopic mathematical models based on graph theory. To this end,
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the homogenization technique, introduced by the mathematicians in the seventies to carry out a sort of aver-
aging process on the solutions of partial differential equations with rapidly varying coefficients or describing
media with microstructures, has been applied [24]-[30].

It is nowadays generally accepted that tau protein, in synergetic combination with another protein, the so-
called f-amyloid peptide, plays a key role in the development of AD (see Ref. [31]). We refer for instance to Ref.
[15] for a discussion on macroscopic mathematical modeling of this interaction. Here, our interest is focused
on the tau protein that diffuses through the neural pathway, whereas we ignore deliberately the action of the
p-amyloid.

Unlike the approach proposed for instance in Refs. [15], [23], where the modeling of tau coagulation-diffusion
processes has been carried out on a large scale, that is the scale of the neural network characterized by the
connectivity of different regions through bundles of axons (tracts), in this paper only the mesoscopic dynamics
within a portion of tract has been investigated. Starting from the derivation of model equations valid at the
microscale, by using the so-called two-scale homogenization technique, we have proved that the solution two-
scale converges to the solution of a macromodel asymptotically consistent with the original one. The notion of
two-scale limit has been first introduced by Nguetseng [32] and Allaire [33] in the deterministic periodic setting,
and later generalized to the stochastic framework by Zhikov and Piatnitsky [34]. Unlike other homogenization
techniques (see Refs. [26], [27] for a review), the two-scale convergence method is self-contained in that, in a
single step, one can derive the homogenized equations and prove the convergence of the sequence of solutions
to the problem at hand.

To stress the novelty of the present paper, it is worth noting that two-scale homogenization techniques
have been already used by the authors to pass from microscopic to macroscopic model of the diffusion of toxic
proteins in the cerebral parenchyma affected by AD, but in completely different biological perspectives and
geometries. Indeed, in Refs. [19], [20], the authors aimed to describe production, aggregation and diffusion of
p-amyloid peptide in the cerebral tissue (macroscopic scale), a process associated with the development of AD,
starting from the derivation of a model at the single neuron level (microscopic scale). Thus, the present paper
differs from our previous works both for the biological meaning and, consequently, for the geometry of the
problem and the boundary conditions introduced in order to take into account the peculiarities of tau protein
propagation.

There is a large literature devoted to the study of transmission boundary conditions somehow similar to
those of (1.1), especially in the framework of porous media [35]. The main results in this respect, which are rele-
vant to our work, can be found in Refs. [36]-[38]. In particular, in Ref. [36], it is assumed that the porous medium
is composed of periodically arranged cubic cells of size €, split up into a solid part (a ball surrounded by semi-
permeable membranes) and a fluid part. In this setting, the diffusion and reactions of chemical species in the
fluid and in the solid part are studied, while transmission boundary conditions are imposed on the interface.
The same geometry is considered also in Ref. [37], where deposition effects under the influence of thermal gradi-
ents are analyzed. The model takes into account the motion of populations of colloidal particles dissolved in the
water interacting together via Smoluchowski coagulation terms. The colloidal matter cannot penetrate the solid
grain boundary, but it deposits there. This process is again described by transmission boundary conditions. A
domain decomposed into long cylindrical cavities periodically distributed has been defined in Ref. [38] to model
a porous medium consisting of a fluid part and solid bars. Chemical substances, dissolved in the fluid, are trans-
ported by diffusion and adsorbed on the surface of the bars (through transmission boundary conditions) where
chemical reactions take place.

1.3 Outline of the paper

The paper is organized as follows. In Section 2 we prove the existence of weak solutions to the system of
Smoluchowski-type Equations (1.1), while Sections 3 and 4 are devoted to the proof of their positivity, bound-
edness and uniqueness, respectively. A priori estimates on the derivatives of the solutions are also obtained
and reported at the end of Section 3. In Section 5 we study the convergence of the homogenization process and
prove our main result concerning the two-scale limit of the solutions to the set of Equations (1.1). Finally, in



DE GRUYTER B. Franchi and S. Lorenzani: Homogenization of Smoluchowski-type equations == 7

the Appendices we recall some basic Theorems related to functional analysis and on the two-scale convergence
method.

2 Existence of solutions

Let us consider the following truncation of the nonlinear terms in the Smoluchowski-type Equations (1.1) for
1<i<MI[37:

LV W) := Loy (&), o3 (1) .., o (1)) 1)
NP (09):= Ni(ogg (05), 03 (1) .., o3 (0,)) 22)
where
0, s<0
oi(s):=1s, se[0,M] 2.3)
M, s>M

with M > 0 being a fixed threshold. If /7 is large enough, the estimates derived later in this paper will give
bounds that will remain below M. This means that the results obtained in the following hold also for the uncutted
coagulation terms.

Definition 2.1. The functions uf € HY([0, TI; LA(I1,)) n L*>([0, T]; H'(I1,)) and S HY([0, TI; LX(Q)) N
L*([0, T]; HY(Q,)) (1 < i < M) are solutions to the problem (1.1) if the following relations hold, a.e. in [0, T] and
for a fixed value of ¢ > 0.

Ifi<i<M:

/atuf w; dxdz + ez/DiVXuf -V, y;dxdz + /Di 0,U - 0,y dx dz (2.4)

II II

€ € €

+€/Ci(x,z)(uf - f), w;do, = /L?’(us) t//idxdz+/ff(t,x,z) w; dx dz

r I

€ € €

for all y; € H'(I1,), and

/6tvf¢idxdz+/dinf‘Vd;idxdz—e/c(x 2)(uf — v ) ¢;do, = /NM(US)d)ldxdz (2.5
T

e Q e Q

forall ¢; € Hl(QS), along with the initial conditions uf (0, x,z) and vf 0, x, 2).

Remark 2.1. InEgs. (2.4) and (2.5) the integrals over the boundary I', are well defined thanks to the regularity of
the functions u{ and v, as stated in Definition 2.1, and the existence of the interpolation-trace inequality given
by Eq. (A.7) in Appendix A. With an abuse of notation, in Egs. (2.4) and (2.5) we have indicated with u{ and v{
also the traces of these functions.

Lemma 2.1. For a given small € > 0, the system (1.1) has a solution u{ € HY([0, TI; LA(I1,)) n ([0, T1; H'(I1,))
and v¢ € H'([0, T1; LA(Q,)) N L=([0, TT; HX(Q,)) (1 < i < M) in the sense of the Definition 2.1
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Proof. Let {¢& j} be an orthonormal basis of Hl(He) and {n j} of Hl(Qe). We denote by ufn and ufn 1<i<M)the
Galerkin approximations of uf and vf, respectively, that is

u, (t,X,2):= )" a (0&x,2) (2.6)
j=1
forallt € [0, T], (x,2) € I, and
Ve (6,X,2) = Z B O n;(x, 2) @7

forallt € [0,T], (x,z) € Q,.Letnow i = 1.
Since {& j} is an orthonormal basis of Hl(He), for each n € N, there exists

n
U2 = ) aT (X, 2) 2.8)
j=1

so that uf,? - Uf(x,2) in H'(I1,) as n — co.

Likewise, for each n € N, there exists
n
vy, 2) = D pﬁv/.” n,(x, z) 2.9)
j=1

so that % — 0 in H(Q,) as n — oo.
To derive the coefficients of the Galerkin approximations, we impose that the functions u{  and v{  satisfy
Egs. (2.4) and (2.5). Therefore, for all y; € span{¢; };.’zl, Eq. (2.4) can be written as:

/atuin w, dxdz + € /D1 Vg, - Vg dxdz + / 1 0,Uf - O,y dxdz
I, [l T,

¢

+e / a0.2) (i, = o, ) vido, = / 1 (u, ) wadxdz + / fex Dy dxdz (210)

y T, T,

€

By testing Eq. (2.10) with y; = &, we get

/ 0, lz af (O &(x, z)] & dxdz + € / D, lz o) (0 V,&(x, z)] -V & dxdz

m, LA

/ D, lz at' (0 9,&;(x, z)] -0,& dxdz + e / ¢ (x, 2) lz o} (O&(x,2) Z B O nj(x, z)] & do,
11,

]1 Fs +

- / & Z @4 Oir lz af', (0 &, (x, z)] i lz al (0 &,(x, z)] dxdz + / fe(t,x,2) & dx dz. @11)
. a=1 c=1 .

Hence, fork € {1, ...,n}:

0 (0 + Y Ay o () = —Fy (a0, B(0) - / & 2 4 O lz aft, (0 &, (X, z)]
j=1

X oy lz al (0 &,(x, z)] dxdz + / fet,x,2) & dxdz (2.12)
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where the coefficients A are defined by

A= ez/D1 Vi&;- V& dxdz + /D1 0,€; - 0,6 dxdz (2.13)
I, I,
and
F (e (), f1(0) := e/cl(x, z) (uin - vin>+ & do, (2.14)
T

€

We choose now vy , satisfying Eq. (2.5) for all ¢, € span{n;}" oy ie.

