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Abstract
Our research is positioned within the framework of subsurface resource utilization for sustainable economies. We concentrate
on modeling the underground single-phase fluid flow affected by geological faults using numerical simulations. The study
of such flows is characterized by strong uncertainites in the data defing the problem due to the difficulty of taking precise
measurements in the subsoil. We aim to demonstrate the feasibility of a reduced order model that is both reliable and
computationally efficient, thereby facilitating the incorporation of uncertainties. We account for the uncertainities of the
properties of the rock and the geometry of the fault. The latter is achieved by using a radial basis function mesh deformation
method. This approach benefits from a mixed-dimensional framework to model the rock matrix and faults as n and n − 1
dimensional domains, allowing for non-conforming meshes. Our primary focus is on a reduced-order model capable of
reproducing flow variables across the entire domain. We utilize the Deep Learning Reduced Order Model (DL-ROM), a
nonintrusive neural network-based technique, and we compare it against the traditional Proper Orthogonal Decomposition
(POD) method across various scenarios. The most relevant contributions of this work are: the proof of concept of the use of
neural network for reduced order models for subsoil flow, dealing with non-affine problems and mixed dimensional domain.
Additionally,we generalize an existingmesh deformationmethod for discontinuous deformationmaps.Our analysis highlights
the capability of reduced ordermodel, highlightingDL-ROM’s capacity to expedite complex analyseswith promising accuracy
and efficiency, making multi-query analyses with various quantities of interest affordable.

Keywords Porous media · Faults · Reduced order modeling · Proper orthogonal decomposition · Deep learning

1 Introduction

Nowadays, the practice of injecting fluids into the subsoil
is gaining prominence not only for the production of fos-
sil fuels but also for the storage of carbon dioxide and for
the strategic storage of thermal energy and the exploitation
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of geothermal resources. These applications are essential in
our quest for sustainable and renewable energy solutions [1].
Injection of fluid into the subsoil alters the local equilib-
rium, changing the stress field, and possibly causing fault
reactivation. Furthermore, leakage phenomena from storage
reservoirs must be predicted [2]. These phenomena have to
be assessed taking into account the uncertainties related to
the subsoil, both those concerning the physical property of
the rock, e.g. the porosity or the permeability, and uncertain-
ties about the geometry, such as the exact position of the fault
or the relative displacement of the two sides.

Due to this lack of knowledge, we need to execute multi-
query applications such as sensitivity analysis, parameter
identification, or uncertainty quantification, which require
many evaluations of the discrete model for different scenar-
ios. The evaluation of each scenario can be computationally
demanding; therefore, these analyses can be a burden.
Reduced Order Modeling (ROM) techniques come into play
to provide a surrogate model that is both reliable and fast
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to evaluate, making such intensive computation feasible.
Reduced order models can be created using linear reduction
techniques [3–6] with methods such as Proper Orthogo-
nal Decomposition (POD) [3–5], greedy algorithm [3, 4],
empirical interpolationmethod [3, 7], dynamicmode decom-
position [8, 9]. Moreover, the methods can be adopted
in a multi-fidelity context [10] or in dynamic adaptation
[11]. Some other works investigate the combination of POD
for finding spatial basis functions and neural networks to
evolve the modal coefficients [12–14]. The primary pur-
pose of employing data-driven ROM empowered by neural
networks, as an alternative to traditional approaches, is the
built-in non-intrusiveness and the ability to overcome the
limitation of using a linear combination of basis functions by
introducing a nonlinear trial manifold. This is achieved using
autoencoders, which offer advantages in highly nonlinear or
advection-dominated problems [15, 16]. When determining
the latent space using autoencoders, the temporal evolution of
the latent solution can be accomplished using various meth-
ods, including recurrent neural networks [17], feedforward
neural networks [18–23], and self-attention neural networks
[24]. It is also feasible to uncover the latent dynamics and
compute a quantity of interest from it, as demonstrated in
[25].

In this paper, we focus on the problem of incompressible,
non-reactive, single-phase flow in a faulted porous medium,
considering both the physical and geometrical variability of
the data. For the latter, we choose to account for the geo-
metrical changes of the fault configuration by deforming the
computational grid using a method based on algebraic equa-
tions. We apply a new data-driven model order reduction
technique based on deep feedforward neural networks, called
the Deep Learning Reduced Order Model (DL-ROM) [18,
22]. This method is intrinsically non-intrusive and naturally
capable of efficiently dealing with nonaffine parameteriza-
tions, such as the one used for the changing geometry of the
faults.We compare DL-ROMwith the well-established POD
method [3, 4], using several test cases on the problemof flows
in fractured porous media with deformable geometry.

We organize the development and assessment of the pro-
posed methodology as follows. In Section 2 we present
the mathematical model that governs single-phase flow in
a porous medium with particular attention to the treatment
of the coupling of subdomains of different dimensions. The
discretization of this model is described in Section 3. Sec-
tion 4 regards the reduced-order modeling techniques, with
an introduction of both the POD and DL-ROMmethods and
a discussion of the nonaffine parameterization of our prob-
lem. In Section 5, we present ourmethodology for deforming
the geometry while maintaining a non-conforming mesh at
the interfaces of subdomains. In Section 6, we set up three
different test cases to assess the main features that define the
properties of themethods, such as offline and online time and

solution error compared to the full-order model. Finally, in
Section 7 we show an example of two possible applications
of the proposed model order reduction technique.

2 Mathematical model

We present the mathematical model of an incompressible,
non-reactive, single-phase flow in a porousmedium, showing
the treatment of the faults. The reader can find a complete
list of symbols used in this document in Appendix A.

2.1 The continuousmodel

Let us consider � ⊂ R
D , with D = 2 or 3, a sufficiently

regular domain that represents a porous medium, with outer
boundary ∂� with outward normal υ. We assume that there
exists a partition of ∂� into two measurable parts ∂p� and
∂q�, such that ∂� = ∂p� ∪ ∂q� and ˚∂p� ∩ ˚∂q� = ∅, with
|∂p�| �= 0.We consider aDarcymodel for flow in a saturated
porous medium, where the Darcy velocity q, in [m s−1], and
the fluid pressure p, in [Pa], satisfy the following system of
partial differential equations consisting of the Darcy law and
the mass balance [26], with associated boundary conditions.

{
q + K∇ p = 0

∇ · q = f
in �,

{
p = p on ∂p�,

q · υ = q on ∂q�,
(1)

The data and parameters of the model are the permeabil-
ity of the rock matrix scaled by dynamic viscosity K, in
[m3s/kg], a scalar forcing term f, in [s−1] (representing a
source or a sink), and the boundary data p and q , in [Pa]
and [m s−1], respectively. We assume that K is a bounded,
symmetric, positive-definite tensor.

In this work, we consider the primal formulation associ-
ated with Eq. 1, where the only variable is the pressure p, and
the Darcy velocity may be reconstructed using Darcy’s law.
It reads

−∇ · (K∇ p) = f in �,

{
p = p on ∂p�,

K ∂ p
∂υ

= −q on ∂q�,
(2)

where ∂ p
∂υ

= ∇ p · υ. Under suitable regularity assumptions
on the domain shape, forcing, and boundary terms, it is well
known that the problem is well posed and admits a unique
weak solution p in H1(�) as long as ∂p� has a non-null
measure, see [27]. If |∂p�| = 0, p is known up to a constant.

2.2 Flow in faulted porousmedium

Fractures or faults might be present in our domain of inter-
est; these are regions with one dimension, the aperture, that
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may be orders of magnitude smaller than the lateral exten-
sion. For this reason, we adopt a model reduction strategy
that considers fractures as objects of codimension 1. Con-
sequently, we need to write a model for the flow inside the
fracture by appropriately averaging the Darcy model in the
Eq. 1. In the reduced model, the aperture becomes a param-
eter. The model applies to fractures and faults, yet because
of the target application, we will use only the term faults in
the sequel.

Faults might have permeabilities very different compared
to the surrounding porousmedia.When they aremore perme-
able than the surrounding medium, they form a preferential
flow path. In contrast, they block the flow and may create
compartments in the porous medium when they have a lower
permeability. We are interested in both cases: for this rea-
son, we consider themixed-dimensional model already used,
among others, in [28–32], which accounts for both situations.

For the convenience of the readers, we introduce themath-
ematical model when only one fault, γ , is present, as shown
in Fig. 1; the intersection between faults will be treated later.
Moreover, we assume that the fault is planar with a unitary
normal υγ and an aperture ε > 0. The variables in the porous
medium,�, are the same as before, while in the fault we con-
sider the following reduced variables,

qγ (x) =
∫

ε(x)
(I −υγ ⊗υγ )q and pγ (x) = 1

ε(x)

∫
ε(x)

p.

Here, qγ is an integrated tangential flux in [m2 s−1], and
pγ an averaged pressure in [Pa].

