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Abstract—This paper considers the problem of predicting
whether or not a transmitter and a receiver are in Line-of-Sight
(LOS) condition. While this problem can be easily solved using
a digital urban database and applying ray tracing, we consider
the scenario in which only few high-level features descriptive of
the propagation environment and of the radio link are available.
LOS prediction is modelled as a binary classification Machine
Learning problem, and a baseline classifier based on Gradient
Boosting Decision Trees (GBDT) is proposed. A synthetic ray-
tracing dataset of Manhattan-like topologies is generated for
training and testing a GBDT classifier, and its generalization
capabilities to both locations and environments unseen at training
time are assessed. Results show that the GBDT model achieves
good classification performance and provides accurate LOS
probability modelling. By estimating feature importance, it can
be concluded that the model learned simple decision rules that
align with common sense.

Index Terms—propagation modelling, ray tracing, line-of-sight
probability, machine learning, datasets.

I. INTRODUCTION

The presence of Line-of-Sight (LOS) condition between
two radio link ends represents one of the basic properties of
a propagation environment. LOS determines the fundamental
characteristics of the radio channel, e.g. link budget, fading
statistics, time and angle spreading, and heavily impacts on
the choice of the optimal transmission and coding technique.
With the use of the mm-wave spectrum for 5G and beyond
systems [1], required to cope with the ever-increasing demand
for higher bitrates, the LOS condition becomes even more
important due to the higher blocking effect of obstacles.

As such, LOS probability has gained importance as a key
property in wireless channel prediction and simulation. Several
statistical propagation models, such as the ‘WINNER’ model
[2] and the ITU-R Recommendation P.1411 [3] are based on
the definition of different path loss formulation as a function
of the LOS or Non-LOS (NLOS) condition. LOS probability
is likewise important in spectrum-sharing studies, such as the
ones conducted within the CEPT and ITU-R. In these studies,
adjacent bands are allocated to services operating in the same
geographical area, leading to design systems where minimum
interference must be provided to the incumbent or protected
users while maximizing the number of users simultaneously
accessing the same spectrum [4].

Overall, the development of suitable models to determine
LOS condition in urban environments based on general char-
acteristics such as building density, street width, and link

distance, is very valuable for all those cases where accurate
information about the environment layout is unavailable, or
would be too difficult or time-consuming to determine.

Often, LOS probability is estimated through an empirical
model fitted from some measurement data, and the output is
typically a decreasing exponential function with the distance.
The LOS probability is provided for typical environments
namely Indoor Hotspot, Urban Macro, Urban Micro, and Rural
Macro, as described in [5]. However, these models do not
consider the actual geometry of the environment, like the
building height or position in an urban scenario, or the antenna
height. 3GPP reported a study on channels from 0.5GHz
to 100GHz [6]. The report describes different environments
(e.g., indoor office, street canyon, etc.), but all the functions
are simply a negative exponential of the distance, sometimes
including the height of the antennas. Instead, in [7] a LOS
probability model based on stochastic geometry is developed,
taking into account the geometry of the environment through
an average height and length of the building. However, the
model is quite complex and difficult to apply in real systems.
In [8], a statistical method based on an objective parameter-
ization of the environment is proposed. Still, extracting the
necessary environmental statistics from open-source data is
not yet completed.

Recently, Machine Learning (ML) algorithms have drawn
attention in the field of electromagnetic propagation [9], lead-
ing to some initial successful applications. In the context of
electromagnetic propagation, empirical and stochastic models
often rely on closed-form formulas, whereas ML-based meth-
ods attempt to learn an arbitrarily complex nonlinear function
from raw measurements. Another significant advantage of
ML models is the inference speed: while the training phase
may be computationally expensive (often due to very large
datasets), querying the output of a trained model is typically
computationally light. In this paper, ML techniques are utilized
to retrieve a LOS probability model, using synthetic data from
Ray Tracing (RT) as training and testing datasets.