/6tvin¢1dxdz+/d1VUin~Vq’)ldxdz—e/cl(x,z)(uin—vin>+¢1da€=/N1~( \) drdxdz 219)

Q. Q e Q.

By testing Eq. (2.15) with ¢, = n,, we get

/ 0, lz B (O n;x, z)] e dxdz + / d, lz PO Vijx, z)] - Vi dxdz
o L= o L=

—€ /cl(x, z) lz o ;0 &j(x,2) — Z Py jOn;x, z)] ny do,
=1 j=1

I, +

M n n
_ / M Y. biq O lz B0 1y (x, z)] oir lz B0 n(x, z)] dxdz (2.16)
b=1 c=1

Q. a=1

Hence, fork € {1,...,n}:

OB + Y By B (0) = Gyy(af (), B(0)

j=1
/ n Z by G lz B0 1y, z)] o lz B (0 7 (x, z)] dxdz @17

where the coefficients By, are defined by

By:= / d, Vi, - Vi dx dz 218)
QE
and
Gy (@), B =€ / ¢,(x,2) (u;n - Uin>+ M do, 2.19)
T

Equations (2.12) and (2.17) represent a system of 2n ordinary differential equations for the coefficients af =

(al"k)k /3" = ( n ) ) . By taking into account formulas (2.8) and (2.9), we assume as initial conditions:
9 =1,.. k= I (|

a0 = als B0 = By (2.20)

Since the left-hand side of this system of ordinary differential equations is linear and the right-hand side
has a sublinear growth (thanks to the Lipschitz property of the functions), one can conclude that the Cauchy
problem (2.12), (2.17), and (2.20) has a unique solution extended to the whole interval [0, T] (see the gener-

alization of the Picard-Lindel6f theorem in Ref. [39], Theorem 5.1, p. 156). Moreover, af = (afk)k ),
’ =1 n

.....
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pr = < {lk>k ) (t) € H'([0, T)) for t € [0, T]. We prove in the following the global Lipschitz property of F ;.
7 =1...,n
The proof of the Lipschitz continuity of G, ; is similar.
Let (uin, vin) and <ﬁ§n f)in> be of the form (2.6) and (2.7), with coefficients (a{‘(t) = <aik>

( {tkgkév}{.m) and (@0 = <&'11’k>k=1 n B;l(t) - (~ik>k=1
ne has:

ACE

k=1,..
), respectively.
n

,,,,,,,,,,

Fy(a(0),B1() — Fy @), )

—c / a0 (5, - of,) - (6, -, Jaten do,

T

€

<eC / a6 (u, — &, ) = (05, — 75, )1 16 2l do,
I

€

=€ Cl/cl(x, z)

T,

D (@0 - a3 0)¢(x.2)

=

- > (B0 = B (O)n(x, 2)||&(x, 2)| do,
j=1

<e0 Y lafy 0 - a0 [ 00216021 5x. 2] do
j=1 T,
+eG Y 18,0 B,01 [ 6.2 0.2 150621 do,
j=1 T,

n
<eCimax{cy) Y, laf (0 — & (0
j=1

+eCymax{d;} )} 18] (0 — B} (0 @.21)
j=1

where the coefficients (c;) and (dj) are given by

cjk:=/cl(x, 2)|¢;(x, 2)| 1&(x, 2)| do, (2.22)

T

€

dj = / a(x, 2In;(x, 2)| 1&(x, 2)| do, (2.23)
T

€

forj,k=1,...,n. Hence, we get
|Fyi (@l BY) = Fupe (@, B)| < e Cym[la — &2 + |52 — B 2.24)

The same conclusions can be drawn also when 1 < i < M by applying exactly the arguments considered
above.
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2.1 Uniform estimates

Let us now prove uniform estimates in n for uf and vf, (1 <i<M). In the case i =1, we take in Eq. (2.10)
v = uf (¢, ) as test function:

/a i, dxdz+e/D1|V u 2dxdz+/D1|azu;n2dxdz+e/c1(x 2w, —v5,), Ui, do.
I, 0 T

€

/lZaljaM( 5, )o (u]n)] uw dxdz+/f€(t,x,z)uindxdz (2.25)

€

Since the first term on the right-hand side is always negative due to the truncation of the coagulation terms
(see Eq. (2.3)), one obtains:

%atuu + €D,V + D, 10,1

”LZ(H ) ”LZ(H ) ”LZ(H )

1
< e [ o216, = 08, ) 16, Qo+ P Cx DNy, + S0 gy (2.26)
T

€

where we have applied the Holder inequality to the last term on the right-hand side of Eq. (2.25). Since the
function f*(t, x, z) is bounded in L2([0, T] X I1,), Eq. (2.26) reads:

1 ~
5 Ol 1y + € DUV ey + DullOus
1
< —e/cl(x, z)(uirl — vin>+ uin do. +C; + §||u ||L2m) 2.27)
r

€

where C/ is a positive constant. By testing now Eq. (2.15) with ¢; = vf (¢, -), we get

/a v, dxdz+/d1|VU€ |2dxdz—e/c1(x 2w, — 05, ), 05, o

Q. Q, T,
/leUaM( ) o ( jn)] oS, dxdz (2.28)
j=1
Since again the term on the right-hand side is negative, we conclude:
a 05 )+ AV P, ) < €/cl(x 2w, — 05, ), 05, do (2.29)

T

€

Adding the inequalities (2.27) and (2.29), it follows that

fa e +€2Dy||V u +D,)10,u

”LZ(Q.) 1n||LZ(H) 1n||LZ(H)

1
1"”L2(H ) + iat“U

1
+ AV I, < Cr + e/cl(x, z)(uin - uin)+ (u;n - uin) Qo + 21 Iy (2.30)
T

¢
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Let us estimate the second term on the right-hand side of (2.30):

— € __ 1€ € _ €
I=¢ / ¢ x, z)(um1 Ul,n>+ <U1’n “1,n) do,

T

€

< e/cl(x,z)luin - 0§, |*do,
T

¢

2 2
< el Dl [ (16,4105, ) do,

T

< elley 06, 2y (1, )+ 1105, ) 231)

Applying the generalized interpolation-trace inequality (A.7) in Appendix A to each term inside the round
brackets, one has:

1< Cen(IVi, g+ IVE P g ) ) + Coen™ (I, 2, + 1050 ) (232)

where 7 is a small positive constant. If we take into account the estimate (2.32), the inequality (2.30) reads:

1 1
SO 1+ S0V g )+ (€ Dy = Crem) IV ||Lz(H )
+ Dy = Cre IO |17,y ) + @ = CemIIVYE, I, ) <
(Coen™ + I IR+ Coen™ 1, g 2.33)
If one chooses # < min{ e—Dl D—é, —} the last three terms on the left-hand side are positive and Eq. (2.33)
reduces to:
aI“u “LZ(H)+a ||Uln||LZ(Q) —ZCf+2C2€’7_1(”u ”LZ(H)+||U1’1”LZ(Q.)) (2'34)
Integrating Eq. (2.34) over [0, {] with ¢ € [0, T], we get
I Oy + 105, O ) < NI )+ 1050
t
+2C,T+2Ce ;1-1/ ds(||u Py, + 105 )) (2.35)

0

Since the sequences <u§£> and (Ui ’? ) converge in H'(I1,) and H'(Q2,), respectively, they are bounded
"/ neN *"/ neN
in L2. Therefore, Eq. (2.35) reads

t

1 (O, + 105,01 ) < CH+2C,en7! / ds (I g, + 15,02 )) (236)
0

Applying Gronwalls’s inequality, we obtain

g, O, , + 1105, @l

LA(M,)

t
Ty SCH2CCen /ZCzsﬂ‘l“—s)ds (2.37)
0
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Therefore, given € € [0,1], # is fixed and for ¢ € [0, T] we get:

It Mgy, + 105, 2 o 2.38)

IA(1,) @ S
where C, is a positive constant independent of n and e.
By testing Eqs. (2.4) and (2.5), in the case 1 <i < M, with y; = uf, (¢,) and ¢; = v{, (¢, -), respectively, one

gets:

SO+ € DIV e+ D0
§—€/Ci(x,z)(ufn—vf ) ¢, do, +C+ 7||u€ NI (2.39)
T,
fa S, )+ IV I ) < /ci(x,z)(uin—vin> o5, do, +C+7||U€ N (2.40)

T

€

where C and C are two positive constants. Adding the inequalities (2.39) and (2.40), and exploiting the estimate
(2.31) (which holds also when 1 < i < M) along with the interpolation-trace inequality (A.7), we obtain that also
the functions u{ and Ue (1 < i< M) satisfy Eq. (2.34). The rest of the proof carries over verbatim, leading to
Eq. (2.38) also for the case 1<i<M.

