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Abstract
This paper proposes an innovative statistical method to measure the impact of the
class/school on student achievements inmultiple subjects.We propose a semiparamet-
ricmodel for a bivariate response variablewith randomcoefficients, that are assumed to
follow a discrete distributionwith an unknown number of support points, together with
an Expectation-Maximization algorithm—called BSPEM algorithm—to estimate its
parameters. In the case study, we apply the BSPEM algorithm to data about Italian
middle schools, considering students nested within classes, and we identify subpop-
ulations of classes, standing on their effects on student achievements in reading and
mathematics. The proposed model is extremely informative in exploring the correla-
tion between multiple class effects, which are typical of the educational production
function. The estimated class effects on reading and mathematics student achieve-
ments are then explained in terms of various class and school level characteristics
selected by means of a LASSO regression.

Keywords Semiparametric model · Random coefficients · EM algorithm · School
and class effects · Student achievements · Teaching practices

1 Introduction andmotivation

Student learning is a long and complex process that sees many different factors acting
on it. During their careers, students receive inputs from their family, their peers and

B Chiara Masci
chiara.masci@polimi.it

1 MOX - Department of Mathematics, Politecnico di Milano, P.za Leonardo Da Vinci 32, Milano,
Italy

2 DIG - Department of Management, Economics and Industrial Engineering, Politecnico di Milano,
via Lambruschini 4/b, Milano, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01107-1&domain=pdf
http://orcid.org/0000-0002-9208-3194


2338 C. Masci et al.

the school and class they are attending. The educational system is hierarchical, i.e.
different levels of grouping are nested within each others: students are nested within
classes, that are in turn nested within schools, that are in turn nested within districts
and so on so forth. Each one of these levels has a specific role in the student learning
process. Measuring how much of the variability in student education is due to each
grouping level of the hierarchy is not easy, but, it is essential for evaluating the role of
educational institutions (i.e., schools). In particular, there is a broad and rich literature
about school value-added based on test scores, intended as the difference in test per-
formance of students in a school and the average performance of schools populated
by students with a comparable level of prior achievement (and other student charac-
teristics) (Raudenbush and Willms 1995; Schagen and Schagen 2005; Timmermans
et al. 2014). School value-added promises to enable fair comparisons of school per-
formance despite schools having markedly different pupil intakes. The logic behind
it is indeed to compare schools only on the basis of unexplained variation between
(statistically) “like-for-like” pupils. A simple approach is to compare the performance
of a particular group of pupils to the performance of other pupils with the same exam-
ination score at the earlier point in time. Beyond prior attainment, there are other
non-school factors associated with students’ progress, like socioeconomic status, gen-
der or ethnicity. The inclusion of these confounding variables in the measurement of
school value-added has been long debated (Meyer 1997; Strand 1997;McCaffrey et al.
2004;Martineau 2006). Themost recent literature about this topic (Perry 2016; Leckie
and Goldstein 2017; Parsons et al. 2018) supports the development of the so called
contextual value-added, that takes into account, besides student test scores, also age,
gender, ethnicity, socioeconomic status and various other pupil characteristics when
measuring the school value-added. The rationale for contextual value-added is that
ignoring these contextual factors considerably biases the results, attributing successes
and failures to schools inappropriately.

Even though the measurement of school value-added continuously receives atten-
tion, decades of educational effectiveness confirm that differences between pupils is
more within schools than between them (Hanushek 1992; Perry 2016; Rivkin et al.
2005;Rockoff 2004). In this perpective, the concept of school value-added, as intended
before, can be transfered to the class level, speaking about class value-added. Class
peers, class climate and, especially, teachers considerably affect the student learn-
ing process. Indeed, different types of teaching practices promote different cognitive
skills in students (Bietenbeck 2014) and, now that traditional teaching practices co-
exist together with more modern teaching methods (work in small groups, emphasize
real-life application), their effects can be very heterogeneous. In the last twenty years,
the analysis of teaching practices and effetiveness is increasingly receiving attention
and recent studies find evidence of an association between the effects on student
achievements and different teaching practices, in different school subjects (Goldhaber
and Brewer 1997; Wenglinsky 2002; Schwerdt and Wuppermann 2011; De Witte and
Van Klaveren 2014). Focusing on the specific way in which teaching is organized is
also important because it allows moving from exploring simple correlations between
students results and teachers’ characteristics to amore complex and complete scenario.

