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Abstract—This work investigates the error performance of
detection schemes based on the minimum Pearson distance in the
context of additive white Gaussian noise channels with unknown
and unbounded offset, constant throughout each channel use.
We derive a lower bound on the word error rate under modified
Pearson (MP) detection. Additionally, we introduce a new and
low-complexity detection strategy, namely the Simplified Pearson
(SP) detector. We analyze and compare the error performance
of the SP detector with that of the MP detector.

Index Terms—AWGN Channel with Offset, Low-Complexity
Detection, Pearson Distance

I. INTRODUCTION

Digital data stored in any memory device is affected by various
impairments due to the physical nature of the considered
support, whether it is optical, magnetic, electronic, or any
other. For instance, these impairments can be due to several
physical aspects of the device (e.g., temperature, humidity,
charge magnitude, etc.) [1]. In general, any memory read is
typically affected by a mismatch both in terms of mean and
variance when compared to the nominal stored value.

In the context of memory systems, a suitable channel model
for noisy memory reads is the additive white Gaussian noise
(AWGN) channel model affected by unknown and random
offset [2]. Based on each specific memory technology, the
memory offset can be assumed to be constant throughout each
channel use or varying within each read [3].

In this work, we focus on the first scenario. In the case
of unknown and unbounded offset, constant throughout each
channel use, the modified Pearson (MP) distance detector,
presented in [1], achieves maximum likelihood (ML) decod-
ing [4].

A. Contributions and Paper Outline

Both Pearson and MP detection can be computationally too
complex for practical implementations. The main focus of
this work is to investigate low-complexity alternative detectors
suitable for more efficient implementations and with perfor-
mance comparable to that of the MP detector.

Section II introduces the AWGN channel with offset and its
features. In Sec. III, we briefly discuss the MP distance detec-
tion proposed in [1], closely related to the results presented in
this work. In Sec. IV, we provide the error analysis of the MP
detection. We show that, roughly speaking, the MP detector
transforms an AWGN channel with offset into one without

offset in terms of error performance. In Sec. V, we introduce
and evaluate the performance of a low-complexity alternative
solution to the MP detection, i.e., the Simplified Pearson (SP)
detection. Finally, Sec. VI concludes the paper.

II. SYSTEM MODEL

Let us model the memory reads as the output of a binary-
input AWGN channel with random offset. The input-output
relationship is given by

Y = a(m(C) + Z) + b1 (1)
= a(X+ Z) + b1, (2)

where Y ∈ RK is a noisy read vector of length K, a > 0 is
an unknown channel gain, and C ∈ C is the K-dimensional
binary sequence stored in the memory and chosen from the
codebook C. Moreover, X = m(C) is the modulated binary
sequence, mapping 0 7→ 1 and 1 7→ −1. We denote the
unknown offset by b ∈ R, assumed to be constant within each
memory read, and by 1 the all-1 vector. Finally, Z ∈ RK

is a noise vector with independent and identically distributed
(iid) entries Zi ∼ N (0, σ2) for i = 1, . . . ,K, and σ2 is the
variance of the additive noise components.

Throughout this work, we will consider the channel gain to
be a = 1 without loss of generality, as it is always possible
to account for any gain a > 0 by scaling the signal-to-noise
ratio (SNR) accordingly.

III. PREVIOUS WORKS

Let us introduce the Pearson distance detection presented in [5]
and the MP detection [1].

A. Pearson Distance Detection

Consider two binary sequences x and y. The Pearson distance
between the two sequences is defined as

δP(x,y) = 1− ρx,y, (3)

where ρx,y =
(∑K

i=1(xi − x̄)(yi − ȳ)
)
/(σxσy) is the Pear-

son correlation coefficient, with x̄ = 1
K

∑K
i=1 xi, σ2

x =∑K
i=1(xi − x̄)2, and similarly for y.
An estimate of the stored sequence is evaluated as ĉP(Y) =

argminc∈C δP(Y, c). Notice that, to guarantee unambiguous
detection, the Pearson detector requires the use of a codebook
purged of the all-0 and all-1 sequences.
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B. Modified Pearson Distance Detection

A modified version of the Pearson distance, improving the
resistance against AWGN, is proposed in [2, Eq. (17)] and
defined as

δMP(x,y) =

K∑
i=1

(xi − yi + ȳ)2. (4)

Given the stored sequence C and upon reading its noisy
version Y, the MP detector outputs an estimate of C that
is defined as follows

ĉMP(Y) = argmin
c∈C

δMP(Y,m(c)), (5)

where the c’s are tentative binary sequences extracted from the
codebook C. To ensure that the MP detection is unambiguous,
the only requirement on the codebook C is to remove the
all-1 sequence, see [2], therefore we have C = FK

2 \ {1}.
Throughout this work, we consider equiprobable codewords,
i.e., PC(c) = 1/(2K − 1), ∀c ∈ C. Notice that, the authors
of [6] proved that (5) is the ML detection criterion for the
scenario considered in this work, i.e., for a = 1 and for b ∈ R.