Thus, we can conclude that:

{uc, } is bounded in L=([0, T1; L*(T1,)), and { vf, } is bounded in L(10, T); L))

Let us now derive uniform estimates in n for 6tuin, Vul?ﬂ and ()tuin, Vuin (I<i<M).Inthecasei=1,we
take, in Eq. (2.10), y; = ()tuin(t, -) as test function:

2
/latuinlzdxdz+ %/Dlatovxuinlz)dxdz
HE

IT,

€

+ %/D1 (10,1, ) dxaz + e/cl(x, 2w, - 05, ), (9, ) do

T,

€

I,
= —/w;.l <6tuin> dxdz + /fe(t,x, z) (6[1{”) dxdz (2.41)
I,

where we = 21}1 144 Or (uin ) O (u;n ) .
By taking into account the Hélder and Young inequalities, Eq. (2.41) becomes

) _
/latuinlzdxdz+GTDl/at(lvxuin|2)dxdz+%/ (10,05, 1) dxdz

II II II

€ €

1 1 . .
S A A ] L e / cl(x,z)(ui,n—vin)+(0tui,n)dae

T

€

¢

+ 0 X DI, g, + o (2.42)

LZ(H ) ”LZ(H )

Exploiting the truncation of the coagulation terms and choosing n = i, we get:
Lo € po, [ 1V Faxdz+2a, [1ou Faxd
Z” tu ”Lz(l_[ ) + E 1Y% | Xul,n zZ+ ? t | Zu17n 4
I, I,

<Ch - €/Cl(X, Z)(uin - vin>+ (c)Iuin) do, + 4| fe(t,x, Z)”LZ(H ) (2.43)

T

€



14 = B.Franchiand S. Lorenzani: Homogenization of Smoluchowski-type equations DE GRUYTER

where C}W is a positive constant which depends on M.
Let us now test Eq. (2.15) with the function ¢; = atvf n(t, 2):

d
/|aluin|2 dxdz + El/at(wzjinp) dxdz — e/cl(x, 2(u, - 05, ), (95, ) do.
QE

| R CARECN] [CERERS

By applying once again the Holder and Young inequalities to the right-hand side as above, and exploiting
Eq. (2.3), we end up with the following expression:

1 d
SO+ 50, / Vot [Fdxdz < 2 +e / awo(u, —vf,), (05, )do @49

Q, I

where sz\”/[ is a positive constant which depends on M. Adding (2.43) and (2.45), and taking into account the L2
boundedness of f¢(t, x, z), one obtains:

1 1 € ¢
Z“atu ”LZ(H ) i”atv ”LZ(Q ) + EDI at/|vxul,n : dxdz
11
D1 € |2 dl € |2
+ 210, [ 10,6, P dxdz+ Do, |Vu dx dz
.

<C+e¢ / ¢ (x, Z)(uin - Uin)+ (atvin - atuin) do, (2.46)
Iy

€

where C is a positive constant. If we decompose now the function 9 ( U n) on the right-hand side in its
positive and negative parts, Eq. (2.46) can be rewritten as:

1 1 €?
SO0, + D10, + G D10 [ V.06, P etz
Dl € 12 dl € 12
+76[ 10,u7 | dxdz+?0t [Vof,|I®dxdz

€ 2
<C-— E/cl(x )0, [( in— ‘n>+] do, (2.47)

€

Integrating over [0, t] with ¢ € [0, T], we deduce:

1
Z/ds ll9;ug | Lz(l'[) /dsllaS . L2(9)+ D1/|VX T dxdz——D1/|VX 1n(0)|2dxdz
0 I,

71/ |0,u¢ 2 dxdz — %/|azuin(o)|2dxdz+%/Wu;nﬁdxdz— %/Wu;n(onz dxdz<CT

€ ‘e

xz) v Y odo - € [e0cn(u —vf ) do (2.48)
1,n + € 2 1\ 1,n 1,n + € .

I, I

N\m

€
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Hence, taking into account that the last term on the right-hand side of Eq. (2.48) is negative, one has

/dsnas < Lz(n)+2/ds 10,05 112 , +2€- Dy IV, 12

+2D1110,U5 11, + 24V, <4CT

L3(I1,) Q) —

+2D1/|quin(0)|2dxdz+2D1/|azuin(0)|2dxdz

€ Hs

2
+2d, / Vet (O dxdz +2 / a0.2)(1, - v, ) O do, (2.49)

Q Le

&

Since the sequences uf n(O) and vf n(O) are bounded, it follows:

2
/ds||6su m)+2/ds 19 ve Lz(g)+2€ D, ||qu ||L2(H)
0

+2Dy [|0,uf +24d; VoS <C for te[0,T] (2.50)

”LZ(H ) ”LZ(Q )

where C is a positive constant independent of n and e.
Inthe casel < i < M, by testing Egs. (2.4) and (2.5 withy; = d.us, (¢, ) and ¢; = 9,v5, (¢, -), respectively, one
obtains:

€ 2 € |2
7||au Moy + 5 D@/N ue, 2 dxdz + la/|au 2 dx dz

<C- €/c,»(x, z)(ufﬂ - U§n>+ (c)tuf’n) do, (2.51)
FE‘
d. -
||0 UG ||LZ(Q) EI a[/|Vu§n|2dxdz <C+ e/ci(x,z)<uin — U‘Zn>+ <0tvin> do, (2.52)
QE FE

due to the boundedness of the coagulation terms given by (2.3). In Egs. (2.51) and (2.52), C and C are two posi-
tive constants which depend on M. Adding the two inequalities (2.51) and (2.52), and applying exactly the same
arguments considered for i = 1, we obtain that also the functions uin and Uin (1 < i < M) satisfy Eq. (2.50).
Thus, combining the estimates (2.38) and (2.50), one concludes that:
{ ue } is bounded in H([0, T1; L*(I1,)) 0 L*([0, T1; H\(I1,)), and { v, } is bounded in H([0, T1; L*(L,)) N

i,n

L0, 11; Hl(Qe)). Hence, we can state the following proposition.

Proposition 2.1. Since (ufn> N is bounded in L*([0, T]; H'(IL,)), by the Banach-Alaoglu theorem we may
’ ne
assume that, up to a subsequence, u;, — u; weakly* in L*([0, T1; H\(I1,)), i.e. for ally € L\([0, T]; H'(IL,))

T
//(w(t, X, Z)ul.fn(t, x,z)+ Vy(t, x,z) - Vuin(t,x, z)) dtdxdz
0

€

(2.53)
T

—>//(w(t,x,z)uf(t,x,z)+Vu/(t,x,z)-Vuf(t,x,z))dtdxdz
0

€
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as n — oo. Since L*([0, T1; H'(I1,)) C L'([0, T1; H'(I1,)), formula (2.53) holds also for w € L*([0, T1; H'(I1,)).

In addition, (u n) is bounded in H'([0, T1; Lz(l'[e)), thus we can also assume that ul?n - uf weakly in
nenN g

H([0, T]; LA(I1,)) as n — oo.
Finally, since in particular

(u? ) Nis bounded in H([0, T]; L*(I1,)) N L*>([0, T]; H'(I1,)),
€l

i,n

by the Aubin—Lions—Simon theorem ([40], Theorem IL.5.16, p. 102) (see Appendix B) we can infer that
u¢ — uf strongly in C°([0, T1; LX(I1,)) as n — co.

An analogous proposition can be proved also for the sequence (vfn> .
>/ neN
Now, integrating Eq. (2.10) with respect to time and using as a test function y; = ¢(6){;(x, z), with ¢ €

D([0, T]) and ¢, € H'(I1,), we get

//6uln¢(t)(;’1(xz)dtdxdz+e//Dl Uiy Vi @ dtdxdz

T

+//D1 , 1n a§1¢(t)dtdxdz+€//cl(x z) 1n 1n) ¢ ¢, (x,z)dtdo,

0

f

T

T
- / / Lfff ¢(t) &, 2)dedx dz + / / Fet, X, 2) p(O) &, (x, z) dt dx dz (2.54)
0

0

s

where we denote by D([0, T]) the set of indefinitely differentiable functions whose support is a compact set.
Exploiting the convergence results stated in Proposition 2.1 we can pass to the limit as n — oo to obtain:

T T
/ / 0t PO Gy, ) dt dxdz + € / / DV, -V, 6, () de dxdz
0 T, 0TI,

T

T
+ / /D1 0,Us - 0,6, p(B) dt dx dz + e//cl(x, 2) (u = vf), $O & (x, 2) dtdo,
0T,

0TI,
T T

://Lf” q’)(t) 6, 2) dtdxdz+//f€(t X,z) p(6) & (x, z) dt dx dz (2.55)
0 II, 0 I

where we have taken into account that the term LM ( ¢) is Lipschitz continuous. Eq. (2.55), which holds for
arbitrary ¢(t) € D([0, T]) and ¢, (x, z) € H'(I1,), is exactly the variational Equation (2.4).

By using the same arguments handled above for uf, we can prove that the functions v and uf, vf (1 <1 < M)
satisfy Eqs. (2.4) and (2.5).