In the perspective of evaluating school and class value-added, rich linked national
data that contain longitudinal observations are extremely useful. In Italy, the National
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Institute for the Educational Evaluation of Instruction and Training (INVALSI) tests
students at different grades and at different years, both in reading and mathematics, by
means of standardized tests in the entire country. Students are tested at grades II and
V of primary school, at grade III of junior secondary school and at grade II of upper
secondary school. Moreover, INVALSI collects information about students, teachers,
classes, schools and school principals, by means of dedicated questionnaires. In so
doing, it creates a dataset that contains a rich picture of the personal and educational
reality of each student. This dataset allows to compare the performances of students
that attend different classes, in different schools, in the various geographical Italian
regions, but with the same yardstick.

The INVALSI dataset has been recently studied by economists and statistical schol-
ars interested in analyzing the determinants of student, class and school performances.
In Agasisti et al. (2017); Grilli and Rampichini (2009), Masci et al. (2016, 2017), Sani
and Grilli (2011), the authors, considering the hierarchical nature of educational data,
apply mixed-effects linear models in order to identify which are the student character-
istics associated to student performances and to estimate how much of the variability
in student performances is due to their grouping in different classes and schools. These
are some of the first attempts that aim at separating and estimating the effects of differ-
ent levels of grouping on Italian student achievement. InMasci et al. (2016, 2017), the
authors apply a three-level hierarchical structure in which students are nested within
classes that are in turn nested within schools and measure the contribute of each of
these levels on students test scores’ variability. Results show that, after adjusting for
student characteristics, the variability among student achievements explained at class
level is much higher that the one explained at school level. By means of parametric
mixed-effects linear models, they estimate the school and class effect, interpreted as
the value-added that each school or class gives to the performances of its students. A
relevant result that the study inMasci et al. (2017) shows is that the correlation between
the school effects on reading and mathematics student achievements is positive and
statistically significant, while the correlation between the two class effects is null. This
important finding suggests that the effect of the school is most of the times coherent on
the different school subjects, probably due to certain school characteristics that have
similar effects on different subjects (for example, school principal practices, school
body composition and school peers). On the other way, the fact that the correlation
among class effects in reading and mathematics is null suggests that there is not a
unique effect of the class environment on the different school subjects, but the effects
of the class on the two school subjects are potentially uncorrelated. One of the most
likely interpretation of this result is that a significant part of the class effect is due to
something that is not common between the two school subjects, the main candidate
for this being the teachers. Being the teachers in mathematics and reading different,
their characteristics and their teaching practices might be completely different too,
leading to uncorrelated effects on student achievements.

Our paper aims at estimating the class effect in the context of within-school hetero-
geneity. We follow the approach presented in Masci et al. (2019), where the authors
apply a multilevel linear model to estimate the school effect, but, instead of following
a classical parametric approach, they follow a semi-parametric approach: they develop
a semi-parametric mixed-effects (two-level, where students are nested within schools)
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model able to identify a latent structure among the highest level of the hierarchy
(schools). They cluster schools standing on the evolution of their student achievements
across years. In this sense, the concept of school effect, re-defined from a methodolog-
ical point of view, reflects the different effects of schools on the evolution of their
student achievements at different grades. In particular, they identify subpopulations of
schools within which student mathematics test scores trends (measured by the linear
relation between INVALSI test scores at different grades) are similar and, in a second
step, they characterize a posteriori the identified subpopulations of schools by means
of school level characteristics.

In this paper, we extend the statistical model presented inMasci et al. (2019) andwe
propose a study that is innovative from a methodological and an interpretative point of
view.We extend the Expectation-Maximization algorithm for semi-parametric models
with random coefficients (SPEM algorithm) presented in Masci et al. (2019) to the
bivariate case, i.e. to the case of a bivariate response variable (which, in our case, is the
test score in reading and mathematics). We are interested in estimating the impact that
attending different classes has on student performance trends, i.e. student performance
evolution over time, and, in particular, in comparing these effects between reading and
mathematics. With class effect, we intend the way in which achievements of students
have evolved after attending three years of junior secondary school in a specific class
(within a given school). The model that we propose is a bivariate two-level linear
model where the random coefficients, under semi-parametric assumptions, follow a
bivariate discrete distribution with an unknown number of mass points. Each group is
assigned to a bivariate subpopulation of groups, that is represented by specific values
of the parameters of the bivariate semi-parametric linear model. The distribution of the
randomcoefficients is a bivariate discrete distributionwhere each dimension is allowed
to have a different finite number, unknown a priori, of mass points. This formulation
permits to estimate the marginal distribution of the random coefficients related to each
one of the two response variables and, moreover, to estimate the joint distribution of
random coefficients related to the two response variables, investigating the correlation
among them. Read in the context of the educational literature on school value-added,
thismethod has twomain advantages: (i) for the first time the effect estimated considers
not only heterogeneity within schools (i.e. between classes) but also within classes
(i.e. between teachers); (ii) besides the random intercept, that is typically the unique
random effect considered in the educational literature on school/class value-added,
the inclusion of a random slope allows to model the school/class effect in a more
sophisticatedway (i.e.modelling the heterogeneity in the association between previous
and current student test scores across schools/classes).