An equivalent formulation of the MP detection, given by
the cascade of Hamming weight estimation and Slepian de-
tection [7], is proposed in [1]. The MP detector estimates the
Hamming weight as follows

ŴMP(Y) = arg min
k∈[0,K−1]

δk(Y), (6)

where δ0(Y) = 0 and, for w = 1, . . . ,K − 1, it holds

δk(Y) =

k∑
i=1

(
Yi:K − Ȳ +

K + 1− 2i

K

)
(7)

= δk−1(Y) + Yk:K − Ȳ +
K + 1− 2k

K
, (8)

where Yi:K is the ith order statistic in a set of K memory
reads. Then, the Slepian detector assigns

ĉMP,i:K =

{
1 i ≤ ŵMP,

0 i > ŵMP,
(9)

i.e., the first ŵMP memory reads are detected as 1s, and the
remaining reads are detected as 0s.

IV. PERFORMANCE ANALYSIS OF THE MODIFIED
PEARSON DETECTOR

Let us now evaluate the error performance of the AWGN
channel with unbounded offset under MP detection.

A. Word Error Rate

Let us denote by EMP and Pϵ,MP, respectively, the number of
symbol errors and the word error rate (WER), both under MP
detection.

Theorem 1. The WER of MP detection over an AWGN channel
with random and unbounded offset is lower-bounded by

Pϵ,MP ≥ Pϵ,MP =
1− (1−Q

(
1
σ

)
)K − 2−K

1− 2−K
(10)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt.

Proof. By definition, the MP detector cannot give the all-1
codeword as an answer, because the codebook is C = FK

2 \{1}.
Now, let us consider input codewords drawn equally prob-

able from C′ = FK
2 , i.e., with PC′(c) = 2−K for all c ∈ C′.

Then, we can write

Pϵ,MP

= P(ĉMP(Y) ̸= C) (11)
= P(ĉMP(Y

′) ̸= C′|C′ ̸= 1) (12)

=
P(ĉMP(Y

′) ̸= C′, C′ ̸= 1)

1− PC′(1)
(13)

=
P(ĉMP(Y

′) ̸= C′)− P(ĉMP(Y
′) ̸= 1|C′ = 1)PC′(1)

1− PC′(1)
(14)

=
P(ĉMP(Y

′) ̸= C′)− PC′(1)

1− PC′(1)
(15)

≥ P(ĉML(Y
′) ̸= C′)− PC′(1)

1− PC′(1)
(16)

≥ P(ĉML(Y
′ − b1) ̸= C′)− PC′(1)

1− PC′(1)
(17)

=
1− (1−Q

(
1
σ

)
)K − 2−K

1− 2−K
, (18)

where Y′ = m(C′) + b + Z. Notice that (15) holds because
the MP detector never chooses the codeword 1 and, therefore,
P(ĉMP(Y

′) ̸= 1|C′ = 1) = 1. The lower bound in (16) arises
from the definition of an ML detector, ĉML. Step (17) follows
from providing side information b to the receiver. Finally, (18)
holds because ĉML function as the Euclidean detector for an
AWGN channel without offset, and the noise variance is σ2.

An upper bound1 on Pϵ,MP is derived in [2] and given by

Pϵ,MP < Pϵ,MP = K ·Q

(
1

σ

√
1− 1

K

)
. (19)

In Fig. 1, we compare the upper and lower bounds on the WER
to a numerical evaluation of Pϵ,MP, for K = 16, 64, 128. For
any K, the lower bound Pϵ,MP is tighter at low SNR. On the
other hand, for small values of K, the upper bound is tighter at
high SNR. As K increases, the lower bound closely matches
the numerical evaluation of Pϵ,MP at any SNR.
Remark 1. For large values of K, we have

Pϵ,MP ≈ Pϵ,AWGN(σ2) = 1−
(
1−Q

(
1

σ

))K

, (20)

where Pϵ,AWGN(σ2) is the WER under Euclidean detection
for an AWGN channel without offset and noise variance σ2.
In Fig. 1, we show that for large K we have Pϵ,MP ≈
Pϵ,MP. Therefore, as K increases, the error performance of
the AWGN channel with unbounded offset and under MP
detection tends to the error performance of an AWGN channel
without offset under Euclidean detection.