It remains to show that the initial conditions hold. By the Aubin-Lions-Simon theorem it follows that up, —
u¢ strongly in C°([0, T]; LA(IL,)) as n — oco. Since u¢ (t = 0) = Uy O and u, ) — Uf(x, 2) strongly in H'(T1,) as n —
oo, we conclude that u{(0, x, z) = U5 (x, 2). Followmg the same lme of arguments we also obtain v{(0,x,2) =0
along with uf(O,x, zZ) = Ul?(O,x, 2)=00A<i<M). O
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3 Positivity and boundedness of solutions

Lemma 3.1. For a given small € > 0, let uf(t, X,z) and Ul?(t, X,z) (1 <1< M) be solutions of the system (1.1) in the
sense of the Definition 2.1. Then 0 < ul? (t,x,z) < M;ae in(0,T) X II,and0 < Uf (t,x,z) < ]\_/Ii ae.in(0,T) X Q,
where M; > 0 and 1\_/[,» > 0 are constants independent of]\71, uie, Ul.e and €.

Proof. Inthe case i =1, let us test Eq. (2.4) with the function y; = —uf’_(t, 2):

/dtui (—ug™) dxdz + eZ/Dlvxuf - Vi(=uy™) dxdz
I, [l

¢

+ /Dl 0,uS - 9, (—u;™) dxdz + e/cl(x,z)(uf —1f), (-u;”) do,
TI, T

€

= / LM (—uS™) dxdz + / fe(t,x,2) (—uS”) dx dz 3.1
II, I,

Decomposing the function uf in its positive and negative parts, we get:

o - 2 e 2
o u dxdz+e/D1|VXu1 |“dxdz

11, 11,

€ €

+ /D1 lo,uf ™ [P dxdz = e/cl(x,z)(uf —vf), u;” do,

+ 1
I, T,
M
+/l2 al’jaM(ui)aM<u§>] uf’_dxdz—/fe(t,x,z)uf’_dxdz (32)
n, L=t .

Since the last but one term on the right-hand side is always zero and the last one is negative, one obtains:

150 e—n2 2 €12 % €12 €
éatllu1 Woqy + €DVt gy ) + DillOguy Ny ) < € a6 2) (uf — f), u;™ do, (3.3)

T

€

Let us now take ¢, = —Uf’_(t, ) as test function in Eq. (2.5) and decompose the function vf in its positive
and negative parts:

oS~
/ alt Ui’_ dXdZ + /d1 |VU§’_|2 dXdZ = _€/C1(X, Z)(ui _ Ui)+ Ui’_ do’e
Q Q a

€ ‘e €

M
+/ [Z by ; o (1) aM<u;)1 VS~ dxdz (34)
=1
QE
Since the last term on the right-hand side is always zero, Eq. (3.4) yields:

1. . . -
Qat””i’ ”iz(ge) +d; [|[Vop ”iz(ge) = —e/cl(x, 2) (ug — 1), vy~ do, 35
T

€
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Adding Eqs. (3.3) and (3.5) we obtain:

€,— €,— 2 = €,— €,—
70 ”u ”LZ(H)+ a ||U ||L2(Q)+€D1 ||VXu ||L2(H)+D1 ”azul ||L2(H)+dl ”VU ||L2(Q)
< e/cl(x, 2) (uf = f), (U™ = v;7) do, (3.6)
ré‘
Let us now estimate the term on the right-hand side of Eq. (3.6):
e/cl(x, 2) (uf = vf), (u;~ —v;”) do,
FE‘
< e/cl(x,z)H(uf —0f) (U —vf) u;” do,
ré
< e/cl(x DH(u —vf) (uy™ o)) do, < e||cl(x,z)||Lm(r€)/uf’_ vy~ do, 3.7)
T, T

€ €

where we denote by H(-) the Heaviside function:

0, s<0
H(s):=

1, s>0.

Exploiting the Holder and Young inequalities along with the generalized interpolation-trace inequality (A.7),
Eq. (3.7) becomes

e [ (-, (4 - i) e,

T

€

S (o

LX(T,)

< €l Dl [ %]

< Cen[IVIT Iy ) + IV g |+ Coen™ I I gy ) + 1057 I (3.8)

where 7 is a small constant. Finally from Egs. (3.6) and (3.8) it follows that

6 ||u€_||Lz(H y T a ||U€_||Lz(Q ) +(e?Dy = Cren) IV, uy ||Lz(H )
+ Dy~ Crem ll0,u; ”Lz(]-[ ,+(d = Cen||Vop _||Lz(9 )
< Cren™ [T Iy, + 105 I | (39)
If one chooses # < min{ %Dl, :% —} Eq. (3.9) reduces to:
70 lluf _|IL2(H T 0 oy _I|Lz(Q y<Gen” [llue_lle(H y |IU€_||L2(Q )] (3.10)
Setting the initial conditions: u;"~(0) = 0 and v}~ (0) = 0, Gronwall’s lemma gives:
lul~ (@, )lle(H y T llop™ (@, )||LZ(Q) <0 (31D

that is, uf >0a.e.inIl, and vf >0aeinQ,forallte[0,T].
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In the case 1 < i < M, by testing Eqs. (2.4) and (2.5) with y; = —u{""(¢,-) and ¢; = —v;"" (¢, -), respectively,
and decomposing the functions u{ and v in the positive and negative parts, one gets:

au?— €,— 2 €,— 12 7 €,— 2
3 u;- dxdz+e/Di|VXui’ | dxdz+/D,~|azul.’ |“dx dz
I, I, I,
=
= e/c,»(x,z)(uf - vf), U do, - i_/ l Qi aM(u§> aM(uf_j>] ur” dxdz
FC HC ]=1
M
+/l2ai’jaﬂ(uf)q~w<u;>1 U~ dxdz (3.12)
m, L=t
s 12
/ g dxdz+/dl-|Vv.’ % dx dz
0t i i
Q. Q.
i1
- 1 -
= —6‘/(:1‘()(72)(’11€ - U?)_'_ U? dO'e - é/ lzb/’l_]6M<Uj)UM<Uf_])] Uf’ dXdZ
T, o LAt
M
+/l2bi’jajg(uf)6}w<v§>] v~ dxdz (313)
o, LA

Since in both Egs. (3.12) and (3.13) the last but one term on the right-hand side is negative and the last one
always zero, we obtain that also the functions uf" and vf’_ (1 < i< M) satisfy Egs. (3.3) and (3.5), respectively.
Therefore, applying exactly the same arguments considered for i =1, we conclude that u > 0 a.e. in I, and
vf > 0ae.in€,, forallt € [0, T].

Let us now prove the boundedness of solutions. In the case i = 1, we test Eq. (2.4) with y; = p(uf ) p_l(p >
2):1

p/dtuf (uf)p_ldxdz+€2 p/Dlvxuf . Vx(uf)p_ldxdz
I, I,

+ p/D1 0Zuf . 6Z(ui)l’—1d_xdz +e€ p/Cl(X,Z)(uf _ Ui)+ (uf)p_ldae
I, T

M
= —p/ lz a o (1) va,(uj)] (uf)p_ldxdz+ p/ff(t,x,z) (uf)p_ldxdz (3.14)
1, L=t I,

Since the last term on the left-hand side is positive and the first term on the right-hand side is negative,
Eq. (3.14) implies:

ot 1

€ €

+p(p —1)/131 ()" j0,uc > dx dz < p/ff(t,x,z) (u€)P " dxdz (3.15)
11, II

€ €

2(ue)pdxdz+€2p(p—1)/D1 (uf)p_zlvxuﬂzd’(dz
1 it

1 The choice of the test function y, is not fully correct, since y, does not belong to H'(IT,). Nevertheless, by a standard argument,
this difficulty can be bypassed (here and later on) replacing the power (uf ) =1 with an approximation which is linear for uf > N (N
large) and taking eventually the limit as N — co. We refer, for instance, to the proof of Theorem 8.15 in Ref. [44].
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Taking into account that the last two terms on the left-hand side are positive and integrating over [0, ] with

€ [0, T], we obtain:
t

t
//a2 dsdxdz<p//f€(sxz)( )P dsdx dz (3.16)
0

0 II,

s €

Hence,

/ (u)? dxdz < / W (0)? dxdz + p || £l o1, / / (1) dsdxdz (317)
0 II

I

€ He €

In order to estimate the last term on the right-hand side of Eq. (3.17), it is now convenient to use Young’s
inequality in the following form [41]:

ab<na” +#Pb?, Va>0,b>0, p = ﬁ (3.18)

with: a = (uf)” b= plfel 1((0.1ix11,) and for an arbitrary # > 0. Therefore, we get:

t
p ”fe”LW([o,T]xn )// deXdZ
0 E

t t

/d /p” 1M o o ey 1 ”dxdz+/d8/'1 (uf)” dxdz

0 0 II

< PPN oo, IIxIL,) P T+ / ds / (u6)? dxdz (3.19)
The last line above has been obtained by making the following approximation, which holds since, to finalize

. .. _ = _1 _1 1-p
the proof, we will take the limit p — co: p? ~ (p —1)P1 = ”p pP~1 < pP-1 due to: ( - 1) <1
Choosing # = p and using the inequality (3.19) in (3.17), we conclude that:

”u ”LP(H ) < ”Ue“Lp(H ) + ”fé ||L°°([0 T]XH )lH | T+ p/ ds ”l’le(s)“Lp(H ) (320)

Applying Gronwall’s inequality it follows that:

0y < [HUE 1y + 1 W 1T T € (321)
And finally
1/p
t;};};},}ﬂ /(“f)pd"dz < (105 Ngeoqny + 1 Npo.maxan,)| €
<M, (3.22)

where M, is a positive constant due to the boundedness of the initial condition Uf (x, z) and of the source term
fet. x, 2).
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We test now Eq. (2.5) with ¢, = (Ui(l’, D) — M )T, where 1\_/11 is a positive constant:

/a M1 v —Ml) dxdz+/d1 v —Ml) V(u;—Ml)+dxdz

—\ 7t ~ —\t
—e/cl(x,z)(uf—u§)+(ui—Ml) daez/Nf”(Ue)(Uf—Ml) dx dz (3.23)

T, Q.