The normal υγ allows us to uniquely define the positive
and negative side of the fault, as shown in Fig. 1. On each
side, we introduce an additional interface, called γ + or γ −,
where we define a new variable λ+ or λ− that represents
the flux exchange between the fault and the porous medium,
both measured in [m s−1]. We will simplify the notation by
indicating λ = (λ+, λ−).

We note that now the domain� does not include the fault,
which is, in fact, an internal boundary. Thus, the boundary
of � can be partitioned into two open sets: ∂ex� and ∂in�.

Fig. 1 Generic domain divided in�1 and�2 by a fault, γ , with normal
υγ . The coupling fluxes, λ+ and λ−, are defined at the additional inter-
faces, γ + and γ −. The parts of the external boundarywith theNeumann
conditions are indicated by ∂q� and ∂qγ , while the external boundaries
with the Dirichlet conditions are denoted by ∂p� and ∂pγ . The internal
boundaries facing the fault are called ∂in�1 and ∂in�2

The first indicates the external boundary, ∂ex�∩� = ∅, and
the second indicates the part of the boundary of � facing
the fault. Similarly, the boundary of γ is subdivided into two
(possibly empty) disjoint parts: ∂exγ and ∂inγ , the former
being the portion of the boundary of γ in contact with ∂ex�,
while ∂inγ is the boundary of γ internal to �, characterized
by ∂� ∩ ∂inγ = ∅. The external boundary ∂exγ is again
divided into two disjoint parts, possibly empty, ∂pγ and ∂qγ

where we impose pressure and fluxes, respectively. Finally,
we define υ̂γ as the unit normal outward of ∂γ (tangent to
γ ).

According to the mixed-dimensional model described in
the cited literature, we can write the primal formulation for
the coupled problem where the unknowns are p in �, pγ in
γ and (λ+, λ−) in γ + × γ −. We have

−∇·K∇ p= f , in �, −∇ · εKτ∇ pγ + λ− − λ+ = fγ , in γ,

(3a)

⎧⎨
⎩

ελ+ − 2Kn

(
p
∣∣
γ + − pγ

)
= 0, on γ +,

ελ− − 2Kn

(
pγ − p

∣∣
γ −

)
= 0, on γ −,

(3b)

where Eq. 3a represents the mass balances in, respectively,
� and γ , whereas Eq. 3b is the constitutive law for the
fluxes λ. Kτ and Kn are the in-plane and normal permeabil-
ity of the fault, scaled by the dynamic viscosity, respectively,
both expressed in [m3s/kg]. Furthermore, fγ is the aver-
aged source or sink term in the fault, in [s−1]. Velocities
can be reconstructed by Darcy’s law, which for the fracture
is expressed as qγ = −εKτ∇ pγ . Note that the differential
operators in γ are defined with respect to a local coordi-
nate system, but we retain the same notation for simplicity.
Here, with |γ + and |γ − , we indicate the trace operators on
the respective sides of the fault.

System Eqs. 3a with 3b is complemented by the following
boundary conditions

p = p on ∂p�, K
∂ p

∂υ
= −q, on ∂q�,

pγ = pγ on ∂pγ, εKτ

∂ pγ

∂υγ

= −qγ on ∂qγ,

∂ pγ

∂υγ

= 0 on ∂inγ.

(3c)

The last relation, known as the tip condition, imposes a
null flux.

2.3 Intersections

We focus here on the intersection of 1D faults because it is
the only kind of intersection that we consider in this paper.
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Different intersection topologies can exist, such as X-, T-,
or Y-shaped intersections; see Fig. 2 for an example of a
Y-shaped intersection. All types of intersection are treated
similarly, as explained below. The intersection point is repre-
sented as a 0D domain where the mass conservation equation
and the coupling conditions must be solved. The 0D mass
conservation is:

nbr∑
i=0

λγi = 0,

where nbr is the number of intersecting branches, λγi [m s−1]
are the fluxes exchanged between the branches through the
intersection point, ι: λγi = qγi |ι · υ̂γi , where υ̂γi is the out-
wards unit vector aligned with the i-th fault. Regarding the
coupling condition, we can use a model considering pressure
jumps as:

ε2λγ + 2Kι

(
pι − pγ |ι

) = 0,

where Kι [m3s/kg] is a representative value of permeability
at the intersection, pι [Pa] is the pressure of the intersection.
The well-posedness of the problem of flows in faulted porous
media, including intersections, for a different, yet equivalent,
formulation has been studied in [33, 34].

3 Discretization

We discretize problem (3) with a cell-centered finite vol-
ume method [35, 36]. The degrees of freedom of the primary
variables p, pγ , and λ are located in the center of the cells
that discretize the domain and fractures. Numerical fluxes
at the cell boundary are computed with the multipoint flux
approximation (MPFA) [37–40], in particular, the so-called
MPFA-O method first proposed in [37] implemented in the
Porepy library [41]. We stress that our objective is to solve
the problem for different values of the geometrical and
physical parameters, respectively μgeom and μphy . We set
μ = (μgeom, μphy) ∈ � ⊂ R

e, where � is the space of
parameters, and e the total number of parameters. Variations

Fig. 2 Y-shaped intersection. The three faults, γ1, γ2, γ3, cross each
other at the point ι. υ̂γi are the outward unit vectors aligned with the
respective fault

in geometric parameters lead to domain deformations. We
detail the issues related to domain discretization in Section 5.

For a given grid, the discretization of the full-order model
(3a) leads to a perturbed saddle point linear system of the
form[
A BT

1
B2 −C

] [
p̂

λ

]
= bN , (4)

where A =
[
Ap 0
0 Apγ

]
is a semi-definite positivematrix con-

taining the discretization of the fluxes in Eq. 3a, precisely Ap

discretizes the fluxes in � and Apγ discretizes the fluxes in
γ . The terms B1 and B2 derive from the coupling condi-
tions, involving the fluxes λ, while C is the mass matrix that
appears in the discretization of the constitutive law (3b). We
note that Eq. 5 satisfies the assumptions for well-posedness;
for example, see [27] Sect. 5.5. The unknown p̂ = [pT , pTγ ]T
contains the degrees of freedom p and pγ related to p and pγ ,
while λ contains the degrees of freedom of λ. The previous
system can be rewritten in the following compact form.

ANuN = bN . (5)

Here, AN ∈ R
N×N , uN ∈ VN = col(AN ) ⊂ R

N is the
unknown vector consisting of all degrees of freedom uN =
[p̂T ,λT ]T , bN ∈ R

N , N is the number of degrees of freedom
of the full order model. All these quantities depend on μ,
which is not explicitly indicated to simplify the notation.

4 Model order reduction

For several applications, it is necessary to repeatedly query a
model with various input values to perform tasks such as
sensitivity analysis, parameter estimation through inverse
problem solving, or uncertainty quantification. When the
model is complex and computationally demanding, man-
aging multiple queries becomes impractical. Therefore, the
development of a fast and reliable surrogate model is crucial.

We address this problem by approximating the solution
manifold, S := {uN }μ∈�, of the flow problem in faulted
porous media (3) through a reduced model that takes as
input the physical and geometric parameters μphy , μgeom ,
and returns an estimate of the corresponding variables p,
pγ , λ. The key idea under the model order reduction proce-
dure is that a few main patterns characterize the parametric
dependence of a problem described by many degrees of free-
dom (d.o.f.). Thus, we exploit these patterns to formulate a
smaller problem that is easier to solve. Then we reconstruct
an approximation of the desired solution using a linear or
nonlinear map M from the reduced space to the full-order
space.
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Model order reduction can be model-based or data-driven
[3, 5, 42]. The former uses the model equations in their dif-
ferential or discrete form to derive a reduced version. It has
the property of being intrusive, which means that we need
to manipulate the equations and, consequently, modify the
solver code to implement the reduced model. In the latter
case, instead, the reduced model is built using a collection
of data through which the dynamics of the system can be
inferred; the procedure is non-intrusive because it is equa-
tions and software-agnostic.

In the following sections, we apply two reduced-order
model techniques to the problemof flows in a porousmedium
with faults. The first is the ProperOrthogonal Decomposition
(POD), which is model-based and linear. The second tech-
nique, called DL-ROM, is data-driven and approximates the
nonlinear map M using neural networks.