1In [2, Eq. (28)], the correct scaling term for the argument of the Q function
is 1/σ instead of 1/(2σ).
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Figure 1. Bounds and Monte Carlo evaluation of the WER under MP detection
vs SNR, for K = 16, 64, 128.
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Figure 2. Error probability curves under MP detection vs SNR, for K = 128
and k = 2, . . . , 6.

B. Bit Error Rate

In view of Remark 1, we posit that for sufficiently large K one
can approximate the bit error rate (BER) of the MP detector
as follows

PB,MP ≈ P̃B,MP =
E
[
B
(
K,Q

(
1
σ

))]
K

= Q

(
1

σ

)
, (21)

where B(n, p) is the binomial distribution with n trials and
success probability p per trial. Furthermore, the probability of
having k bit errors can be approximated by

P̃(EMP = k) =

(
K

k

)
(P̃B,MP)

k(1− P̃B,MP)
K−k. (22)

Let us assess the accuracy of the proposed approximations via
numerical simulations.

In Fig. 2, we show BER and error probability curves for
K = 128. The black line is the analytical approximated BER,
while the red + markers show the Monte Carlo evaluated BER.
The black dashed lines and the blue dotted lines with cir-
cle markers, show, respectively, the analytical approximation
P̃(EMP = k) and the numerical evaluation of P(EMP = k),
both for k = 2, . . . , 6. The close match between the analytical

and simulated curves shows us the high level of accuracy given
by the approximation in (21) and (22).

V. SIMPLIFIED PEARSON

The MP detector requires the computation of sample average
Ȳ over all memory reads and the computation of K metrics,
see (8). Note that, by (8), the values δk(Y) can be computed
recursively. Moreover, at high SNR, the function k 7→ δk(Y)
is sharp, i.e., the difference δk(Y)−δk−1(Y) exhibits a sudden
change of sign at some k.

We define the Simplified Pearson (SP) detector as the
approximate Pearson detector implemented by estimating the
codeword’s Hamming weight ŴSP(Y) as the smallest k such
that δk(Y)− δk−1(Y) > 0, i.e.,

ŴSP(Y) = min

{
k :

(
Yk − Ȳ +

K + 1− 2k

K

)
> 0

}
− 1.

(23)
The mentioned features make SP detection particularly ap-
pealing for any kind of memory technology based on ramp
sensing [8]. Indeed, when paired with ramp sensing, the SP
detector becomes particularly efficient and can be implemented
simply by counting the trigger events satisfying (23).

A. Error Analysis on the Hamming Weight Estimation

Notice that X̄ = (K − 2w)/K, where w = w(C) is the
Hamming weight of the binary word C. Therefore, we have

Ȳ =
K − 2w

K
+ b+ Z̄, (24)

where Z̄ = 1
K

∑K
k=1 Zk, with Zk ∼ N

(
0, σ2

)
, ∀k. Notice

also that

Yk − Ȳ + 1 +
1− 2k

K
= Yk − b− Z̄+

1 + 2(w − k)

K
, (25)

and therefore (23) can be rewritten as

ŴSP(Y) = min

{
k :

(
Yi − b− Z̄+

1 + 2(w − k)

K

)
> 0

}
− 1.

(26)

Let ϵw = ŴSP(Y)−w be the estimation error of the Hamming
weight w. We have ϵw = k̂ − 1 − w with k̂ satisfying the
condition in (26). The complementary cumulative distribution
function (cdf) of ϵw is approximately

P(ϵw > ϵ) ≈ P
(
Yw+ϵ+1 − b− Z̄ ≤ 1 + 2ϵ

K

)
, (27)

with ϵ ∈ Z ∩ [−K,K] and under the assumption that, if the
condition in (26) is not satisfied for a given k̃, then it is not
either for ∀k < k̃. In (27), Yw+ϵ+1 is the (w+ϵ+1)th sample
in the complete ordered statistic of the read samples.

Lemma 1. Consider two classes of independent memory reads
U(1) and U(2), such that

U
(i)
k ∼ N

(
µi, σ

2
)
, k = 1, . . . , ni, (28)

for i = 1, 2. Denote by U the ordered statistic of the mixed
population given by U(1) and U(2). Then, the cdf of the jth
ordered statistic Uj is
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FUj
(u) =

n1+n2∑
k=j

{B(n1,Φ1(u)) ∗ B(n2,Φ2(u))}(k), (29)

where Φi is the N
(
µi, σ

2
)

cdf, and ∗ denotes convolution.