The remainder of this paper is organized as follows. In
Section II applications of ML in the context of electromagnetic
propagation are briefly surveyed. In Section III the dataset
generation procedure is outlined. In Section IV the LOS
classification problem is described. In Section V our numerical
results are presented and discussed. Section VI concludes the
paper with main takeaways and ideas for future work.



Microcell Tx

Macrocell Tx

Fig. 1. Manhattan-like urban topology with street width W , building length
L and building height H .

II. RELATED WORK

ML in radio wave propagation has been traditionally em-
ployed for path loss (PL) estimation or for user localization
[9]. For example, in [10] the RSSI data gathered from actual
measurements are used for training an ML regression model
for predicting the PL of a potential new device in the network.
In [11] satellite images and measurements are used to train a
deep neural network for PL regression. Results show more
accurate path-loss prediction compared to a baseline RT algo-
rithm and the 3GPP model [6]. In [12] an ML-based approach
is developed for indoor localization via WiFi fingerprints. A
similar approach is employed in [13] to achieve in-region
localization. Finally, in [14] regression of probability for an
indoor wireless link is shown to achieve values comparable to
classical models.

In this paper, instead of regressing LOS probability as in
[14], LOS prediction for individual radio links is considered.
Predicting the LOS state for individual radio links yields
more granular information than LOS probability, thus provid-
ing more flexibility for downstream applications. Indeed, the
proposed approach can be employed for estimating the LOS
probability, but can also be used for choosing the proper PL
model (LOS or NLOS) given a specific radio link [8].

III. DATASET GENERATION

Several synthetic databases of Manhattan-like urban topolo-
gies have been generated according to the input file format
required by the RT tool developed at the University of Bologna
[15]. The LOS condition is assessed by checking the existence
of an unobstructed direct ray between the Tx and the Rx: if
the direct ray reaches the Rx, the Rx is in LOS condition.

We consider Manhattan-like urban topologies, as illustrated
in Fig. 1. Buildings are assumed to be squared parallelepipeds
with variable heights and lengths. Different simulation sce-
narios were defined based on building length, building height,
and street width. Moreover, both urban macrocells and mi-
crocells are considered to evaluate the effectiveness of the
ML algorithm in two diversified scenarios. In the macrocell
case, the Tx is placed ∆ meters above one of the buildings,
while for microcells the Tx is placed below rooftop level, at
3m from the ground. The Rxs are always placed at ground
level along the streets. The environmental parameters used for

TABLE I
SUMMARY OF THE ENVIRONMENTAL PARAMETERS

Parameter Values (macrocell) Values (microcell)
Building height 15, 20, 25, 30 m 20 m
Building length 20, 30, 40, 50 m 20, 30, 40, 50 m

Street width 10, 15, 20, 25 m 10, 15, 20, 25 m
∆ / Tx height 2, 4, 6, 8 m 3 m

generating the Manhattan urban topologies for both macrocells
and microcells RT simulations are reported in Table I.

IV. MACHINE LEARNING FOR LOS PREDICTION

The LOS prediction problem has been formulated as a
binary classification problem. Specifically, the goal is to train
an ML model that, given a set of input features characterizing a
Tx-Rx pair and the propagation environment, predicts whether
or not the Tx and the Rx are in LOS condition.

In the considered scenario the model does not have access to
the whole map, but only to a few descriptive features about the
radio link and the Manhattan topology. Formally, a training,
validation and test datasets Dtrain, Dval and Dtest, respectively,
are considered. Dtrain = {xi, yi}Ni=1 is a set of N training
samples, where xi are the features of the i-th sample, and
yi ∈ 0, 1 is a binary label (in this study LOS is set as the
positive class). The following input features are adopted for
simulations:

• the 3D Tx-Rx distance;
• the coordinates of the transmitter xTx, yTx, zTx;
• the coordinates of the receiver xRx and yRx. The receiver

height zRx is omitted as it is always assumed to be equal
to 1.5m, and is therefore uninformative;

• the building length, building height, and street width of
the Manhattan-like topology.