Decomposing the function (vf - ]\_/Il) in its positive and negative parts, one obtains:

— \ T N
%/at|(u§—Ml) |2dxdz+/dl|v(u;—Ml) > dx dz (3.24)

3 3

= efcl(x,z)(u; — ), <uj —M1>+dge - / [i by j o (15) tw[(vj)] (Uf —1\_/11>+ dxdz
o U~

T,

€

Since the last term on the right-hand side is negative, we conclude:

1 —\ Tt —\ T —\ Tt
300 (05 =T0) g + @V (65 = F) g, < € [aina s = o), (o5 =00) a0, 29

I

€

Let us now estimate the term on the right-hand side of (3.25):

—
e/cl(x,z)(uf ), (Uf —M1> do,

I

€

(5 =) -3 (55 e,

T

€

—\t
_ e/cl(x,z)H(uf —vf) (v§ — My) (Uf —Ml) do,

I

€

+ —\*t
< e/cl(x, DM (u§ — vf) (uf — M) (vf —M1> do, (3.26)

T

€

if one chooses M; < Ml. By applying the Holder and Young inequalities, along with (A.7), one gets:

— 1\t
e/cl(x,z)(uf —1f), (Uf —Ml) do,

T

€

€ € €
S2||C1(X,Z)||L°°(r€)[||(ul My) 1)+ (05 - ) [ )]

—\ 7t —
< CrenV (v =0 I + Cen (05 = T,) g, (327)

where 7 is a small constant and uf satisfies the inequality (3.22). Therefore, from Eq. (3.25):

1 . _
20l (6 = 0) 1 + @ = eIV (5 =T, ) I < Goen ™ (0§ = T0,) T, G289
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If we choose 7 < Eq (3.28) reduces to:

1 _
20 (v = 1) Mg < Coem™ (05 =) W (3.29)

and the Gronwall lemma gives:

(e, ) = M, g ) < 105 - ) O, exp(2C,en7'T) (3:30)

for all t € [0, T]. Since ui (0) = 0, then:

(2 = 0,) O, =0

and from Eq. (3.30) it follows:
¢ <M, (3.31)

In the case 1 < i < M we proceed by induction and test Eq. (2.4) with y; = p(u¢) Pp > 2

p/@tuf (u€)? ™ dxdz + € p/Di V- V()" dxdz

€

+p [ Do -o,(u) axdz +ep [ty - vf), (1) o,
I,

€

o [Besstwreti) | e s £ Bl ul )

Jj=1

(3.32)

Since the last term on the left-hand side is positive and the first term on the right-hand side is negative,
Eq. (3.32) reduces to:

/at P dxdz + €2 p(p—l)/ Ve |2dxdz+p(p—1)/ )77 o |? dx dz

g/ lz AL (“@')] (uf) " dxdz (3.33)

Taking into account that the last two terms on the left-hand side are positive and integrating over [0, ] with
€ [0, T], we obtain:

//a dsdxdz 5//lza“’ )"”(”f-;)] (uf) " dsdxdz (334)

Exploiting the boundedness of u;ﬁ(l <j<i—1inL*(0,T; L*(l,)) and setting the initial conditions, one

gets:
/( Pdxdz < //[Z{a]” i

0 II

S| (@) dsdxdz (3.35)
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where K;(1 < j <i—1) are positive constants. In order to estimate the term on the right-hand side of Eq. (3.35),

we use the Young inequality (3.18) with: a = (uf)p “andb=p [Z] 1 K K ] We find:

p//[zam j ](uf)p_ldeXdZ

p
nl—!’dxdz+/ds/n(u§)”dxdz

0 11,

€

t

i1 p
<pr! lZ “j,i—jK/Ki—j] ’11_”|H6|T+'7/d3/(uf)pd"dz (3.36)
1

0TI

Choosing # = p and using the inequality (3.36) in (3.35), we obtain:

Ul Py < lZa}l KK ] M| T+ p/ds [EHOT [ (337

The Gronwall lemma applied to (3.37) leads to the estimate:

14
flu ||Lp(n)§l2a]l]K]K [T, | T e (3.38)
Hence,
1/p
sup lim u)? dx dz T < M, 3.39
s nl [0 < B e s =

€

where M, is a positive constant.
We test now Eq. (2.5) with ¢, = p|[(ve(z, ) — m)*|” ' (p > 2), where m, is a positive constant such that i, >
M;:

1

p/@t(uf _mi) [(U'é _mi)+] p_ldXdZ"' p/diV(Uf _mi) : V[(Uf - mi)+] p_ldXdz

—ep [ - ), [(of -] o,
rE
M .
=_p/ lzbl,}UM(Uf) 6M<Uj)] I:(Uls_ml)+:| dxdz
o, L=t

i—1 .
+ IZ)Z LZ{ bj,i—jam(0§)6M<vf_j>] [(vf —ﬁi)Jr]p " dxdz (3.40)

Decomposing the function (vf — ﬁi) in its positive and negative parts and taking into account the bound-
edness of U; 1<j<i—=1inL*(0,T; L*(,)) due to the inductive hypothesis, one obtains:
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<ep [awas—o), (o -m)*) "o+ 2 [
FF

- P/ lé b;; 61.71(05)%(1)?)] [(vf —ﬁi)+]p_1dxdz (3.41)

QE

where K;(1 < j < i—1) are positive constants. Since the last term on the left-hand side is positive and the one on
the right-hand side is negative, Eq. (3.41) reduces to:

[l =y axee s faoatus - e [ -m)"] e
Q, /

i-1
—\+ p—l
+ g/ lZ bj,i_jKjKi_,] [(ug -m) ] dxdz (342)
o, L=t
Let us now estimate the first term, I;, on the right-hand side of Eq. (3.42):

—\+ p-1
L=e p/ci(x,z)H(uf —0f) (U — vf) [(vf —m;) ] do,
T

€

<e p/ci(x, M (1 —vf) (uf —m,) [(Uf - ﬁi)Jr] p_1d0'€
T

€

—€ p/ci(x,z)H(uf —vf) (vf —my) [(Uf —ﬁi)Jr] p_ldae
T

€

1

<ep / a2 (u —m)* [(vs - )] "o, (343)
ré'

where the last step in inequality (3.43) has been obtained decomposing the functions (uf —m;) and (v§ —m;) in
positive and negative parts. By applying the Holder inequality and exploiting the generalized interpolation-trace
inequality (A.7), one has:

—\+ —\+]P!
1 < € Pt Dl 1 =) Nz 1] (05 =70 e,
e _ 7\t -1 e _ 7 \F2
< e et Dl I (5 =) | oz [2E IV (6 =) s
8C -1 e _ 7 \t2 12 3

+8C I (us =) I, ] (349)

The right-hand side of this inequality vanishes since uf € L*(0, T; L*(IL,)), which implies: (uf — mi)+ =0,
because of the choice of m; > M;. Therefore, on the one hand, by definition, I, > 0, while on the other side I; < 0,

which leads to I; = 0.
Therefore, Eq. (3.42) reduces to:

/tx[(vf )] drdz < p/ li b/‘,i—jK‘Ki—j] (v —ﬁi)+]p_1dxdz (3.45)
Q,
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Integrating over [0, t] with ¢t € [0, T], and estimating the term on the right-hand side by using Young’s
— 4Pt
inequality in the form (3.18), with: a = [(vf - mi)+] andb=p [Zl 'h. i|> we get

j=1"Jj.i— ]
t
// (vf —m)+]pdsdxdz
0 E

i—1 P t
— p
_pwlzhHmmﬂ wﬂguwn//ﬂq—mf]mmm
J=1 0 Q

Choosing # = p and setting the initial conditions, it follows that:

14
|Q|T+p/ﬁun)—m)n”@) (3.46)

Finally, the Gronwall Lemma leads to the estimate

p
”(Uie_ l LP(Q) < lzb]l— Kz —j |Q€|Tept (3.47)
Hence,
1/p
» i1
i e —m,)* < KK e
[Z}ég]plg‘g ![(ui m;) ] dxdz| < Lz{bu_]K]Kl_ll e (3.48)

Therefore, since the positive part of the function (uf - ﬁi) isbounded, it follows that: U:? (t,x,z) < I\_/Il-, where
M, > m; is a positive constant. O

Lemma 3.2. For a given small € > 0, let uf (t,x, z) and vf (t,x,z) 1 < i < M) be solutions of the system (1.1) in the
sense of the Definition 2.1. Then, the following estimates hold:

ViUl rzan,n < G (3.49)
0, Il 0,7;2201,0) < €7 (3.50)
104 20,7221, < € (3.51)
IV Vi@, < Di (3.52)
105 20,1120, < D (3.53)

wherel <i <M and Cl’.‘ R Cl.z s Cl.‘, D,, DIF are positive constants independent of M and e.