4.1 Proper orthogonal decomposition

In this case, the mapM is linear, and it is represented by an
orthogonal matrix � ∈ R

N×n called transition matrix, with
n < N .A slightly different definition is considered inSection
4.2, where a non-linear map replaces the linear map, �. The
matrix � contains information about the basis functions that
represent the full-order solutions. Typical ways to compute it
are the singular value decomposition (SVD) and the greedy
algorithm [3, 4]. We now briefly recall the SVD process.
A number ns , n < ns < N , of full-order model solutions,
called snapshots, are calculated and collected in the snapshot
matrix,

S = [
u(1)| . . . |u(ns )

]
. (6)

Then, the singular value decomposition factorizes S as
S = U
V H , where U ∈ R

N×N is a unitary matrix whose
columns are the left singular vectors, 
 ∈ R

N×ns , is a rect-
angular diagonal matrix containing the singular values in
decreasing order, V ∈ R

ns×ns is a unitary matrix whose
columns are the right singular vectors. � will be formed by
the first n columns of U associated with the highest singu-
lar values � = Utr , where [Utr ]i j = [U ]i j , i = 1, . . . , N ,
j = 1, . . . , n. This choice of � is optimal in the sense that it
minimizes the reconstruction error in the snapshots:

ns∑
i=1

‖u(i) − ���u(i)‖22 = min
W∈RN×n

ns∑
i=1

‖u(i) − WW�u(i)‖22.

The proof follows the Eckart-Young theorem [43], orig-
inally discovered by Schmidt in the continuous framework
[44]; see [3] for a detailed proof. The previous equation tells
us that the POD is an optimal linear reduced-order modeling
approach in the sense described previously.

Given the basis functions stored in the columns of the
transition matrix �, we define the reconstructed solution,
ũN , belonging to the full-order space VN , obtained from the
reduced basis solution:

ũN = �un . (7)

where un ∈ Vn ⊂ R
n are the reduced coefficients, solution

of the reduced problem.
A possible strategy to retrieve un is to make the residual

orthogonal to the linear subspace defined by the column of�,
i.e., to compute aGalerkin projection into the linear subspace
Sn = col(�),

�� (bN − AN�un) = 0,

which yields

��AN�un = ��bN .

Defining An = ��AN�un , and bn = ��bN , we have
the following reduced problem:

Anun = bn . (8)

After the reduced problemhas been solved, ũN is retrieved
from Eq. 7.

Since our problem features multiple coupled variables, an
alternative formulation involves applying the SVDseparately
to each variable. In this way, we replace the transition matrix
with a block-diagonal one. Considering a problem with two
generic physical variables c and d we have:

Sc =
[
u(1)
c | . . . |u(ns )

c

]
= Uc
c(V c)H

Sd =
[
u(1)
d | . . . |u(ns )

d

]
= Ud
d(V d)H .

In addition, the truncation is done independently, produc-
ing the matrices Uc

tr and Ud
tr whose elements are: Uc

tr ,i j =
Uc
i j , i = 1, . . . , N , j = 1, . . . , nc and Ud

tr ,ik = Ud
ik ,

i = 1, . . . , N , k = 1, . . . , nd . The transition matrix is a
block diagonal matrix of the truncated left singular vectors
matrices:

� =
[
Uc
tr 0
0 Ud

tr

]
.

We refer to this approach as block-POD. Considering the
unknowns of our problem, p, pγ ,λ, thematrix takes the form:

� =
⎡
⎣U p

tr 0 0
0 U

pγ

tr 0
0 0 Uλ

tr

⎤
⎦ .
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Here,we choose the number ofmodes in each left-singular
vector to be the same for each physical variable n p = n pγ =
nλ.

A problem is affine if the discrete operator can be rewritten
as a linear combinationwhere only the coefficient depends on
μ. Taking into account the full-order matrix, AN , the affine
parametric dependence implies that:

AN =
Q∑

q=1

θq(μ)Aq
N ,

where θq(μ) are scalar functions, and Aq
N are constant matri-

ces, so they are computed once and for all, independently of
μ. The reduced order matrix, An , is thus expressed by the
following sum:

An = ��
Q∑

q=1

θq (μ)Aq
N� =

Q∑
q=1

θq (μ)��Aq
N� =

Q∑
q=1

θq (μ)Aq
n .

(9)

POD is particularly efficient when the affine parametric
dependence is satisfied because the calculation of An for each
new value of the parametersμ does not require reassembling
the matrix AN but using Eq. 9 with the precomputed Aq

n .
However, as wewill see in Section 5 the changes in geometry
related to the sliding of a fault imply a non-affine problem.

4.2 Deep learning-ROM

We restrict ourselves to the core ideas of the DL-ROM
approach, and the reader is invited to read [18–23] for more
details. In this case, the parameter-to-solution map M is
approximated employing a neural network that naturally
accounts for the nonlinear structure of the solution manifold.
The reduction procedure is divided into two parts.

(i) First, we perform a dimensionality reduction step that
identifies a low-dimensional latent space obtained from a
nonlinear mapping of the full-order space to R

n . With lit-
tle abuse of notation, here n denotes the dimension of the
reduced space, which can be different from the correspond-
ing space obtained using the POD method. The mappings
from the full-order space to the reduced-order space andback,
named � ′ : S → Vn and � : Vn → VN respectively, are
approximated here by feedforward neural networks. Here,Vn

denotes the reduced-order space obtained with the encoder.
More precisely, the approximation of� ′ is called the encoder
neural network, while � is called the decoder. Their com-
bination is called autoencoder; see Fig. 3 for a graphical
representation of the adopted neural networks. This approach
defines a nonlinear trial manifold because the d.o.f. in the

latent space is mapped to the full-order space by the non-
linear function provided by the neural network. Note that
neural networks work in discrete spaces; in particular, the
encoder input is the discrete solution uN on a given mesh,
and the decoder outputs the reconstructed solution on the
same mesh.

(ii) Once the reduced space has been identified, we have to
surrogate the operator that solves the problem in the reduced
space. This is done again using a data-driven approach.
Specifically, a third neural network, named ϕ, is trained to
provide a representation of the solution in the reduced space
for any admissible value of the parameters. This approach is
feasible due to the low dimensionality of the input and out-
put spaces. In essence, we employ a deep feedforward neural
network called reduced map nerwork, to describe the map,
ϕ, from the parameter space to the reduced solution space:
ϕ : � → Vn . Therefore, the reduced solution is un = ϕ(μ).

In conclusion, combining steps (i) and (ii) of this pro-
cedure, the resulting approximation of the parameter-to-
solution map is the following composition: �(ϕ(·)), so the
reconstructed solution is

ũN = �(un) = �(ϕ(μ)).

In [22], it has been observed that this method enjoys some
optimality properties in terms of the reducibility of the solu-
tion manifold. Given the manifold S, the authors of [45]
define the nonlinear counterpart of Kolmogorov n-width,
δn(S), as theworst reconstruction error using the best encoder
and decoder maps � and � ′, respectively:

δn(S) = inf
�′ ∈ C(S,Vn )

� ∈ C(Vn ,VN )

sup
u∈S

‖u − �(� ′(u))‖.

Fig. 3 DL-ROMscheme. The encoder,� ′, takes the FOMsolution, uN ,
and returns the reduced basis solution, un . The decoder � reproduces
an approximate solution, called reconstructed solution ũN , with the
only knowledge of the reduced solution. The reduced map network, ϕ,
approximates un as a function of the given parameter μ
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Then, following [22], the minimal latent dimension of S,
denoted as nmin(S), is defined as the smallest n for which
δn(S) = 0. Under the hypothesis that the map μ → uN

is continuous and injective and � has a non-empty interior,
it is shown in [22] that nmin(S) = e. In other words, there
exists an autoencoder, with the bottleneck width equal to
the size of the parameter space, capable of achieving a null
reconstruction error.

The encoder and decoder process the discrete solution as
a singular vector containing all physical components p, pγ ,
λ.

4.2.1 Training

Training the neural network can follow the stages reported in
Section 4.2. In the dimensionality reduction step, the encoder
anddecoder networks� ′ and� must be trained.Weassociate
with this task the following loss function:

�1 = 1

N
‖uN (μi ) − �(� ′(uN (μi )))‖22. (10)

This is an unsupervised learning task in which the autoen-
coder � ◦ � ′ is trained using a sequence of unlabeled data
representing randomly sampled points in the solution mani-
fold. The second step is to train the reduced map network to
learn the map ϕ. This is done by minimizing the following
loss function:

�2 = 1

n
‖� ′(uN (μi )) − ϕ(μi )‖22. (11)

In this case, we use a sequence of labeled data [μi , �
′

(uN (μi )], representing the parameter-to-reduced state map
at a suitable number of points in the parameter space.

Two options are available to train the entire network�◦ϕ.
One is to proceed as previously described, minimizing the
function �1 first and then the function �2. This method has
the advantage of reducing the computational complexity of
training because the parameters of the networks� ′ and� are
optimized independently of those of ϕ. The second training
approach consists of optimizing all networks together, by
minimizing the total loss function defined as

L = α�1 + β�2, (12)

where α > 0 ∈ R, β > 0 ∈ R, are user-defined hyper-
parameters. We remark that the encoder is used only during
the offline stage, see Section 4.3. The query of the network
for a new value of the parameter, μ, does not require the
evaluation of the encoder. Indeed, the final reduced model is
composed of only the reduced map network and the decoder.
It appears that two-stage training is not beneficial, as sug-

gested by [18]. Training the three neural networks together
is advantageous in terms of both accuracy and speed.