In ML literature, data that can be organized in rows (in
this case, one for each Tx-Rx pair) and columns (one for each
feature) is referred to as “tabular”. Empirically, the ML models
that most of the time yield the best performance on tabular data
are Gradient Boosting Decision Tree (GBDT) models [16].
Generally speaking, Gradient Boosting methods are function
approximation algorithms that can optimize any differentiable
loss function [17]. Hence, XGBoost [18] was used for imple-
menting the binary classifier. Specifically, the GBDT model is
trained by minimizing the logistic loss function averaged over
all samples in the training set, as follows:

L = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)

Where ŷi is the predicted probability for the positive class
(i.e., LOS, in our case) given input features xi.

V. ILLUSTRATIVE NUMERICAL RESULTS

A. Experimental Setup

Manhattan-like topologies are randomly sampled from all
possible combinations of parameters in Table I for building the
training, validation, and test sets. Ten random urban topologies
are sampled for training and two for validation, whereas the



remainder is kept for testing. Training is performed on a small
fraction of our database, as the final goal is to assess the
generalization capabilities of a model trained on a modest
number of urban topologies. The loss on the validation set
is monitored during the training phase, and at the end, the
model providing the best validation loss is kept.

Three different training scenarios are considered:
1) Macrocell only: the model is trained only with data

coming from RT simulations of macrocells.
2) Microcell only: the model is trained only with RT

simulations of microcells.
3) Macrocell+Microcell: the model is trained with RT

simulations of both microcells and macrocells.
As Tx-Rx pairs were uniformly generated over the Manhat-

tan topologies, the number of NLOS samples in the datasets
was significantly larger than the number of LOS samples (with
a ratio of LOS over NLOS approximately equal to 0.03). It
can be observed that feeding the classifier with a severely
imbalanced dataset would lead to unsatisfactory performance,
as the model will tend to overly favor the majority class
(i.e., NLOS). Therefore, different simple countermeasures for
imbalanced datasets (e.g., undersampling and oversampling)
have been experimented with. After a grid search procedure,
uniformly undersampling the NLOS samples down to twice
the number of the LOS samples has been observed to provide
the best performance on the validation set. Note that the
validation and test datasets were not undersampled, as they
must represent the true data distribution.

The model performance has been evaluated on Manhattan
topologies not used for training. The Area Under the Precision-
Recall Curve (AUCPR) has been adopted as a performance
metric. AUCPR was chosen because the true data distribution
is heavily skewed towards NLOS. As such, straightforward
metrics such as the classification accuracy may strongly over-
estimate the model performance, e.g., a model that always
predicts NLOS will show a deceitfully high accuracy because
of the vast majority of samples being NLOS.

Formally, precision and recall are defined as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(2)

where TP is the number of true positives (i.e., correctly
classified LOS samples), FP is the number of false positives
(i.e., NLOS samples mistaken as LOS), and FN is the number
of false negatives (i.e., LOS samples mistaken as NLOS).

As the GBDT model outputs probabilities for LOS and
NLOS, different values of precision and recall can be achieved
by modifying the decision threshold, realizing the Precision-
Recall curve. Tuning the decision threshold controls the trade-
off between precision and recall (e.g., a model that always
predicts LOS will have recall equal to 1 but precision near
0). Computing the area under the precision-recall curve (i.e.,
the AUCPR) provides therefore a fair and comprehensive
score (upper-bounded by 1) of the model’s performance. An
illustrative PR curve and its AUCPR for ”Macrocell only”
training and macrocell test set are illustrated in Fig. 2.
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Fig. 2. Illustrative PR curve (solid line) and its corresponding AUCPR (shaded
area) for a single train-test split in a ”Macrocell only” training scenario and
a macrocell test set.

