Water Impact Test and Simulation of Composite Panels

Yuqian Tu Chiara Bisagni Mauro Zanella Paolo Carlo Astori Aerospace Structures and Computational Mechanics Delft University of Technology, The Netherlands

Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano, Italy

Water Impact Test and Simulation of Composite Panels

Background

□ Aircraft emergency landing on water is often fatal

Composite structural response under ditching and water impact conditions is waiting for a deep and complete investigation

A minimum practical airspeed and a landing attitude is required in ditching provisions for large aeroplanes (EASA CS-25 Amendment 27)

Test Preparation

Panel	Length, mm	Width, mm	Thickness, mm	Weight, g
Flat panel	400.5	401	1.64	454
Curved panel	400	400	1.32	518

Density, kg/m³ E ₁₁ , GPa E ₂₂ , GPa G ₁₂ , MPa	
---	--

Test Preparation

Panel with steel frame

Mechanical properties of steel frame

Material	Density, kg/m ³	Young's Modulus, GPa
Stainless Steel	7850	200
Poisson's Ratio	Height, mm	Weight, kg
0.26	50	14.35

Test Set-up

Test Set-up

Accelerometers

Strain gauges Pressure transducers

Flat panel

POLITECNICO MILANO 1863

Water Impact Test

Water impact of the flat panel from a 3-meter height

Water Impact Test

Water Impact Test

Test Results - Data Processing

Deceleration curves of the flat panel from a 3-meter height impact

Test Results - Deceleration

Comparison between flat and curved panels from a 3-meter height impact

Test Results - Strain

Test Results - Pressure

MILANO 1863

Numerical Correlation - Finite Element Model

One layer of shell elements

- ➢ 8 integration points
- Mesh size: 5 mm

Numerical model of composite panels in LS-DYNA

		Elements		
	Flat panel	Curved panel	Steel frame	Bolts
Element Type	Shell	Shell	Solid	Solid
Number of Elements	6400	8000	7500	192

Numerical Correlation - Finite Element Model

Finite element model in LS-DYNA

Linear polynomial equation of state (EOS)

Linear polynomial parameters and SPH particles (Bisagni & Pigazzini, 2017)				
3	C ₀ , MPa	C ₁ , MPa	C ₂ , MPa	Smoothing length
1000	0	2723	7727	5 mm
C ₃ , MPa	C ₄ , MPa	C ₅ , MPa	C ₆ , MPa	SPH particles
14660	0	0	0	1,944,000

Numerical Correlation - Flat Panel

Numerical Correlation - Flat Panel

Numerical Correlation - Flat Panel

T=11.5 ms

POLITECNICO MILANO 1863

Conclusions

- 3-meter water impact tests with both flat and curved composite panels
- Only focus on the first peak of the curves
- No failure for both panels
- Curved panel has smoother impact process and absorbs more impact energy
- Shell elements for composite panels and SPH particles for fluid domain
- Good prediction regarding flat panel's structural behavior and water flow around the panel
- Boundary conditions and cavitation influence the numerical results
- Contributing to design guidelines towards composite panels under water impact
- Numerical investigation for higher impact velocity
- Cavitation effects