4.3 Offline-Online stages POD DL-ROM

Model order reduction strategies are typically divided into
two stages: the offline phase and the online phase. The
offline phase encompasses all operations that do not need
to be repeated when querying the reduced model with a new
parameter value, denoted asμ. This phase includes data gen-
eration, which is common to both the POD and DL-ROM
methods, see Algorithm 1. Specifically, for POD, this phase
also involves calculating the SVD followed by the assem-
bling of the transition matrix�. In cases of affine parametric
dependence, it implies computing Aq

n . In our case, the latter
step is omitted as we deal with non-affine problems (see Sec-
tion 5 for more details). For DL-ROM, the offline phase ends
with neural network training. In particular, the autoencoder,
composed of � ′ and �, is trained simultaneously with the
reduced map network ϕ. We note that in the linear case the
map M from the reduced space to the full-order space is
represented by the matrix �, while in the non-linear case it
is represented by the dencoder �.

Although the offline phase can be time intensive, it is a
one-time process. Once completed, the online phase begins.
For POD, this includes the assembly of An , solving the
reduced system, and reconstructing the solution, see Algo-
rithm 2. In contrast, the online phase of DL-ROM simply
involves the forward evaluation of neural networks ϕ and �.

Algorithm 1 Offline: create the dataset and the reduced
model

POD

1: Generate data
2: for i = 1, . . . , ns :
3: assemble AN (μi ), bN (μi )

4: solve AN (μi )u
(i)
N =

bN (μi )

5:
6: Create the reduced model
7: compute SVD
8: assemble �

DL-ROM

1: Generate data
2: for i = 1, . . . , ns :
3: assemble AN (μi ), bN (μi )

4: solve AN (μi )u
(i)
N =

bN (μi )

5:
6: Create the reduced model
7: train � ′, �, ϕ

5 Mesh deformation

We change the domain by deforming a reference compu-
tational grid to account for geometric uncertainties. This
strategy has the advantage of keeping the same grid topology
and having a fixed number of degrees of freedom. As a con-
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Algorithm 2 Online: deploy the reduced model

POD

1: Input: μ

2: assemble AN (μ), bN (μ)

3: compute An = �T AN�,
bn = �T bN

4: solve Anun = bn
5: reconstruct ũN = �un

DL-ROM

1: Input: μ

2: compute ũN = �(ϕ(μ))

sequence, all snapshots have the same size. Moreover, the
ordering of the d.o.f. is kept, so they remain associated with
the same physical region since we consider small geometric
deformations. The general procedure presented in the fol-
lowing can also work for large deformations in both the 2D
and 3D cases at the price of additional mesh handling com-
plexity. We adopt a technique based on radial basis functions
(RBF) to deform the mesh, and we show first the standard
approach [46–48], then its adaptation to our specific problem
of geometries containing sliding faults.

In the standard approach, we seek to interpolate each com-
ponent of the displacement function, s(x) ∈ R

D ,D being the
physical dimension, using a linear combination of a given
radial basis function, g(d), where d = d(x1, x2) = ‖x1−x2‖
is the distance between the two points. Defining g∗(x1, x2) =
g(d(x1, x2)), we have the following.

s(x) =
l∑

j=1

g∗(x, xc j )ζ j , (13)

where ζ j ∈ R
D , are the unknown coefficients and xc j are

the so-called control points. We use the following radial
basis function: g(d) = d/0.2. To find ζ j , we need to apply
the constraints formed by selecting a number l of relevant
points of which we have information about their displace-
ment. For instance, we can choose the nodes on the fixed
borders of the domain or the nodes belonging to elements
whose geometry is uncertain. These points are called control
points, xc j , j = 1, . . . , l, and that is where we enforce a
known displacement, s j :

s(xc j ) = s j . (14)

Evaluating Eq. 13 at the control points, we have a linear
system for each component, m = 1, . . . , D, of the vector
displacement, s:

Gzm = σm, (15)

where G ∈ R
l×l , [G]i, j = g(d(xci , xc j )), zm ∈ R

l is the
unknown vector where [zm] j = [ζm] j . The right-hand side
σm ∈ R

l contains the known displacement as a function of
the geometrical parameters [σm] j = [s j ]m(μgeom).

We aim to let the two sides of the fault slide independently,
so the control pointsmust be positioned on both sides to avoid
any undesirable deformation of the fault. Some control points
inevitably become very close or even coincident, causing G
to be ill-conditioned or singular. Moreover, to make the pro-
cess more practical, instead of the displacement constraint,
we would like to impose a sliding constraint on xc j on some
specific surfaces, for example, the fault surface or the bound-
ary of the domain; see Fig. 4.

We now show an improvement of the standardmesh defor-
mation method to meet our requirements. Taking a generic
surface, Si , which could be, for example, a fault or a bound-
ary face, with normal νi and two (one in 2D) non-parallel
tangent unit vectors ti and bi , the sliding constraint can be
described by two conditions: the non-penetration condition:

s(xc j ) · νi = 0, (16)

and by the no-tangential contribution condition:

ζ j · ti = 0,

ζ j · bi = 0,
(17)

where ζ j is the coefficient associated with xc j on the sliding
surface. Equation 16 sets the control points on a sliding sur-
face free to move except in the normal direction. Equation 17
implies that the tangential displacement of the control points

Fig. 4 Generic faulted domain with control points, in orange. The
dashed lines represent sliding surfaces, one is on ∂ex�, and the con-
trol points therein belong to Cs , the other two represent the boundaries
∂in� facing a fault, the control points on those lines are included in
the set Cs f . The gap between the two faces of the fault was added for
graphical reasons only, and it is actually absent, so the control points
on the fault may be coincident. Other control points in Cd are placed
on the fracture where a rigid displacement, s, is applied. The remaining
control points in Cd f are on the boundary of � where a displacement s
is enforced
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of the fault does not affect the displacement of all the other
points. However, the displacement of the control points on
the fault is influenced by all the other control points.

To address the issue of coincident points and add the slid-
ing condition, let us define an index set C of xc j and divide
it into four subsets: Cd containing the control points not on
the fault where displacement is enforced, Cd f containing the
control point on the fault where displacement is enforced,Cs

and Cs f containing the sliding control points, respectively,
not in the fault and in the fault. Moreover, we call Cs the set
of surfaces where sliding conditions are applied. We intro-
duce the side function of a point, β(x, ν), with respect to the
sliding fault, γ , with normal ν:

β(x, ν) = sign
(
(x − xre f ) · ν

) + 1

2
,

xre f ∈ γ is a reference point. We define the influence func-
tion, I, as a function that hides the points that are not on the
same side of the fault. An expression could be (for the sake
of simplicity, we restrict the discussion to the case of a single
sliding fault, with normal ν2):

I(x, β(x, ν2), β(xc j , ν2), ν2) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if xc j ∈ Cds

N XOR(β(x, ν2), β(xc j , ν2)) if xc j ∈ Cs f and x ∈ ∂in�

|(x − xre f ) · ν2|
‖(x − xre f )‖ N XOR(β(x, ν2), β(xc j , ν2)) if xc j ∈ Cs f and x ∈ �,

where Cds = Cd ∪ Cs and C f = Cd f ∪ Cs f and
NXOR is the combination of the logical operations “not”
and “xor”, N XOR(a, b) = ¬(a ⊕ b). Introducing I to
Eq. 13 and the displacement and sliding constraints, setting
g†(x, xc j , ν2) = I(x, β(x, ν2), β(xc j , ν2), ν2)g

∗(x, xc j , ν2)
the system to be solved to deform the mesh becomes:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(x) = ∑l
j=1 g

†(x, xc j , ν2)ζ j ,

s(xc j ) · νi = 0, xc j ∈ Cs ∪ Cs f , Si ∈ Cs

ζ j · ti = 0,

ζ j · bi = 0,
xc j ∈ Cs ∪ Cs f s.t . xc j on Si ∈ Cs

For example, for a 2D case with one sliding surface,
labelled as 1, and one sliding fault, labelled as 2, the sys-
tem becomes:

⎡
⎢⎢⎢⎢⎢⎢⎣

G 0
0 G

Gν1x Gν1y
Gν2x Gν2y
H1t1x H1t1y
H2t2x H2t2y

⎤
⎥⎥⎥⎥⎥⎥⎦

[
zx
zy

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

sx
s y
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

with [G]i j = g†(xci , xc j , ν2) for xci ∈ Cd∪Cd f and xc j ∈ C ,
and

[H1]i j =
⎧⎨
⎩1 if xci , xc j ∈ Cs ,

0 else.
[H2]i j =

⎧⎨
⎩1 if xci , xc j ∈ Cs f ,

0 else.