TABLE II
VALUES AND 95% C.I. OF THE MEAN AUCPR
ON MACROCELLS AND MICROCELLS TEST SETS

Training data AUCPR - Macrocell AUCPR - Microcell
Macrocell 0.800± 0.012 0.845± 0.023
Microcell 0.317± 0.003 0.756± 0.030

Macrocell+Microcell 0.742± 0.012 0.807± 0.020

B. Classification Performance

Mean and 95% confidence intervals for AUCPR are reported
in Table II on both macrocells and microcells test sets.
Mean values and confidence intervals are computed over fifty
different combinations of training, validation, and test sets.

First, a model trained only on macrocell data achieves good
generalization on both macrocell and microcell predictions on
Manhattan topologies unseen during training. Conversely, a
model trained only on microcell data is unable to generalize
as well on macrocell data, exhibiting subpar performance.
Finally, as expected, a model trained on macrocell and micro-
cell data, expectedly, performs well on both macrocells and
microcells.

Overall, the model yielding the best performance on the test
set is the model trained only macrocell data. The model trained
on macrocell-only data achieves higher AUCPR on microcells
than the model trained specifically only on microcells1. This
can be due to the lack of environmental diversity in the
transmitter height in the microcell data, which drives the model
to overfit. Conversely, the higher degree of environmental
diversity provided by the macrocell data allows the model to
learn more generalizable decision rules.

C. LOS Probability Modelling

As an illustrative application for our GBDT model, we
show its effectiveness in providing approximate LOS probabil-
ity models for Manhattan topologies unseen during training.
We estimate the ground-truth LOS probability by running a
Monte-Carlo simulation over an environment and averaging
points over circular crowns with a 50m radius. On our
hardware, running a Ray Tracing Monte-Carlo simulation
for one Manhattan environment (namely, for 560000 Tx-Rx
positions) took approximately six minutes, while our GBDT

1It is worth noting that AUCPR ∈ [0.8, 0.85] signals a skilled classifier,
far better than random guessing. As a reference, a dummy random classifier
would achieve ≈ 0.025 AUCPR for both macrocells and microcells.
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(a) Macrocell LOS Probability
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(b) Microcell LOS probability

Fig. 3. LOS probability modeling on an illustrative Manhattan topology not
used for training (building length: 30m, street width: 15m, building height:
20m, Tx height: 26m macrocell/3m microcell). WINNER [2] overestimates
the LOS probability at low 3D distances for a narrow street width.

model evaluates the same number of Tx-Rx locations in less
than one second on a Macbook Pro M1 CPU2.

In Fig. 3 we present an illustrative comparison between
our GBDT classifier, the WINNER [2] LOS probability an-
alytical model, and the ground-truth from RT simulations
for both macrocell and microcell data. We observe that our
GBDT classifier provides a more truthful approximation of
the ground-truth LOS probability compared to the analytical
WINNER model. Overall, the GBDT classifier achieves an
average test set RMSE equal to 0.020 and 0.029 for macrocells
and microcells, respectively. In contrast, the WINNER model
achieves an average 0.087 and 0.081 test set RMSE for
macrocells (C2) and microcells (B1), respectively. While the
WINNER formula is a function of the 3D distance only
and can be in principle applied to any urban topology, ML
allows building environment-specific, but also more accurate
propagation models, exploiting richer features. Overall, our
GBDT classifier stands in a middle ground between Ray
Tracing (computationally expensive, but maximally accurate)
and closed-form analytical models (potentially inaccurate, but
computationally cheap).

D. Evaluating Feature Importance

Another angle for testing an ML model is to quantify the
impact of the input features on the final prediction. If the
criteria adopted by the model qualitatively align with rules
dictated by common sense, we can deduce that the model
learned reasonable decision rules.

2We underline that GBDT models are amenable to parallelization on both
CPUs and GPUs, as Ray Tracing algorithms are.