Multivariate multilevel models have been frequently used in the educational liter-
ature to estimate school and class effects (see, among the others, Yang et al. (2002);
Masci et al. (2017)). By assuming Gaussian random effects in multilevel models,
we can extract a point estimate for each group (school or class), together with its
confidence interval. This setting provide a ranking of the groups where all groups
have the same weight and their effects can be compared by looking at their esti-
mated random effects and relative confidence intervals. By assuming discrete random
effects in a semi-parametric approach, we identify a latent structure of subpopula-
tions in which groups are clustered. This approach provides an alternative to the
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ranking that presents several advantages (Rights and Sterba 2016). First of all, the
semiparametric approach, being more flexible and not assuming a priori any para-
metric distribution, can estimate the real distribution of the random effects. Secondly,
in a context in which the number of groups is extremely large, the identification
of subpopulations might help in interpreting the results. Sequential groups in the
ranking, whose confidence intervals are overlapped, do not statistically differ and
considering their heterogeneity might unnecessarily increase the problem complex-
ity and be misleading. Last but not least, the identification of subpopulations can
help in the outlier identification: the most populated subpopulations reveal which are
the reference trends, while the smaller subpopulations contain those groups whose
observations tend to have anomalous behaviors with respect to the majority. In this
perspective, we do not create a full ranking of the highest level effects, but instead we
generate subpopulations of effects and we attribute each group to a single subpopula-
tion.

The proposed methodology is new to the literature. The semi-parametric mixed-
effects linear model in Masci et al. (2019) on which we base our multivariate model
enters in the research line about the identification of subpopulations of the Growth
Mixture Models (GMM) (Muthén 2004; Muthén and Shedden 1999; Nagin 1999)
and of Latent Class Mixture Models (LCMM) (McCulloch et al. 2002; Vermunt and
Magidson 2002), but with the novelty that it does not need to fix a priori the number
of latent subpopulations to be identified. Moreover, being the existing methods spec-
ified in the Structural Equation Modeling (SEM) framework, they are still relatively
limited when covariates are group-specific. Numerous extensions and applications
of GMM and LCMM has been already realized (Lin 2000; Muthén and Asparouhov
2015), but none of them include the modeling of a multivariate answer variable, where
the latent subpopulations structure of groups (higher level of hierarchy) are allowed
to differ across the responses, i.e. are response-specific. Our proposed model is the
new extension to the bivariate case of a model that is already innovative by itself and
particularly useful in the case of education, where the output is typically multivari-
ate.

The main advantages of the multivariate modelling rely on two aspects. First, con-
sidering that the multiple response variables come from a single subject, we expect
them to be somehow correlated. The multivariate model takes into account this source
of correlation when it estimates the model parameters and, therefore, we expect it to be
more appropriate than independent univariate models. Second, the multivariate model
allows to estimate the joint distribution of the random effects from which we can
investigate the correlation among them, which is of our interests. Fitting independent
univariate models would lead to separate univariate distributions of random effects
and measuring a posteriori their correlation represents only a raw proxy of the real
joint distribution (Leckie 2018).

In this specific paper, our data provided by INVALSI refer to a sample of classes,
representative at national level - but one per school, so we cannot estimate the class
effects within schools. In other words, our model here is applicated with two-levels
(students and classes). The model estimates a bivariate effect for each class, i.e. the
effect of the class on mathematics student achievement trends and the one on reading
student achievement trends. The aim is to identify how many different trends exist in
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student performances across classes, for both mathematics and reading, i.e. to identify
how many and which are the mass points of the discrete distribution of random coeffi-
cients (class effects) for both the first and the second response. Moreover, by looking
at the joint distribution of these random coefficients, we investigate the correlation
between the class effects on reading and mathematics, allowing differences between
them (i.e. assuming that teachers’ ability and effectiveness can be different between
teachers of the same class).