Proof. Inthecasei=11letu; anduvj, bethe approximate solutions defined in the proof of Lemma 2.1. Then the
inequality (2.50) holds with a constant C > 0 independent of n and e. Using the convergence results reported in
Proposition 2.1 and the lower-semicontinuity of the norm from Theorem B.2 [26] (see Appendix B), we get from
Eq. (2.50):

llo,uf 12 +2||0,v; II? +2€*D, ||V, u

1172(0,T;L4(11,)) IIL""(() T;L2(11,))

+ ZDl ”azulll

1172(0,1;L4(Q,)

+2d; ||Vv] II?

L*>(0,T;L2(I1,)) L®(0,T;L2(Q,))
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<lim inf |9, |12
n—o0o

L .
,n“LZ(o,T;LZ(nE)) + lim ,}_I}ofoz llo,vf

12
MUL2(0,TLHQ,)

; ; 2 € 12 : : D € 2
+ lim nl_I}ol;Ze D, ||VXu1,ﬂ”L°°(O,T;L2(H5))+hm IglofOZDl ||c)zu1’n||Lw(0!T;LZ(H€»

. . 2 !
+ lim rlllle()Z d; vain“L”(O,T;LZ(QC)) <C (3.54)

For the case 1 < i < M, the proof carries over verbatim, since also the functions ufn and Ul.en A<i<M)
satisfy the inequality (2.50). O

4 Uniqueness of solutions

Theorem 4.1. Let uf, i € H'([0, T]; L(I1,)) and ve, of € H'([0, TI; L3(Q,)) (1 <i< M) be solutions to the
problem (1.1) in the sense of Definition 2.1.
Then, ul? = ﬂf and Ul? = f)l? 1<i<M).

Proof. From now on, we drop the index ¢ and we set
Uii=u;— 1 and Vii=v; — 0 4.1
Then, in Eqgs. (2.1) and (2.2), we choose
M > max{M,M,, i=1,...,M},

so that i
Lf.”(u) = LW = Li(uy, Uy, ... , Uyp)
and i
NY (@)= N,(v) = Ny, 0,, ..., Uy).

Let us now write Eq. (2.4) for (w;, v;) and (&i;, ;) (i =1, ..., M). Subtracting the resulting equations, we get:

I, I T

€ €

= —e/ci(x, Dl —v), — @, — 0, ly;do, + /(Ll-(u) —L,(@) y;dxdz 4.2)
T II,

€

for all y; € H'(IL,).
Since the positive part function is 1-Lipschitz, the following estimate holds:

[(W; — )y — (@ — D)y | < |u; — W] + [v; — Dyl
Thus

/ci(x, ;= vy — (@ — 0, ly;do, | < C/|(ui — )y — (@ — D)y | ly;l do,
T r.

€

< c/uu,- — | + v, — B,) Iy do, = C/(|Ul-| 1V il do,
T, I

4.3
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where C is a positive constant. Moreover, we have

M M
LW — L(@| < ) ajluu; — ity < CED Y (U] (4.4)
j=1 j=1

since L; is a Lipschitz continuous function, and C(Dis a positive constant.
Thus, Eq. (4.2) becomes

/6tUi u/l-dxdz+€2/Dl-Vin -V, y;dxdz + /f)i 0,U; - 0,y; dx dz
1 it il

€ € €

M
< c/(|Ui| + VD Iyl do, + C(M)Z/ U}l 1yl dx dz @)
T. =y

for all y; € H'(I1,).
Now let us take:

Then, Eq. (4.5) can be rewritten as follows:

/6IUiZ dxdz + ZGZ/Di|VXUi|Z dxdz + Z/D,. |0,U;|* dx dz
II, 11,

€ €

I,

M
szc/(|Ui|+|Vi|)|Ui|do€+zaM)2/|U,-||U,-|dxdz

j:l I

rf
M
< Cl/(|Ul-|2+ V%) do, + Cl(M)Z/|Uj|2dxdz (4.6)
ré‘ ]:1 €

where C, and C,(M) are positive constants. Integrating over [0, {] and taking into account that U;(0) = 0, we get

t t
/Uizdxdz+2€2//Di|VXU,-|2dxdzds+2//DilaZUilzdxdzds
I 0 I, 0 TI,

t M t
sCl//(lU,»|2+|Vi|2)da€ds+C1(]\7I)Z//|U]-|2dxdzds. %))
0T, =,

Let us now write Eq. (2.5) for (;, v;) and (&, §;) (i = 1, ..., M). Subtracting the resulting equations, choosing
¢; = 2V; and using the same arguments reported above for U;, we obtain:

t

/Vizdxdz+2//di|VVi|2dxdzds

Q. 0 Q

e ‘c

t M t
5C1//(|Ui|2+|Vi|2)d6€dS+C1(1\7I)Z//|Vj|2dxdzds. (4.8
0 0 Q

T =1

€ G
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Adding Eqs. (4.7) and (4.8), and applying the interpolation trace inequality (A.7) (in Appendix A) to the
boundary term onI',, one has:

T, +2€* D/llV Uil (H)ds+2D/||0 U||L2m)ds+||V||L2(Q)+2d/||VV||LZ(Q)

t t

< [ (IVUI g, + 1Vl ) as+ G [ (1, + IVl )
0 0

Mt Mt
+C1(]\7I)Z//IUjlzdxdzds+C1(1\7I)Z//|V| dxdzds 4.9)
%o, =17

where 7 is a small positive constant. If we choose 7 < min{ zezD L, ZC'L Ci } Eq. (4.9) becomes
1

t

WU, + Wil < G / (N0, + Vil ) ds
0

Mt Mt
+C1(1\7[)Z//lUjlzdxdzds+C1(1\7I)2//lVl-lzdxdzds (4.10)
= m, =1 g,

Summing up fori =1, ..., M and putting U? := Z]i‘i 1Ul.2 and V2:= Zfz 1Vl.z, we get eventually

t

U1, + IV I < / (11, + IVIE ) ) ds 4.11)
0

where C, is a positive constant and, by Gronwall’s lemma, it follows that: U = V = 0. O

5 Homogenization

The behavior of the solutions uf s Uf (1 < i< M) of the set of Eq. (1.1) as € — 0 will now be studied. In order to
pass to the limit, it is necessary to obtain equations and estimates in €.

Lemma 5.1. Let us consider the sets defined in Section 1.
1. There exists a linear continuous extension operator

P: H\(X) —» H\(Y) (5.1
such that
Pu=u inX (5.2)
and
1P ull 2y < Cllullpzee (.3)
IVE Wl 2y < ClIVUll 200 (5.4)

where C is a positive constant.
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2. There exists a family of linear continuous extension operators
P_:HYG,) — H'(D)

such that

m

el

u¢ =u¢ inG,

and
1P | r2py < C||u€||L2(G€)

IV (Beu) 2 < ClIVU ]l 2¢6,

where the constant C > 0 does not depend on €.

—_— 29

(5.5

(5.6)

(5.7

(5.8)

Proof. 1. First we extend u into a neighbourhood X,, of R = dX with smooth boundary, such that clos(X) C X,
and clos(X;,) C int(Y). Since we have assumed that R is sufficiently smooth, we can construct a diffeomorphism

as follows:
O: RX] -6, 6[— X,
Oy, ) =x

Exploiting this coordinate transformation, the function u can be extended by reflection:

u(®(y, A) A>0
ur(x) = u*(d(y, ) =

u(®@y, —2) A<0

Let us now consider the following smooth function
Y:Y - [0,1]
such that supp¥ C Z and ¥ = 1in Z\X,. Then, we define
i) :=1-P)w ) —m+m
where

=1
m:= |X|/u(y)dy
X

Let us prove that fi(x) is an extension of u(x), which satisfies (5.3) and (5.4). One gets:

i, = /10 =0 =)+ mf ax
A

= /l(l—‘P)u*+‘Pm|2dx+/m2dx

ZnX, Z\X,

Taking into account the following estimates

2
1 1 2 IZ] . 2
il < el 121
/ le/u(y)dy dx < / X /u dy | dx < 5l
X _

ZnX,| ZnX, X

2
1 1 2 IZ] |2
il < — < -—
[ [ fow| s [ gl feafacs S,
X | X

2\, Z\X,

(5.9)
(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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and the Minkowski inequality, Eq. (5.15) can be rewritten as

LA(2)

@12 gz/(1—l11)2|u*|2dx+2/l112m2dx+ @uuuz < CZ,X,P)|ull

1X| LX)
ZnX, ZNnX,

For the derivative we obtain:

1X(2)

IV, = / VIO = W) — ] dx
VA
= /|(u* -mVL-Y)+ 1 - P)Vur|* dx
Z

By using the Minkowski and Poincaré inequalities, Eq. (5.19) becomes:

IV, <2 [ la -mva-wrare2 [ ja-wvera

ZnX, ZnX,

LA(X)

sc/|(u*—m)|2dx+c>'</|Vu*|2dxscl(lP)nVuu2
ZnX, ZnX,

2. The construction of P, is obvious by summation over the individual cells.

Lemma 5.2. Let us consider the sets defined in Section 1.
1. There exists a linear continuous extension operator

P: H'(Z) - H\(Y)

such that
Pv=v inZ

and
1P Ul 2y < Cllvllpzg

VPOl 2ry < ClIV Ul 2z

where C is a positive constant.
2. There exists a family of linear continuous extension operators

P_.H'D,) — H'(D)
such that
and
1PV Nl 2y < CIUS Nz,

IV (Pev®) 2y < CIVO NIz,

where the constant C > 0 does not depend on e.