SHapley Additive exPlanations (SHAP) is one of the most
popular approaches for estimating feature attributions [19] and
has been applied with success for distilling valuable insights
in ML models trained on real physical layer traces [20]. SHAP
aims to estimate the SHAP values given the input features. The
magnitude of SHAP values conveys the feature importance,
whereas their sign conveys whether the feature value drives the
decision towards the positive (LOS) or the negative (NLOS)
class.

Fig. 4 plots the SHAP values for each input feature as a
function of the feature values. The most important feature for
the final prediction are the Tx-Rx distance and the position
coordinates of the Tx and the Rx. In particular, the influence of
the Tx-Rx distance on the final prediction aligns with common
sense: indeed, one expects that the greater the Tx-Rx distance,
the less likely the two samples will be in LOS. The impact
of the x and y coordinates of the transmitter and the receiver
on the final prediction is not as straightforward as the Tx-Rx
distance. Still, one can observe as follows: qualitatively, the
model will tend towards NLOS if the two coordinates (either
xTx, xRx or yTx, yRx) take very different values, vice-versa if
they take similar values. In other words, if Tx and Rx are
aligned as the streets in the urban layout, they are assigned
a higher likelihood of being in LOS, which again aligns
with common sense. These considerations will be further
investigated by analyzing correlations between SHAP values.
Furthermore, while being attributed less importance than the
other coordinate features, the influence of the transmitter
height on the predictions qualitatively aligns with common
sense, i.e., the higher the transmitter, the greater the likelihood
of being in LOS with the receiver.

The features characterizing the propagation environment are
attributed the least importance for the final decision. The street
width has the highest importance among the environment-
specific features, and its influence on the final decision is
still in agreement with common sense. Indeed, as the street
width becomes larger, the greater the likelihood of the Tx
and the Rx being in LOS. Similarly, as the building length
becomes narrower, the model will tend to favor LOS over
NLOS. The building height is attributed the least importance,
but we can observe that the model will tend to favor NLOS
for higher buildings, which is again consistent with common
sense. Likely, the building height is attributed the least impor-
tance because (for macrocells) the building height is strongly
correlated with zTx. When presented with heavily correlated
features, decision trees will place the most importance on only
one of them.

While the plot in Fig. 4 highlights the contribution of indi-
vidual features, the final prediction results from a (generally
nonlinear) interaction between features. It is therefore of great
interest to assess, at least qualitatively, which and how much
different features interact. To this end, Fig. 5 illustrates the
absolute correlation coefficient between the absolute SHAP
values (i.e., feature importance).

As conjectured, the importance of the Tx-Rx x and y
coordinates are strongly correlated. As the coordinates of the
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of the GBDT classifier for an illustrative macrocell test set.

Tx and Rx are independent, feature importance correlation
means that the model successfully learned to take into account
the relative Tx-Rx positions before making a decision.

The most concerning insight is perhaps the complete lack
of correlation between the position-specific feature importance
and the environment-specific feature importance. While the
model correctly captured the influence of the environmental
parameters on the LOS/NLOS states, it was unfortunately
unable to capture subtler relationships between the environ-
mental parameters and the Tx-Rx locations. These limitations,
made apparent by feature importance estimation, are likely the
primary source of inaccuracies in the model.

VI. CONCLUSION

We proposed a baseline GBDT classification model for
determining whether or not a transmitter and a receiver are
in LOS condition based only on a few high-level descriptive
features of the radio link. We illustrated that our GBDT classi-
fier achieves fair performance despite the lack of information,
providing more truthful LOS probability approximations than
the closed-form WINNER model. By analyzing feature im-
portance, we qualitatively assessed that the baseline classifier

learned simple decision rules aligned with common sense,
while unfortunately failing to fully grasp more complex spatial
relationships. Future work will investigate modeling the LOS
condition based on unstructured data (e.g., images), and the
knowledge transfer between LOS/NLOS classification models
in radically different propagation environments.
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