Therefore, the main research questions that we aim to address are:

– Are there differences across the effects of the Italian classes on their students
achievement?

– Are the effects of the classes in reading andmathematics achievements correlated?
– Is it possible to identify groups of classes that perform differently from the major-
ity?

– Do the identifiedgroups of classes differ in termsof class level features, for example
teachers characteristics, teaching practices and class body composition?

In the year 2016/2017, INVALSI submitted questionnaires to teachers about their
personal information, their education, their teaching practices and the environment of
the class and school in which they work, creating an informative and new dataset that,
until now and in this context, has been poorly explored. We leverage this brand new
opportunity by using this additional information to explore the potential determinants
of the class/school effects. In this perspective, in order to investigate whether the
different student achievement trends across classes are related to these aspects, in a
second stage of the analysis, we look for associations between class and teacher level
characteristics and the identified subpopulations of class effects, by means of a lasso
multinomial logit model. The questionnaire has been realized only in 2016/2017, so
our study is cross-sectional by design.

This paper brings important innovations to the literature on assessment of education
results for at least two main aspects. First, it proposes a novel statistical method to
perform in-built, unsupervised clustering of the higher level of grouping of a bivariate
multilevel model, without knowing a priori the number of clusters (so avoiding the typ-
ical rigidities when specifying an educational production function). Second, exploring
differences and similarities of class effects in mathematics and reading by means of
a multivariate model is a great advantage, also when the bivariate class effects are
characterized, in a second step, in terms of class features (teacher characteristics and
practices).

The paper is organized as follows: in Sect. 2, we present the bivariate semi-
parametric two-level linear model. In Sect. 3, we perform a simulation study. In Secion
4, we focus on the case study, (i) presenting the dataset about Italian middle schools,
(ii) applying the EM algorithm for bivariate semi-parametric models with random
coefficients - BSPEM algorithm - to it and showing its results and (iii) analyzing a
posteriori the characteristics of the identified subpopulations of classes. In Sect. 5, we
draw policy implications and conclusions.
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2 Model andmethods: the bivariate semi-parametric linear model
with random coefficients

In this section, we present the bivariate semi-parametric linear model with random
coefficients1.

Consider a bivariate two-level linear model, where each bivariate observation j, for
j = 1, . . . , ni , is nested within a group i, for i = 1, . . . , N . The model takes the
following form:

(
y1,i
y2,i

)T

= Xi

(
β1
β2

)T

+ Zi

(
δ1,i
δ2,i

)T

+
(

ε1,i
ε2,i

)T

i = 1, . . . , N ,

εTi =
(

ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(1)

The components of model (1) are the following2:

– Yi =
(
y1,1i , . . . , y1,ni i
y2,1i , . . . , y2,ni i

)T

is the (ni ×2)-dimensional matrix of response variable

within the i-th second level group3,
– Xi is the (ni × (P + 1))-dimensional matrix of covariates relative to fixed coeffi-
cients,

– B = (
β1 β2

)
is the ((P + 1) × 2)-dimensional matrix of coefficients of X,

– Zi is the (ni × (R + 1))-dimensional matrix of covariates relative to random
coefficients,

– 1i = (
δ1,i δ2,i

)
is the ((R + 1) × 2)-dimensional matrix of random coefficients

of Zi ,
– εi = (

ε1,i ε2,i
)
is the (ni × 2)-dimensional matrix of errors and Σ is its vari-

ance/covariance matrix.

Fixed effects are identified by parameters associated to the entire population, while
random ones are identified by group-specific parameters. In the perspective of the
application to INVALSI data, this model will consider a two-levels hierarchy: students
as level 1 and classes as level 2. In the parametric framework of bivariate linear mixed-
effects models, the random coefficientsΔi are assumed to be distributed according to a
Normal distribution with mean vector equal to 0 and a variance/covariance matrix that
is estimated, together with the other parameters of the model, through methods based
on the maximization of the likelihood or the restricted likelihood functions (Pinheiro
and Bates 2000). For each response variable, this parametric distribution allows to
associate each group i to a different set of coefficients δ∗,i = (δ∗,i1, . . . , δ∗,i(R+1)) for
the (R + 1) covariates of the random effects, extracted from the normal distribution.