Proof. Let Vi be the number of samples that fall below a
threshold u for the ith class. Then, Vi ∼ B(ni,Φi), where
V1 and V2 are independent and

Φi(u) = P(U (i)
k ≤ u) = Φ

(
u− µi

σ

)
, i = 1, 2. (30)

Then, the cdf of Uj is given by

P(Uj ≤ u) =

n1+n2∑
k=j

P(Uk ≤ u, Uk+1 > u) (31)

=

n1+n2∑
k=j

P(V1 + V2 = k) (32)

=

n1+n2∑
k=j

{B(n1,Φ1(u)) ∗ B(n2,Φ2(u))}(k). (33)

Let us consider the two classes of reads

Y(−1) = {Yi : Xi = −1, i = 1, . . . ,K}, (34a)

Y(+1) = {Yi : Xi = +1, i = 1, . . . ,K}. (34b)

Moreover, let us denote by U the ordered statistic of the
mixed population Y(−1) and Y(+1). Under the simplifying
assumption that Y(w+ϵ+1) and Z̄ are independent and thanks
to Lemma 1, we have

P(ϵw > ϵ) ≈ P
(
Yw+ϵ+1 ≤ b+ Z̄+

1 + 2ϵ

K

)
(35)

= E
[
FUw+ϵ+1

(
b+ Z̄+

1 + 2ϵ

K

)]
, (36)

with expectation over Z̄ ∼ N
(
0, σ2/K2

)
, and for the proba-

bility mass function of ϵw we have

Pϵw(ϵ) = P(ϵw > ϵ− 1)− P(ϵw > ϵ). (37)

Finally, for any given Hamming weight distribution P(W =
w), the probability of wrong Hamming weight estimate is

P(ŴSP − w = ϵ) =

K−1∑
w=0

Pϵw(ϵ)P(W = w). (38)

Let us assume that the zero crossing of the difference function
k 7→ Dk(Y) = δk(Y)− δk−1(Y) happens once, where

Dk(Y) = Yk:K − Ȳ +
K + 1− 2k

K
, k = 1, . . . ,K.

(39)

We want to characterize the distribution of ŴSP when the
Hamming weight of the written codeword is w, i.e.

FŴSP;w
(k) ≜ P(ŴSP < k) ≈ P(Dk ≥ 0). (40)

Let us assume again that if, for a given k̃, the condition in (26)
is not satisfied, then it is not either for ∀k < k̃. Given the just
mentioned assumption, (40) follows because Dk ≥ 0 implies
that ŴSP has surely been set to a value less than k. Notice that
also the converse implication is true, i.e., if ŴSP = t < k, then
Dt+1 ≥ 0, hence Dk ≥ 0. Therefore, the two events ŴSP < k
and Dk ≥ 0 are equivalent under the mentioned assumption
on k and (26).

By (24), we have

FŴSP;w
(k) ≈ P(Dk ≥ 0) (41)

= P
(
Yk:K − b− Z̄+

1− 2(k − w)

K
≥ 0

)
(42)

= 1− P
(
Yk:K ≤ b+ Z̄− 1− 2(k − w)

K

)
(43)

≈ 1− E
[
FUk

(
b+ Z̄− 1− 2(k − w)

K

)]
, (44)

where the last step follows from (36). Finally, we can write

P(ŴSP = k) =

K−1∑
w=0

P(W = w)P(ŴSP = k|W = w), (45)

where P(ŴSP = k|W = w) = FŴSP;w
(k + 1)− FŴSP;w

(k).

B. Bit Error Rate

Let us now evaluate the bit error statistics. We denote by ESP
the number of bit errors at the output of the SP detector.

Notice that the event {ŴSP = k} implies the event {Dk <
0 < Dk+1} and if we assume a single zero crossing of the
metrics {Dk}, then P(ŴSP = k) = P(Dk < 0 < Dk+1). The
event {Dk < 0 < Dk+1} can be rewritten as follows

Yk:K < b+ Z̄+
2(k −W )− 1

K
< Y(k+1):K − 2

K
. (46)

Notice that (46) defines an upper threshold for Yk:K , and a
lower threshold for Y(k+1):K :

Yk:K < t−1 ≜ b+ Z̄+
2(k −W )− 1

K
, (47)

Y(k+1):K > t+1 ≜ b+ Z̄+
2(k −W ) + 1

K
. (48)

Let us consider the classes (−1) and (+1) defined in (34) and
define the intervals T−1 = (−∞, t−1), T0 = [t−1, t+1], and
T+1 = (t+1,∞). For each class, the probability of having n1

elements in T−1, n2 elements in T0, and n3 elements in T+1

can be modeled by the Trinomial distribution

T
(

n1 n2 n3

p1 p2 p3

)
=

(n1 + n2 + n3)!