We aim now to demonstrate that the relative sliding of the
two sides of a fault introduces a non-affine problem, thereby
reducing the efficiency of the POD reduced order modeling
technique, as discussed in Section 4.1. From Eq. 3, the pres-
sure on the internal boundaries of � facing the fault γ , see
Fig. 1, can be rewritten as:

p|∂in�2 = pγ + ε

2Kn
λ+. (18)

Let r be the combination of the maps r1 : ∂in�2 → γ +
and r2 : γ + → γ map from ∂in�2 to γ , so r = r1 ◦ r2.
A generic point xγ on the fault corresponds to xγ =
r(x∂in�2;μ) where r depends on the geometric parameter-
ization governed by μgeom . The map r could be non-affine,
which already spoils the problem’s affinity. Introducing r in
Eq. 18 to explicitly write the link between the pressures in
the two subdomains, we have:

p(x∂in�2) = pγ (r(x∂in�2;μ)) + ε

2Kn
λ1(r(x∂in�2;μ)),

where the dependence on μ cannot be separated, even if r
were an affine map. In the weak formulation, this implies
that the calculation of the pressure on the internal boundaries
contains terms that cannot be separated from the parameters,
so the problem is not affine (Fig. 5).

6 Numerical validation

The reduced order model techniques described above have
been applied to four 2D and 3D test cases with different
specifics. The first test is a simple problemwith a 2D domain
in which uncertainties are associated with the permeability
of the rock and the throw of the fault. The second case is
the three-dimensional extension of the first one. The third
case is a complex fracture network with varying boundary
conditions. In the last one, we consider the more realistic
case of a strongly heterogeneous permeability field where
pressure has a more complex distribution.

In all the case studies we assess the quality of the reduced
model by measuring the maximum, minimum, and averaged
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Fig. 5 Mesh deformation.
Zoom of the bottom-left corner
of the domain of the third test
case, see Section 6.3. A rigid
displacement is imposed to the
left side of the fault and to the
two small intersecting fractures.
The left boundary is a sliding
surface where sliding conditions
are applied, on the bottom one,
instead, a null displacement is
enforced

relative norm of the error, defined as:

emax = max
j

(‖e(μ j )‖2/‖uN (μ j )‖2),
emin = min

j
(‖e(μ j )‖2/‖uN (μ j )‖2),

eave = 1

J

J∑
j=1

‖e(μ j )‖2/‖uN (μ j )‖2,
(19)

where J is the size of the test dataset and e(μ) is the difference
between the FOM and ROM solution, e(μ) = uN (μ) −
ũN (μ).

6.1 Case 1 - setup

As a first test case, we studied a unit 2D square domain cut
by a fault whose aperture is ε = 10−3 tilted by an angle of
60° from the horizontal, Fig. 6. There are two layers sepa-
rated by a caprock, and they are identified by different values
of permeabilities K1, K2, K3. An injection point and a pro-
duction point are placed, respectively, at the bottom-left and
top-right corners, where we enforce counterbalanced fluid
fluxes. We impose homogeneous Neumann boundary con-
ditions at all boundaries except for the bottom-left corner,
where the pressure is set to 1.

The parameters of the problem are the three values of
permeability, K1 ∈ [10−2, 10−1], K2 ∈ [102, 103], K3 ∈
[10−4, 10−3], of the three layers, the permeability K4 ∈
[10−4, 10−3], of the fault such that Kτ = K4, Kn = 2K4/ε,
and the height h ∈ [0, 0.07], of the right horizons: a small
displacement is allowed along the fault direction. The maxi-
mum displacement value h = 0.07 is less than the thickness of
the caprock equal to 0.1. This setting implies a pressure dis-
tribution with three main regions: high pressure layer at the
bottom, low pressure layer at the top, and high-pressure gra-
dient in the caprock that horizontally separates the domain,

as we can see in Fig. 9(a) that represents a typical snapshot
of the test data set. Furthermore, based on the specific values
of the permeabilities, there may be a jump in pressure across
the two faces of the fault.

Subsoil permeabilities may vary widely, even by several
orders of magnitude, so it is convenient to express them
as exponential functions and sample the exponent. There-
fore, the permeabilities are written in the following form:
Ki = eηi , i = 1, . . . , 4 and the parameter vector consists
of the exponents of the permeabilities and the height of the
horizons: μ = (η1, η2, η3, η4, h).

The data set is made up of 1000 snapshots whose param-
eters are randomly sampled from a uniform distribution (the
same strategy is adopted for the other tests). It is divided into
a training dataset (800 snapshots), a validation dataset (100
snapshots), and a test dataset (100 snapshots). These data
sets are used in both the POD approach (Sect. 6.1.1) and the
DL-ROM approach (see Section 6.1.2).

Fig. 6 Case study 1. Geometry. The fault cuts the domain from the
bottom to the top with an angle of 60°. The right layers can slide along
the fault. The production is in the top right corner and the injection is
on the bottom-left corner
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Fig. 7 Case study 1. emax , emin ,
eave, respectively, maximum,
minimum and average errors
versus the size of the reduced
space, n, of the reduced model
obtained with (a) standard POD
and (b) block-POD. The points
on the panel (a) represents the
value errors for the DL-ROM,
described in Section 6.1.2

Note that the training data set may be small compared to
the complexity of the problem and the number of param-
eters. A comparison with a uniform grid sampling reveals
that we are sampling the parameters with fewer than 4 points
for each of the 5 axes of the space �. This is because we
aim to apply the reduced-order modeling techniques to real
scenarios, where a single snapshot generation is extremely
expensive,making the generation of very large datasets infea-
sible, and therefore the test cases are designed accordingly.

6.1.1 Case 1 - POD

Both POD and block-POD (Section 4.1) are shown. After the
offline phase, the quality of the reduced model is assessed
using the test data set. Each parameter of the test data set
is used to generate the reduced solution and then the recon-
structed solution, which is compared with the solution of the
full-order model to compute the errors defined in Eq. 19. We
evaluated the errors for different sizes of the reduced space,
Vn , which corresponds to different truncations of the transi-
tionmatrix, as shown in Fig. 7. The block PODerror shown in
Fig. 7(b) decreases faster than the standard POD; we justify
this trend by examining the decay of the singular values of
each variable in Fig. 8. We observe a faster decay in the sin-
gular values of the POD block snapshot matrices computed
for pγ and λ compared to those related to p. The trend of
the latter resembles that of the complete discrete vector uN .
Then, decoupling the variables takes advantage of the faster
decay of the approximations for pγ and λ, which otherwise
would not have an effect in the fully coupled approach.

Some oscillations are observed in the trend of the error;
nevertheless, it decreases to negligible levels taking a suffi-
cient number of modes.

Offline time encompasses the generation of the training
data set and all computation related to the SVD decompo-
sition required to obtain the transition matrix. Indicatively,
data generation takes 4 min 30 s on an Intel i5-1135G7 and a

fraction of a second to finalize the offline phase. The online
phase includes the construction of the matrix that assembles
the linear system, its solution, and the reconstruction of the
solution. Its time is assessed at 30 points of the test data set.
The main statistics are shown in Fig. 10, as well as the times
for the FOM and DL-ROM. As in the other tests, similar
results are obtained with the block-POD. Indeed, in both the
POD and block-POD methods, the online time is dominated
by the assembly of the full order model matrix A, a common
step for both methods. Consequently, for the sake of simplic-
ity, the timing results of block-PODwill not be reported. The
square is delimited by the first and third quartiles, whereas
the whiskers extend from the box by 1.5x the interquartile
range. The yellow line represents the median. The number of
modes n = 45 is chosen because the related error is similar
to the error obtained with the DL-ROM, so we can compare
the timing for the same error. The consequent compression
rate is n

Nh
= 4.3%.

Fig. 8 Case study 1. The decay of singular values of the snapshotmatrix
of the fully coupled POD approach for uN , compared to the block-POD
case applied to each variable pγ , λ and p independently
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Fig. 9 Case study 1.
Reconstructed solutions for a
specific value of the parameter
μ. (a) FOM. (b) POD. (c)
block-POD (d) DL-ROM

6.1.2 Case 1 - DL-ROM

When not specified differently, we use the following archi-
tectures and settings in each test case: the encoder is
made of a fully connected network with one hidden layer,
the decoder architecture is symmetric with respect to that
of the encoder, and the reduced map network is made
of a fully connected network with one hidden layer. As
a nonlinear activation function, ρ, we use, for all net-
works, the PReLU function: PReLU(x) = max(0, x) +
amin(0, x), where a is a trainable weight. The weights of

the layers m are initialized from the uniform distribution
U (−√

1/size(m − 1),
√
1/size(m − 1)

)
.

The data used to train, validate, and test neural networks
are the same as those used for the POD approach.