1 Details about the EM algorithm for the estimation of model parameters and the sketch of the BSPEM
algorithm can be found in the Appendix A.
2 In subscript of each variable/parameter, we indicate by the number before the comma whether the vari-
able/parameter is referred to the first or the second response variable (for example, y1, j i and y2, j i are the
j-th first and second response variables within (level 2)-group i , respectively).
3 We consider the case in which the number of observations of the two response variables is the samewithin
each group, but is allowed to be different across the groups.
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Following the idea presented in Masci et al. (2019), we relax the parametric
assumptions about the coefficients of the random effects and we assume the bivariate
coefficients 1i = (δ1,i δ2,i ) to follow a bivariate discrete distribution S∗, assuming
M ×K mass points (C11, . . . ,CMK ), where eachCmk is the 2× (R+1)-dimensional
matrix of coefficients of random effects for the bivariate mass point related to the index
(m, k), for each m = 1, . . . , M and k = 1, . . . , K , where both M and K are smaller
than N. The total number of mass points, that is M × K , is unknown a priori and it is
estimated together with the other parameters of the model. This modelling allows the
identification of a bivariate clustering distribution among the N groups, where each
group i is associated to a bivariate cluster, standing on the linear relationships between
the two response variables and their covariates. In other words, the model identifies a
bivariate latent structure among the groups, that also reveals the dependence among
the two response variables. Under these assumptions, the semi-parametric bivariate
model with random coefficients takes the following form:

(
y1,i
y2,i

)T

= Xi

(
β1
β2

)T

+ Zi

(
c1,m
c2,k

)T

+
(

ε1,i
ε2,i

)T

i = 1, . . . , N m = 1, . . . , M k = 1, . . . , K

εTi =
(

ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(2)

Without loss of generality, we consider the case of a semi-parametric bivariate two-
level linear model, with one random intercept, one random covariate and P fixed
covariates4. Model (2) reduces to:

(
y1,i
y2,i

)T

= 1ni

(
c1,1m
c2,1k

)T

+
P∑

p=1

xi p

(
β1p
β2p

)T

+ zi

(
c1,2m
c2,2k

)T

+
(

ε1,i
ε2,i

)T

i = 1, . . . , N m = 1, . . . , M k = 1, . . . , K

εTi =
(

ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(3)

where 1ni is the ni -dimensional vector of 1, M is the total number of mass points for
the first response and K is the total number of mass points for the second response
and both of them are unknown a priori. Coefficients Cmk , for m = 1, . . . , M and
k = 1, . . . , K are distributed according to a discrete probability measure S∗ that
belongs to the class of all probability measures on R4. S∗ can then be interpreted
as the mixing distribution that generates the density of the stochastic model in (3).
The ML estimator Ŝ∗ of S∗ can be obtained following the theory of mixture like-
lihoods in Lindsay (1983a, b), as explained in Masci et al. (2019). In particular, in
Lindsay (1983a, b), the authors prove the existence, discreteness and uniqueness of
the semiparametric maximum likelihood estimator of a mixing distribution, in the

4 This choice is driven by the application in the case study shown in Sect. 3. Nonetheless, the BSPEM
algorithm allows to consider as random effects both the intercept and one slope, as well as only one of them.
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case of exponential family densities. Proofs of the identifiability property can be
found in Teicher (1963); Barndorff-Nielsen (1965). The ML estimator of the ran-
dom coefficients distribution can be expressed as a set of points (C11, . . . ,CMK ) and
a set of weights (w11, . . . , wMK ), where

∑M
m=1

∑K
k=1 wmk = 1 and wmk ≥ 0, for

m = 1, . . . , M and k = 1, . . . , K . Each group i , for i = 1, . . . , N , is assigned
to a bivariate cluster (m, k), standing on the fact that the first response belongs to
cluster m and the second one to cluster k. Indeed, the marginal distribution given
by (c1,1, . . . , c1,M ) and (w1,1, . . . , w1,M ) represents the first response-specific latent
structure among groups, while the marginal distribution given by (c2,1, . . . , c2,K )

and (w2,1, . . . , w2,K ) represents the second response-specific one. The estimation of
the parameters B, (C11, . . . ,CMK ), (w11, . . . , wMK ) and Σ is performed through
the maximization of the likelihood function, mixture by the discrete distribution of
random coefficients,