DE GRUYTER

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Proof. This Lemma can be proved by applying the same arguments considered in the proof of Lemma 5.1 and

in Ref. [42] (p. 25).
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Remark 5.1. Analogous extension theorems hold also for uf(t, X,z), defined in [0,T] x II, =0, T] X
G, X [0,L], and Uf(t, X,z), defined in [0, T] X Q. =[0,T] X D, X [0,L] (1 < i< M), since z and t can be con-
sidered as parameters, because of the geometry of the domain.

We briefly explain the argument for the function u; similarly one can argue for vf. Since [0, T] X Il isa
Lipschitz domain by density we can assume that uf € C*([0, T] X G, X [0, L]), and we can define its extension
to[0,T] X Q=1[0,T] X D x [0,L] byPe,Oul?, as follows.

If(t,x,z) € [0, T] X Q, we set

(Beouf)(t, x, 2) = (¢, (Pout ) (), 2).

Then
(VP o)t x,2) = (t, (V,P.us ) (x), 2),

so that, by Tonelli theorem

T L T L
///| eouf|2dxdzdt+///|?€’0uf|2dxdzdt
0 0 D 0 0 D
T L T
///lVPu |2dxdzdt+/ /|P€uf|2dxdzdt
0 0 D 0 D
T L T
c///|vxu§|2dxdzdt+c/
0 0 G, 0 .
T T
=C//lVXuflzdxdzdt+C//|ui€|2dxdzdt
0 I, 0 TI,

/ 2, At

From now on, we identify vf with its extension P v{ according to Lemma 5.2 and u; with its extension
P.uf according to Lemma 5.1. In order to study the limiting behavior of the set of Eq. (1.1), we use the notion of
two-scale convergence. Some definitions and results on two-scale convergence, introduced in Refs. [32], [33], are
reported in Appendix C.

IA

|uf|? dx dz de

o\h O\h

(o)

Proposition 5.1. Let vf (1 < i < M) be the extension of the solutions to the system (1.1). Then, up to a subsequence:

v(t,x,2) = v(t,x,z) weakly in L*0,T; H'() (5.29)
dtvf(t,x, z) = 0,0(t,x,z) weakly in L2([0, T1 X Q) (5.30)
vE(t, X, 2) = vi(t,x,2)  strongly in C°([0, T]; LA()) (5.31)

Proof. The convergence results (5.29)—(5.31) follow immediately from the a priori estimates given in
Lemma 3.2. |
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Remark 5.2. Since v¢(t,x,z) converges weakly to v(t,x,z) (1<i<M) in L*(0,T; H'(Q) N H'0,T; L*(Q)),
Theorem C.5 in Appendix C implies the two-scale convergence to the same v;(t, X, z), and there exists a function
D; € L2([0, T] x Q; H(Y)/R) such that up to a subsequence vaf (t, x, z) two-scale converges to V,v;(t, x,z) +
\Y y Di(t, x, y,z) (where y € Y is the microscopic variable).

Moreover, the interpolation-trace inequality (A.7) in Appendix A and Theorem C.7 in Appendix C allow one
to infer the two-scale convergence of v on the boundary I'.

Next we prove the convergence of uf (1 <i < M).

Proposition 5.2. Let uf(t, X,z) (1 < i< M) be the extension of the solutions to the system (1.1). Then, up to a
subsequence:

uf(t, X,z) > ut, x, y,z)

9u; (t, x, 2) — dyuy(t, x, y, 2)

dzuf(t, X,z) = 0,u;(t, X, y,2)

eVXuf(t, X,Z) > Vyui(t, X, ¥,2) (5.32)

in the two-scale sense with uy(t, x, y,z) € L*([0, T] X Q;Hé(Y)) N HY0, T; L3(Q X Y)) (where y € Y is the micro-
scopic variable).

Proof. The convergence results (5.32) follow immediately from the a priori estimates given in Lemma 3.2 and
Theorem C.6 in Appendix C. O

Proof of the main Theorem 1.1. In the case m = 1, let us rewrite Eq. (2.5) in the form:

T T

//atvf;((§>¢1dtdxdz+d1//vaf)(<§)de>1dtdxdz
0 Q Q

0

T T
+d1//()zuf;((§>dzt,bldtdxdz—e//cl(x,z)(uf—Uf)+d>1dtd0€ (5.33)
00 0T,
T M .
=_//l2buu;u;] #(%) ¢y deaxaz
0 ‘o LA

where ;((g) is the characteristic function of Q.. Inserting in Eq. (5.33) the following test function:
. 0 g1 X
¢ =g (t,x,2) + €¢1<t,x, E’Z)

where ¢§’ € c1([0, T] x Q) and ¢, € C1([0,T] x Q: C (1)), we obtain:
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T
//atvj(t,x,z))(<§) [¢f(t,x,z)+eq~51(t,x,)€£,z>] dt dx dz
0

Q

T
+d1//VXU xl= [ X¢$+€VX(7>1<t,x,g,z>+Vy$1(t,x,§,z)] dtdxdz
0 Q
/ Vit X, 2) y ) [az(ﬁ‘l)(t,x,z) +eaz<§51<t,x, gz)] dt dx dz

T
- e//cl(x,z) W (t, x, 2) — VE(t, X, 2), [q,’)? + e&)l<t,x, gzﬂ dtdo,
0T

_{/[Zbljul(txz)u(txz)] < >[¢1+€¢1( )]dtdxdz

j=1

Passing to the two-scale limit we get

T
/ dt/dxdz/atvl(t,x,z) ¢, x,2) dy
0 Q VA
T
+d / dt / dxdz / [V 0, + V,01(6,%,, 2] [V, 2 + V(6 x, 3, 2)] dy
0 Q VA
T

+d1/ dt/dxdz/dzul(t,x,z) 0,93(t, x,2) dy
Q z

0

T
—/ dt/dxdz/cl(x, 2) (w(t, x, y,2) — vy(t, X, 2)), P2(t, x,2) do(y)
0 r

T

/d/dxdz/leljvl(txz)U(txz) d)l(txz)dy

0

(5.34)

(5.35)

An integration by parts shows that Eq. (5.35) is a variational formulation associated with the following

homogenized system:

—divy[dl(val(t,x, z)+ Vyﬁl(t,x,y, )N =0, t>0, x,20€Q, yeZ

[V, 0.t x,2) + Vybl(t,x,y, 2)]-v=0, t>0, x,227€Q, yel'

(5.36)

(5.37
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12| %(t, x,2) — div| d, / Ay (V,0,(6,%,2) + V, 5,6, .9, 2)
Z
M
— dy1Z| 0205(t, X, 2) + |Z] ) by j vy (t, X, 2) v)(t, X, 2)

=1

= /Cl(X, z) (wy(t, x, y,2) — v4(t, x, 2)), do(y) in [0, T] X Q (5.38)
r
/(val(t, X,z) + Vyz”)l(t, x,y,2)dy|-v=0 on [0, TI XTI (5.39)
Z
o,u,(t, x,z) =0 on [0, T1x Ty (5.40)
By continuity we have that

v(t=0,x,2)=0 in Q. (5.41)

Since we have assumed that the diffusion coefficient is constant and we have proved that the limiting
function v,(t, x, z) does not depend on the microscopic variable y, Egs. (5.36) and (5.37) reduce to:

Ayﬁl(t,x,y, z)=0, t>0, x,20€Q, yeZ (5.42)

Vyf)l(t,x,y, z)-v=-=V,u(t,x,2) v, t>0, x,20€Q, yerl' (5.43)
Then, 7,(t, x, y, z) satisfying Eqs. (5.42) and (5.43) can be written as

3

- v,
= (y) = 44
D1(t,%, Y, 2) z‘ W) 5, x.2) (5.44)
where (w;)1<;; is the family of solutions of the cell problem
—div, [V ,w; +&] =0 inZ
y—-w;(y) Y —periodic
with &; being the ith unit vector in R3.
Inserting the relation (5.44) in Eqgs. (5.38) and (5.39), we get
dv, . 2 <
1Z| E(t’ x,2) — div, [dy A V,0,(t, X, 2)| — d; |Z] 2vy(t, X, 2) + |Z|Z by j vi(t,x,2) v}(t, X, 2)
= (5.46)
= /C1(Xa 2) (wy(t, x, y,2) — v,(t, X, 2)), do(y) in [0, T] X Q
r
[AV, vt x,2)]-v=0 on [0, TI XTI (5.47)

where A is a matrix with constant coefficients defined by

Z
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Let us now rewrite Eq. (2.4) as follows:

T T
//atu <§ t//ldtdxdz+eD1//V )Vxl//ldtdxdz
0 0 Q

T
+l~)1//azufj( Zwldtdxdz+e//cl(x,z)(ui—vf)erldtdo-e
0

0T,
T M T

= 7(* dtdxd+//€~5 dtdxd
{él};al uu Z(e)llll Z 0 Qf )(<€>W1 Z

where y(-) 1S the characteristic runction o . lI' we choose the test runction as:
here 7(%) is the characteristic function of I',.. If we choose the test functi
o~ X
l//l.:llll(t,x,g,z)

where 7, € C1([0, T] X Q; CX(Y)), Eq. (5.48) reads:

T

//6tuf(t,x,z)j((g) 1/71<t,x, §Z> dtdxdz

0 Q
T
+62D1//quf;?<§) [Vxxpl(t,x,’eﬁ,z) + %Vyﬁ/l(t,x,g,z)] dtdxdz
0 Q

T
~ (X . X
+D, //azuf(t,x,z))(<g)6zu/1<t,x,g,z>dtdxdz
0 Q
T
€ € ~ X
+e//cl(x,z) (ul(t,x,z)—ul(t,x,z))Jr w1<t,x,g,z> dtdo.(x,2)
0T

€

g

{O\

LM;alsjuf(t,x,z)u;(t,x,z)] }(g)if (t X, o z) dtdxdz

ff(t,x,z);?(g) <t %%, z) dt dx dz

+
O\a’\]
{O\

(5.48)

(5.49)
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Passing to the two-scale limit we obtain:

T

/ dt/dxdz/dtul(t,x,y, )Pyt x,y,z)dy
0 Q X
T

+D1/ dt/dxdz/Vyul(t,x,y,z) Vot x, y,2) dy
(Yo} X

T
+Dl/ dt/dxdz/azul(t,x,y,z) 0,4(t,x,y,2) dy
o o

X

+ dt/ dxdz/cl(x, z) (wy(t, x,y,2) — vy(t, X, 2)) . yrq(t, x, y, 2) do(y)
Q r

M

dt/dxdz/ lz a ul(t,x,y,z)uj(t,x,y,z) w4t x,y,z)dy
Q X

j=1
dt/ dx dz
Q

An integration by parts shows that Eq. (5.50) is a variational formulation associated with the following
homogenized system:

+ fl&e,x,y,2)y,(t, X, y,2) dy (5.50)

O\H O\N} O\H
e~

0 -
%(t, X,¥,2) = Dy A\uy(t, X, y,2) — D, 02uy(t, x, y, 2)

M (5.51)
= —Z a;w(t,x, y,2) uit,x,y,2) + f(t,x,,2), t >0, x,2) €Q, y€X
j=1
D, Vyul(t, X,y,2)-v=—c(x,2) (uy(t, x,y,2) — 0y(t, x,2)),, £ >0, (x,2) €Q, yeTl (5.52)
d,u(t,x,y,2) =0, t>0, x,22 €DX{0,L}, yEX (5.53)
To conclude, by continuity, we have that
u(t=0,x,y,2) =Ux,y,2) x,2eQ, yex (5.54)

The proof in the case 1 < m < M is achieved by applying exactly the same arguments considered when
m=1
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Appendix A
In the following, we generalize the interpolation-trace inequality given in Ref. [43]:
||U||iz(r) < ClIVull 2 I1ull 2 A1

which is valid for any function u(x) € H(Q) with:

/ ux)dx =0 (A.2)

Q

where I'is an (n — 1)-dimensional boundary of an n-dimensional domain €. Indeed, in Ref. [43] (Eqs. (2.25) and
(2.27), Chap. 2) the authors report an estimate similar to the one we will derive, but we will write down a short
proof in order to show explicitly the dependencies of all constants from the geometry of our problem.

Let us consider now functions u(x) € H(Q) which do not satisfy (A.2). In this case, one can define

= 1
U= IQI/u(x)dx (A3)
Q

and apply (A.1) to (u — uy). Hence,

[ o0 000 < 2[ =, + ol

LX) LX)
r
2
2T
S2C IV = ug)ll 2 llu — Ul 2 + QP u(x) dx
Q
2
2 -1 2 2|I'
<2C[allVull g, + 17 =l | + G| [ U ax )

Q

where the Young inequality has been used with # being a small constant. By exploiting the Minkowski and Hoélder
inequalities, respectively, to estimate the terms:

= gl gy < 2[ Mgy + gl | (A5)
2
2

Juoar| <11l (1.6)

Q

Equation (A.4) reads
lull, ., <2CnIVulk,, + [8Cn+ 2Ll 2 A7)
= “CMVUIR g URTOTH Rt :
Appendix B

Theorem B.1. (Aubin-Lions—Simon)
Let By C B, C B, be three Banach spaces. We assume that the embedding of B, in B, is continuous and that
the embedding of B, in B, is compact. Let p,r such that1 < p,r < 4+oo. For T > 0, we define

E,, = {v € LP(0,T1,By), 0,0 € L'([0, T1, By}
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W) Ifp < +oo, Ep,r is compactly embedded in L?([0, T1, B,).
(i) If p=+oo andifr > 1, E, . is compactly embedded in C°([0, T1, By).

Theorem B.2. (Lower-semicontinuity of the norm)
Let E and F be Banach spaces and F’ be the dual space of F.
(i) Let {x,} be a sequence weakly convergent to x in E. Then, the norm on E is lower semi-continuous with
respect to the weak convergence, Le.
Il < lim inf [|x; I (B.1)

(ii) Let {x, } be a sequence weakly* convergent to x in F'. Then, the norm on F’ is lower semi-continuous with
respect to the weak* convergence, i.e.

Il < Tim inf |1 | (B2)
Appendix C
Definition C.1. A sequence of functions v¢ in L*([0, T] X Q) two-scale converges to v, € L*([0,T] X Q X Y)if
T T
lirgl//ve(t,x)qﬁ(t,x, g) dtdx:///vo(t,x,y) Bt x, y) dt dxdy €1
0 Q 0 QY

for all ¢ € C1([0, T] X Q; C(Y)).

Theorem C.3. (Compactness theorem) If v¢ is a bounded sequence in L2([0, T] X Q), then there exists a function
Uy(t, X, y) in L*([0,T] X Q X Y)such that, up to a subsequence, v¢ two-scale converges to v,.

Theorem C.4. Let v¢ be a sequence of functions in L*([0, T] X Q) which two-scale converges to a limit v, €
L*([0,T] X Q X Y). Suppose, furthermore, that

T T
lirgl//lve(t,x)|2dtdx=///lvo(t,x,y)|2dtdxdy (C2)
€l

0 0 Q'Y

Then, for any sequence w* in L*([0, T] X Q) that two-scale converges to a limit w, € L*([0,T] X Q X Y),
we have

T T
lim / / Ue(t,x)wg(t,x)qS(t,x,g)dtdx= / / / Uo(t, X, Y) wy(t, X, y) (¢, x, y) dt dx dy (C3)
0 Q 0 QY

for all ¢ € C1([0, T] X Q; C(V)).
In the following, we identify H'(Q2) = W'*(Q), where the Sobolev space W?(Q) is defined by
wWhtP(Q) = {u|u € LP(Q), %’(’i e LP(Q),i=1, 2,3}
and we denote by H}#(Y) the closure of C;°(Y) for the H'-norm.
Theorem C.5. Let v¢ be a bounded sequence in L*([0, T]; HX(Q)) that converges weakly to a limit v(t,x) in

L2([0, T]; HY(Q)). Then, v¢ two-scale converges to v(t,x), and there exists a function v,(t,x,y) in L*([0, T] X
Q; H;(Y) /R) such that, up to a subsequence, Vuv* two-scale converges to V, u(t, x) + V,v,(t, X, y).
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Theorem C.6. Let v° and e Vv© be two bounded sequences in L2([0, T] X Q). Then, there exists a function v,(t, X, y)
in L*([0, T] X Q;H;(Y)/ R) such that, up to a subsequence, v and eVuv° two-scale converge to vy(t,x,y) and
V,u,(t, X, y), respectively.

Theorem C.7. Let v be a sequence in L*([0, T] x T',) such that

T

e//lve(t,x)|2dtd0'€(x) <C (C4)
T

0

€

where C is a positive constant, independent of €. There exist a subsequence (still denoted by €) and a two-scale limit
vy(t, X, y) € L2([0, T] x Q: LX) such that vé(t, x) two-scale converges to vy(t, x, y) in the sense that

T T
lirgle//ve(t,x)d)(t,x,g)dtdag(x)=///Uo(t,x,y)<;b(t,x,y)dtdxda(y) (C.5)
0T, 0QT

for any function ¢ € CL([0, T] X Q; CR(Y)).
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