n1!n2!n3!
pn1
1 pn2

2 pn3
3 , (49)

where p1, p2, and p3 are the probabilities, for any given
Yi, of falling in one of the intervals T−1, T0, and T+1,
respectively. The two trinomials, for classes (−1) and (+1),
are independent. We are interested in the event n2 = 0 for both
classes. Bit errors occur when elements of class (−1) fall in
T+1 and elements of class (+1) in T−1. We can observe k
elements in the wrong intervals in k+1 ways, i.e., i elements
of class (−1) in T+1, and k− i elements of class (+1) in T−1
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for i = 0, . . . , k. Therefore, the probability of having k bit
errors given Hamming weight w, i.e., P(ESP = k | W = w),
can be approximated by

P̃(ESP = k | W = w)

=

k∑
i=0

T
(

w − i 0 i
pA1 1− pA1 − pA2 pA2

)
· T
(

k − i 0 K − w − (k − i)
pB1 1− pB1 − pB2 pB2

)
,

(50)

where the first trinomial refers to the class (−1) and is
characterized by

pA1 = Φ

(
K − 1 + 2(k − 2i)

Kσn

)
, (51)

pA2 = 1− Φ

(
K + 1 + 2(k − 2i)

Kσn

)
, (52)

while the second trinomial refers to the class (+1) with

pB1 = Φ

(
−K − 1 + 2(k − 2i)

Kσn

)
, (53)

pB2 = 1− Φ

(
−K + 1 + 2(k − 2i)

Kσn

)
, (54)

and σn = σ
√

K−1
K . Therefore, notice that

P̃(ESP = k) = E
[
P̃(ESP = k | W )

]
, (55)

and we can approximate the BER, under SP detection, as

P̃B,SP =

∑K
k=1 k · P̃(ESP = k)

K
. (56)

Remark 2. When limK→∞ k/K = 0, we have

lim
K→∞

P̃(ESP = k | W = w)

= {B(w, 1− Φ(1/σ)) ∗ B(K − w,Φ(−1/σ))}(k) (57)
= {B(w, 1− Φ(1/σ)) ∗ B(K − w, 1− Φ(1/σ))}(k) (58)
= B(K, 1− Φ(1/σ))(k) (59)
= P(EAWGN(σ2) = k), (60)

where EAWGN(σ2) is the number of symbol errors at the output
of Euclidean detection for an AWGN channel without offset
and with noise variance σ2, i.e.,

EAWGN(σ2) ∼ B
(
K,Q

(
1

σ

))
. (61)

Equivalently, T0 disappears, we have two identical binomials
for the errors of both classes, and the total number of errors
can be written as a single binomial. Therefore, as K increases,
the error performance of the SP detector tends to that of the
MP detector.
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Figure 3. Error probability curves under SP detection vs SNR, for K = 128
and for k = 2, . . . , 6.

Numerical Results: Let us now provide numerical results on
the performance of the SP detector. In Fig. 3, the black solid
line with crosses is the approximated BER performance for
the MP detector. The red squares markers and the red dashed
line are, respectively, the simulated and the analytical approx-
imation of the BER for the SP detector. The black dashed
lines, the black dotted lines, and the blue dotted lines with
circle markers are, respectively, the probabilities of k errors
given by the MP and SP analytical approximation and the SP
simulation. All the mentioned error probabilities are evaluated
for k = 2, . . . , 6. We have already shown that the analytical
approximations of PB,MP and P(EMP = k) closely match
the MP error probabilities obtained via numerical simulation,
see Fig. 2. Therefore, to improve the readability of Fig. 3, for
the MP detector we show only P̃B,MP and P̃(EMP = k) and
neglect the corresponding simulated curves.

Notice that the performance of the SP detector closely
matches that of the MP detector. Moreover, Fig. 3 shows that
the analytical approximation of the error curves for the SP
detector agrees with the Monte Carlo simulation. Therefore,
if compared to the MP detector, the SP detector is a lower
complexity solution with a fairly negligible loss in terms of
performance.

VI. CONCLUSION

Given an additive white Gaussian noise (AWGN) channel with
unknown and unbounded offset, we derived a tight lower
bound on the word error rate under modified Pearson (MP)
detection. We also showed that the MP detector provides error
performance that closely matches that of an Euclidean detector
for an AWGN channel without offset. Moreover, we proposed
a new detection scheme based on a simplification of the MP
detection, namely the Simplified Pearson (SP) detection. We
showed that the SP detector, although being characterized by
a lower computational complexity, retains error performance
close to that of the MP detector.
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