The input of the encoder is normalized to [0, 1]. Since the
ratio of the physical variables may differ by some order of
magnitude, we decided to normalize each discrete physical
variable taking individually their maximum and minimum
values over the training dataset.

Details of the neural networks of this test case are sum-
marized in Table 1. With the use of neural networks, in this

Table 1 Case study 1.
Architecture of the networks
that make up the reduced model.
“fc” stands for fully connected
layer, tw is the number of
trainable weights

layer # tw # tw tot

Encoder fc, 1045, 181, PReLU 190238 382622

fc, 181, 5, PReLU

Decoder fc, 5, 181, PReLU 191277

fc, 181, 1045, PReLU

Reduced map network fc, 5, 100, PReLU 1107

fc, 100, 5, PReLU
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Fig. 10 Case study 1. Evaluation times in seconds of the full-order
model, the reduced model obtained through POD, and the reduced
model obtained through the DL-ROM. Evaluations of reduced mod-
els are timed on 30 points of the test dataset

case, we reach a compression rate of n
N = 0.5%, which is

almost ten times higher than that of the POD.
The network is trained for 4000 epochs with Adam opti-

mizer [49], using the hyperparameters suggested in the cited
reference and a minibatch size of 32. The learning rate is ini-
tialized to 10−3 and is reduced by a factor of 0.6 every 500
epochs. Once the networks are trained, the reconstruction
errors are: emax = 3.2%, emin = 0.41%, and eave = 1.2%, they
are depicted in Fig. 7 (a) as points. The distance between
the maximum and minimum values is small, which means
that the network is accurate evenly throughout the parameter
space.

The data generation and the training of the neural net-
works constitute the offline phase; the latter takes about 40
minutes to complete the 4000 epochs.Theonline phase is rep-
resented by the evaluation of the reduced map network and
the decoder; this time it is evaluated on the Nvidia MX330
graphic card and is shown in Fig. 10. We can observe that,
despite a slightly longer offline phase, the online is almost
three orders of magnitude faster than the POD case. In fact,
the online time savings (normalized difference of times) with
respect to the FOM model is 99.14%. We want to highlight
that the DL-ROM allows for the efficient exploitation of both
CPU and GPU hardware, while the POD does not run effi-
ciently on GPUs.

A visualization of the reconstructed solution compared to
the full-order model is illustrated in Fig. 9. We can observe
qualitatively that the reconstructed solutions of both POD
and DL-ROM are close to the FOM solution in the entire
domain.

6.2 Case 2 - setup

The second test is a 3D simulation that resembles the first
in most of its features. The main differences are the domain
(Fig. 11) which is a unit cube whose normal section to z
corresponds to the domain pictured in Fig. 6, and the position
of the injection and production points that are at two opposite
corners of the cube.We chose this test case to study the effects
of adding the third physical dimension without adding many
other factors.

The datasets are made similarly to the previous test case:
the parameters are sampled from a random distribution, 800
snapshots constitute the training dataset, 100 snapshots are
used for the validation dataset and 100 for the test dataset.

6.2.1 Case 2 - POD

Figure 12 shows the errors defined by Eq. 19 with respect
to the size of the reduced space. We notice a slightly slower
decrease of the error with respect to test case 1 and that, for
this scenario, the block POD proves to have higher perfor-
mance than the standard one. The online time depends on
the number of modes used; to facilitate the comparison with
the other methodology, we report in Fig. 14 the online time
for the standard POD for n = 18 which entails a test error
similar to that of the DL-ROM. The related compression rate
is equal to n

N = 0.2%. Due to the great number of d.o.f., the
online time reaches a high value of about 15 seconds, Fig. 14,
it is mainly due to the computations for deforming the mesh
and the rediscretization of the problem due to its non-affine
nature.

Fig. 11 Case study 2. The domain of this test corresponds to the geom-
etry of case 1 extruded along the z-direction. Production and injection
are placed at the two opposite corners
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Fig. 12 Case study 2. emax , emin , eave, respectively, maximum, minimum, and average error versus the size of the reduced space, n, of the reduced
model obtained with (a) standard POD, (b) block-POD. The points on panel (a) represent the value errors for the DL-ROM, described in Section
6.2.2

6.2.2 Case 2 - DL-ROM

The specific architectures are summarized in Table 2.We can
infer that the compression rate is equal to n

N = 0.06%, which
is ten times higher than the POD. The hyperparameters of
the training are the same as in Case 1, except for the num-
ber of epochs that is higher, 6000 instead of 4000 (about 3
hours). The errors in the test data set are: emax = 4.6%, emin

= 0.16%, eave = 1.02%. They are similar to the values of case
1, suggesting that the DL-ROM works equally in a 2D and
3D scenario. Figure 13 shows a snapshot of the test data set.
As in Section 6.1, we can see that, qualitatively, all the solu-
tions resemble the FOMone at each point of the domain. The
online time is reported in Fig. 14, despite the large increase in
degrees of freedom of the problem, the online time has only
doubled with respect to case 1. The consequent time saving
is equal to 99.97%.

6.3 Case 3 - setup

The third test case resembles the complex fracture network
benchmark in [50]. The 2D square domain includes inter-
secting permeable and impermeable fractures, as shown in

Fig. 15, whose detailed description can be found in the ref-
erence. Compared to the reference, we further increase the
complexity by setting two horizontal layers whose rock per-
meability is equal to 10−2 at the bottom and 102 at the top. A
Dirichlet boundary condition for the pressure is applied to all
the boundaries such that an average flow is generated from
one side to the opposite. After a manual sensitivity analysis,
we set the two most relevant features as uncertain parame-
ters: the first controls the boundary condition creating high
variation among the snapshots, see Fig. 17, while the sec-
ond controls the geometry, making the problem non-affine.
A sinusoidal variation of the pressure at the boundary, pb, is
applied:

pb(ω) = p1

(
1 − sin

(
ω − ω0

2

))
+ p2

(
sin

(
ω − ω0

2

))
,

where p1 and p2 are the maximum and minimum values,
ω = arctan(y/x), x and y are the coordinate of the boundary
points. The first parameter is the reference angle ω0 which
can be subject to a variation of 90°, Fig. 17 shows snap-
shots for three different values of ω0. The second parameter
controls the position of the horizon on the left of fault num-

Table 2 Case 2. Architecture of
the networks that make up the
reduced model. “fc” stands for
fully connected layer, tw is the
number of trainable weights

layer # tw # tw tot

Encoder fc, 8706, 1708, PReLU 14880103 29770013

fc, 1708, 5, PReLU

Decoder fc, 5, 1708, PReLU 14888803

fc, 1708, 8706, PReLU

Reduced map network fc, 5, 100, PReLU 1107

fc, 100, 5, PReLU
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Fig. 13 Case study 2.
Reconstructed solutions for a
specific value of the parameter μ

ber 3, displacing rigidly also fractures number 1 and 2. The
high variation of the boundary conditions and the presence
of blocking fractures imply strong nonlinearities in the solu-
tion manifold that may raise issues in reducing the order of
the model. Generally speaking, the results of this case show a
larger gap between the performance of the two reduced-order
model methods in favor of the DL-ROM one.

6.3.1 Case 3 - POD

For this test, only the standard POD is investigated. The error
versus the size of the reduced space (Fig. 16) shows that
several modes are required to reach a low error (Fig. 18).
The online time is depicted in Fig. 19 where a number of n =
44 modes is used. The strong nonlinearities of the problem
manifest in a compression rate higher than in the previous
cases n

N = 1.85%. The five-number summary of the online
time is shown in Fig. 19.

Fig. 14 Case study 2. Evaluation times in seconds of the full-order
model, reduced model obtained through POD, and reduced model
obtained through the DL-ROM
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Fig. 15 Case study 3. The domain contains 9 fractures and one fault
(number 3). Fractures 4 and 5 are blocking fractures, while all others
have high permeability

6.3.2 Case 3 - DL-ROM

The architectures are described in Table 3, in particular, the
reduced space size is equal to n = 2, so the compression rate
results in n

N = 0.08%. The training requires 5000 epochs
(about 74 minutes) to reach a steady low value of the loss
function. The errors are fairly low: emax = 6.2%, emin =
0.78%, eave = 2.3% (Fig. 16), although the ratio between
the minimum and maximum values is higher than the one
in case 1 and case 2. The online time can be inferred from
Fig. 19, the time savings are equal to 99.86%.

6.4 Case 4

In this study, we examine a scenario involving a highly
heterogeneous medium in which permeability varies sig-
nificantly across the domain. The domain is a 2D square
discretized with a cartesian grid of 150×150 elements. Two

parameters determine the anisotropy of the permeability’s
spatial distribution and its primary direction. The method
for generating this permeability field is outlined in [51]. In
Fig. 20, two extreme cases are presented: the first, at the top,
exhibits highly anisotropic permeabilitywhose principal axis
is slanted at 45°, while the second case, at the bottom, has
only a slight anisotropy.

To induce a pressure gradient within the domain, we
enforce pressure values at the boundaries: a null value at the
top and a unitary value at the bottom. Null flux is imposed
on the vertical edges. As a result of the heterogeneous per-
meability field, the pressure exhibits non-smooth variations
with intricate patterns (see Fig. 20).

The variation in permeability from cell to cell means that
the problem is non-affine. This requires re-discretization and
the assembly of a full order model matrix for each new value
of the parameters that control the permeability distribution, if
the POD method is used. Therefore, our focus is here solely
on the neural network approach, which effectively handles
non-affinity.

The architecture of the neural networks in the reduced
model is outlined in Table 4. To enhance the efficiency of
the networks by reducing the number of trainable weights, a
non-symmetric autoencoder is employed. This autoencoder
consists of a single-layer encoder and a four-layer decoder.
We justify this structure empirically because we believe that
the compression task of the encoder is simpler than the recon-
struction task of the decoder. The compression rate is n

N =
0.009%. In terms of the datasets, we used 700 snapshots
for training, 150 for testing, and 150 for validation. It took
approximately 1.5 hours to generate all the data. We trained

Fig. 16 Case study 3. emax , emin , eave, respectively, maximum, minimum and average error versus the size of the reduced space, n, of the reduced
model obtained with the standard POD. Points represent the value errors for the DL-ROM, described in Section 6.2.2
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Fig. 17 Case study 3. Boundary conditions are applied such that the mean pressure gradient is (a) horizontal (b) slanted (c) vertical

the model for a total of 1031 epochs, which took around 1
hour, until the loss function reached a stable low value.

The error metrics underscore the robust reliability of the
methodology, indeed we find: emax = 0.71%, emin = 0.15%,
eave = 0.29%, which constitutes a notable accomplishment
given the substantial variability of the rock properties and
the resulting pressure distributions. Indeed, as illustrated in
Fig. 20, the congruence between the FOM and the recon-
structed solution, even with two parameters not included in
the training dataset, is evident. Furthermore, the relatively
small error margin is attained with a significant reduction of
the computational time w.r.t. the FOM, refer to Fig. 21 for
a comparative analysis of the full-order and reduced-order
model execution durations.

7 Multi-query application

In this section, we show possible practical applications of the
reduced order model techniques.We first used aMonte Carlo
strategy to sample the data and perform a sensitivity analy-
sis, comparing the results of different reduced-order models
and a full-order model. Afterwards, an inverse problem is
solved exclusively with DL-ROM. For simplicity, we focus
on a single quantity of interest for each study, such as the
pressure jump between two relevant points. It is important to
note that the reduced model computes the flow variables in
the entire discrete domain, so no additional efforts would be
required to investigate other quantities of interest within the
same reduced model evaluation.

Fig. 18 Case study 3. Reconstructed solutions for a specific value of the parameter μ
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Fig. 19 Case study 3. Evaluation times in seconds of the full order
model, reduced model obtained through POD, and reduced model
obtained through the DL-ROM

7.1 Sensitivity analysis

We use a Monte Carlo technique to perform a sensitivity
analysis on a problem based on test case 1 (see Section 6.1).
We chose this test case because its small size allowed us to
run the Monte Carlo analysis even with the full-order model,
and thus compare the results with those obtained with the
reduced models. We rely on the Chaospy library, a numer-
ical toolbox to perform uncertainty quantification [52]. Our
goal is to focus on a quantity of interest (q.o.i) represented
by the pressure jump between injection and production, see
Fig. 6, called �p, and determine its mean value, �p, stan-
dard deviation σ̃ , and the first-order sensitivity index (Sobol
index) [53], s̃1,i , i = 1, . . . , 5, related to each entry, μi , of
the parameter vector μ.

For the purpose of this example, we prepare a training data
set of 200 snapshots and a validation data set of 20 samples.

All data in the training data set are used to create the snapshot
matrix to which the SVD decomposition is applied. Then, the
left singular vector matrix, U, see Section 4.1, is truncated
to n = 13 basis functions because it leads to a low enough
reconstruction error, that is, eave = 5%. The neural networks
are trained until the loss function reaches a low enough value
to have a satisfactory reconstruction error equal to eave =
5.3%. Since the q.o.i. is known a priori, it is possible to add a
term in the loss function related to the q.o.i., thus increasing
the accuracy of the reduced model for only what is needed.
For instance, in this case, we add the term �3 to the loss
function defined in Eq. 12:

L = α�1 + β�2 + γ �3 =
= α

N
‖uN (μi ) − �(� ′(uN (μi )))‖22 + β

n
‖� ′(uN (μi ))

− ϕ(μi )‖22 + γ (�prom − �p f om)2

where γ is a user-defined coefficient,�prom and�p f om are,
respectively, the jump of pressure between the injection and
the production computed with the reduced order model and
the full order model.

In order to reach stable values of the statistics, having a
negligible error due to the finite sampling, we generate a
number of 900 instances from a uniform distribution of the
uncertain parameters to compute the desired statistics. This
value is inferred from the convergence analysis, made com-
putationally cheap by the neural network approach, shown
in Fig. 22.

Figure 23 shows the probability density function (pdf) of
the q.o.i. estimated using a Gaussian kernel estimator [54].
Its profile is well reproduced by both reduced models.

We list in Table 5 the summary statistics of our interests.
Wenotice a good agreement between the values;most signifi-
cant discrepancies occur for small quantities, such as s̃1,1 and

Table 3 Case study 3.
Architecture of the networks
that make up the reduced model.
“fc” stands for fully connected
layer, tw is the number of
trainable weights

layer tw tw tot

Encoder fc , 2378, 404, PReLU 961928 1926735

fc, 404, 2, PReLU

Decoder fc, 2, 404, PReLU 964303

fc, 404, 2378, PReLU

Reduced map network fc, 2, 100, PReLU 504

fc, 100, 2, PReLU
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Fig. 20 Case study 4. The left panel represents the permeability os two extremal scenarios, specifically log10(K1) and log10(K2). The FOM and
reconstructed pressures are shown in the middle and right panels, respectively

s̃1,4, whose values are difficult to capture accurately. From
the Sobol index, we can see that most of the variance in the
pressure jump is due to the permeability of layer 1, the bottom
layer, and layer 3, the caprock, since their permeabilities are
low. The small displacement along the fault is less relevant,
and the high-permeability upper layer and fault permeability
play a minor role in this context.

We now want to estimate the total time required to assess
this multi-query application. A single numerical solution of

the full-order problem takes on average 0.58 s per core, see
Fig. 10, using a 4 core CPU, we get a total time for theMonte
Carlo evaluation of about 131 s. For the POD we need to
consider the offline time to create the reduced model and
the time to generate the required samples with the reduced
model. Given the size of the training data set, we see that
data generation takes 200 × 0.58/4 = 29 s. The creation of
the�matrix requires a negligible time compared to the other
operations. The online time is 0.57 s, which is slightly less

Table 4 Case study 4.
Architecture of the networks
that make up the reduced model.
“fc” stands for fully connected
layer, tw is the number of
trainable weights

layer # tw # tw tot

Encoder fc, 22500, 100, PReLU 45003 2338531

Decoder fc, 2, 100, PReLU 2293003

fc, 100, 100, PReLU

fc, 100, 100, PReLU

fc, 100, 22500, PReLU

Reduced map network fc, 2, 20, PReLU 525

fc, 20, 2, PReLU
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Fig. 21 Case study 4. Evaluation times in seconds of the full order
model and reduced model obtained through the DL-ROM

than the full-order model time because the latter is already
small and most of the time is spent deforming the mesh and
reassembling the full-order matrix A. The POD sampling
time results are equal to 900 × 0.57/4 = 130 s, therefore,
the total time to evaluate the sensitivity analysis is 159 s plus
an additional time for additional routines that are common
for all methods. Training in the neural network takes 400
epochs in 67 s. The overall sampling time is less than one
second, which is negligible. The total time, which includes
the training and validation data sets, is 96 s. This problem is
very computationally cheap, so a reduced-order model tech-
nique does not showgreat computational time improvements,
indeed the POD takes even longer than the full-order model.
We recall that we chose this problem for the possibility of
running the Monte Carlo analysis with the full-order model,
hence to compare the accuracy of the results. Moreover, we
repeat that these are just indicative numbers; the computa-
tional time depends on the relation between the algorithm,
code, and hardware, since different parts of the algorithm run
better on different hardware because of different code paral-
lelization. Depending on the user’s hardware availability, the
outcomes may vary, but the neural network approach has an
online time order of magnitude faster than the other methods,
so for a problem large enough it will be convenient.

7.2 Inverse problem

The goal of this application is to determine the parameters
such that a q.o.i. is equal to a desired value. We take Case 2
and set the pressure difference between injection and produc-
tion equal to the desired value of �pd = 0.188 derived from
the following set of parameters: K1 = 0.1, K2 = 150, K3 =
1 × 10−4, K4 = 9.5 × 10−4, h = 0.09. Assuming that some
parameters, K2 and K4, are fairly known while some others
are more uncertain, the ranges where we seek a solution are:
K1 ∈ [10−4, 1], K2 ∈ [102, 2 × 102], K3 ∈ [10−6, 10−4],
K4 ∈ [9 × 10−4, 10−3], and h ∈ [0.01, 0.1].

Fig. 22 Convergence of relevant statistics. The values reach a stable
value with a set of 900 samples or more

In this example, we show only the application of DL-
ROM. Similarly to the previous application, neural networks
are trained on a small dataset made up of 200 snapshots
because high precision is not required for the purpose of
the current application. The training data set contains solu-
tions sampled from the ranges defined in Section 6.1 that
are stricter than those considered in this application, so we
indirectly exploit the extrapolation capacity of the reduced
model.

We cast the inverse problem as: minμ F(μ), where
F(μ) = (�p(μ) − �pd)2. We want to show that DL-ROM
allows us to use heuristic optimization algorithms, which
usually require a large number of evaluations of the objective
function. We select the differential evolution algorithm [55]
implemented in Scipy [56] with the default setting, except
for the convergence tolerance: tol = 0.001 and atol = 10−10.
After 300 iterations, with a total number of objective function
evaluations of 22581, the algorithm satisfies the convergence
criterion. The optimal solution gives K1 = 0.251, K2 = 153,
K3 = 9.1×104, K4 = 9.4×10−4, and h = 0.08.We observe

Fig. 23 Probability density function of the quantity of interest, �p.
Both POD and DL-ROM well reproduce the shape
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Table 5 Mean value, �p,
deviation, σ̃ , and first order
sensitivity index, s̃1,i , of the
quantity of interest obtained
with data generated by the
FOM, POD, and DL-ROM

�p σ̃ × 103 s̃1,1 × 101 s̃1,2 s̃1,3 × 101 s̃1,4 × 103 s̃1,5 × 102

FOM 1.0033 6.61 3.11 7.04 × 10−8 5.86 0.32 0.85

POD 1.0028 7.79 1.28 8.16 × 10−3 3.62 9.37 2.45

DL-ROM 1.0036 6.57 2.76 3.73 × 10−3 5.12 0.92 2.13

that the optimal values of the parameters are similar to the
exact ones except for K1 and a small error affects also the
value of h.

The�p obtained with the reducedmodel is equal to 0.188
as requested, while taking the optimal solution, recomputing
the results of �p with the results of the full-order model
equal to 0.196, close enough to the desired value.

See Fig. 24 for the full-ordermodel pressure field obtained
with the optimal solution.

Due to the high number of objective function evaluations,
we have considerable time savings: the offline phase takes
about 75 min for snapshot generation and 4 min for neural
network training, while 22581 runs would require 142 hours
with the FOM but only 136 s with the use of the DL-ROM.
Therefore, the total computational time is approximately 142
hours without the use of reducedmodels, and 1 h 18minwith
the DL-ROM.

8 Conclusion

We focussed on reduced-order modeling techniques applied
to the problem of a single-phase flow in rigid porous

Fig. 24 Full order model pressure field obtained from the optimal solu-
tion

media with an arbitrary number of fractures and faults.
The mixed-dimensional framework lets us efficiently deal
with geometrical discontinuities (fractures or faults) in a
geometry-deforming setup. It was possible to generate the
data (solution of the full-ordermodel) and create the reduced-
order model without any further devices. We considered
uncertainties in the parameters with respect to the physical
properties of the rock and the geometry, whereas uncertain-
ties in thefluidproperties represent interestingpossible future
developments.

According to the results shown by our tests, the DL-ROM
takes slightly longer compared to classicmethods as the POD
to generate the reduced model because of the training of the
neural networks, but the online time is extremely low, which
makes this approach promising, especially when the number
of queries required is large.

Similarly to block-POD, the efficiency of DL-ROM could
be improved by segregating variables and severing the links
between disparate physical variables, i.e., p, pγ , λ. This
would decrease the total trainable weights, thereby expedit-
ing the training phase. Althoughwe have conducted an initial
review of this approach, it remains under development and
is the subject of future research.

A disadvantage of the neural network approach is the large
number of hyperparameters, such as the size of the training
dataset, architecture of the neural networks, parameters of
the optimization algorithm, etc., for which some user experi-
ence is needed since they affect the accuracy of the reduced
model. We showed that the ROM strategies, and in partic-
ular the DL-ROM, lead to an advantage in terms of faster
analysis with satisfying accuracy, so further investigations
will be undertaken on the line of multifidelity ROM, and
study of applications of ROM strategies to time-dependent
problems simulatingmore realistic and complex physics. For
instance, this could involve studying scenarios such as two-
phase flows in fractured porous media, which presents, in
addition to the geometric discontinuities, the challenge due
to the sharp fronts resulting from the hyperbolic nature of
the problem. This highly nonlinear scenario may pose strong
difficulties for methods based on a linear map, M, while
promoting nonlinear methods such as the DL-ROM.
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A Nomenclature

a Trainable parameter of PReLU
A Matrix describing the discrete equation
b Discrete right-hand side
C,Cd ,Cd f ,Cs,Cs f Control points sets
Cs Set of surfaced where sliding conditions are applied
d(x, y) Euclidean distance between x and y
D Spatial dimension
e Number of parameters
emin, emax , eave Minimum, maximum, averaged relative errors between the FOM and ROM solution
f [1/s] Scalar source or sink term
fγ [1/s] Scalar source or sink term in the fault
G Matrix of displacement constraint
g Radial basis function dependent on the distance, d, of two points, x1, x2
g∗ Radial basis function dependent on x1, x2
g† Modified radial basis function
Hk Matrix of no tangential contribution constraint applied to surface k
I influence function
l Number of control points
N Number of degrees of freedom of the full order problem
n Number of degrees of freedom of the reduced problem
nbr number of intersecting branches
nmin Minimal latent dimension
p [Pa] Pressure
p [Pa] Pressure on boundaries
pγ [Pa] Pressure in the fault
pι [Pa] Pressure at the intersection
�p [Pa] Mean value of �p
q [m s−1] Darcy velocity
q [m s−1] Darcy velocity on boundaries
K [m3s/kg] Intrinsic permeability scaled by the dynamic viscosity
Kn [m3s/kg] Normal fault permeability
Kτ [m3s/kg] In-plane fault permeability
Kι [m3s/kg] Representative permeability at intersection
r Map from γ to ∂in�

S Snapshot matrix
s [m] Displacement
s [m] Known displacement
s̃ First order sensitivity index
t, b Non-parallel tangent unit vectors of sliding surface
uN Full order model solution
ũN Reconstructed solution
un Reduced order model solution
U Left singular vector matrix
Utr Left singular vector matrix truncated
V Right singular vector matrix
z Unknown of mesh deformation linear system
L Loss function
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M Map from full order model space to reduced space
S Solution manifold
Vn Reduced problem solution space
VN Full order model solution space
α, β User-defined loss function weights
β Side function
γ Fault domain
∂pγ Boundary of γ where Dirichlet boundary condition for the pressure is applied
∂qγ Boundary of γ where Neumann boundary condition is applied
∂exγ Boundary of γ in contact with ∂�

∂inγ Boundary of γ not in contact with ∂�

γ +(γ −) Additional interfaces between the matrix domain, � and fault domain, γ
δn Non-linear counterpart of Kolmogorov n-width.
ε [m] Fault aperture
ζ Unknown coefficients of the linear combination of radial functions
η Exponent defining the permeability
λ+(λ−) [m s−1] Volumetric fluid flux exchanged between subdomains
λγ [m s−1] Volumetric fluid flux exchanged between branches of a intersection
μ Parameters
μgeom Geometrical parameters
μphy Physical parameters
ν Normal of a sliding surface
ρ Activation function
σ Right-hand side of mesh deformation system
σ̃ Standard deviation
θ Scalar function μ-dependent
� Parameter space

 Singular values matrix
υ Unit vector
υγ Unit vector associated to γ

υ̂ Unit vector aligned with the fault
ϕ Map ϕ : � → Vn .In the DL-ROM approach, it is represented by the reduced map network
� Transition matrix
� Map � : Vn → VN .In the DL-ROM approach, it is represented by a decoder
� ′ Map � ′ : S → Vn .In the DL-ROM approach, it is represented by an encoder
� Matrix domain
∂� Boundary of �

∂p� Boundary of � where Dirichlet boundary condition for the pressure is applied
∂q� Boundary of � where Neumann boundary condition is applied
∂ex� External boundary of �

∂in� Internal boundary of �
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