L(w, B,C,Σ |y) =
M∑

m=1

K∑
k=1

wmk√|det(2πΣ)|J ×

× exp

⎧⎨
⎩

N∑
i=1

ni∑
j=1

−1

2

(
y1,i j − c1,1m − ∑P

p=1 β1px1p,i j − c1,2mz1,i j
y2,i j − c2,1k − ∑P

p=1 β2px2p,i j − c2,2k z2,i j

)T

Σ−1

×
(
y1,i j − c1,1m − ∑P

p=1 β1px1p,i j − c1,2mz1,i j
y2,i j − c2,1k − ∑P

p=1 β2px2p,i j − c2,2k z2,i j

)}
(4)

with respect to B, the distribution of the random coefficients (Cmk, wmk), for m =
1, . . . , M and k = 1, . . . , K , and Σ , respectively.

One of the main novelty of this algorithm with respect to similar existent algo-
rithms (see, for example, Aitkin (1996, 1999); Muthén (2004)) is that it does not fix a
priori the number of support points of the random effects distribution, but it estimates
it depending on the variability within the data. Namely, during the iterations of the
EM algorithm, we implement a support points collapsing system in which two mass
points closer than a fixed tolerance value D (in terms of euclidean distance) collapse
to a unique point. This approach allows to deal with the identification of subpopula-
tions from a different point of view with respect to methods that select the number
of subpopulations based on the Dirichelet process or on the maximization of the like-
lihood a posteriori (Aitkin 1999; Dahl 2006). The threshold distance D is a tuning
parameter that is related to the heterogeneity across subpopulations. Its value can be
chosen standing on a rationale driven by the application and by the data values range.
Appendix A reports details on how to assess the uncertainty of classification of the
method, given the value D.

It is worth noticing that the bivariate modelling allows to estimate the association
between the random effects relative to the two response variables. With Gaussian
random effects, the association is measured by the Pearson’s correlation coefficient.
Here, with discrete random effects, the association can be estimated by looking at the
frequencies in the matrix of the joint weights w. In particular, we test the dependence
of the two marginal distributions by means of the Pearson’s chi-squared test and we
estimate a measure of the association by computing the Cramer’s V relative to the test
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(Cramér 1999). Moreover, taking into account the support points values of the joint
distribution, it is possible to compute the correlation between the two 2-dimensional
(intercept and slope) vectors of random effects to investigate the correlation between
the values of the support points relative to the two response variables (Puccetti 2019).

3 Simulation study

In this section, we test the performance of the BSPEM algorithm simulating nine
situations in which the two response variables are related to each other in nine differ-
ent ways, facing both structural correlation/uncorrelation between the subpopulations
distributions and correlation/uncorrelation between the errors of the linear model.

We generate 10,000 bivariate observations that are nested within 100 groups in the
following way:

(
y1,i
y2,i

)T

= 1ni

(
c1,1m
c2,1k

)T

+ xi

(
β1
β2

)T

+ zi

(
c1,2m
c2,2k

)T

+ εi

i = 1, . . . , 100 m = 1, . . . , M k = 1, . . . , K

εTi =
(

ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(5)

in which we set M = 3 and K = 2. We set ni = 100, for i = 1, . . . , 100, and we
make the following choice of parameters5 Cmk , for m = {1, 2, 3} and k = {1, 2}:

Besides the coefficients, we sample the observations of the variables x , z and ε as
standard normal variables6:

zi ∼ N (0, 1) i = 1, . . . , 33

zi ∼ N (0, 1) i = 34, . . . , 66

zi ∼ N (0, 1) i = 67, . . . , 100

(6)

xi ∼ N (0, 1) i = 1, . . . , 33

xi ∼ N (0, 1) i = 34, . . . , 66

xi ∼ N (0, 1) i = 67, . . . , 100

(7)

and

εi ∼ N2

(
0,Σ =

(
1 0
0 1

) )
i = 1, . . . , 100. (8)

Since we choose three different sets of parameters (C, B) to generate the data of the
first response and twodifferent sets to generate the ones of the second response, the data

5 Note that this choice of parameters is finalized to the simulation study and it is driven only from the aim
of a simple and clear visualization of the results. Any other choice of parameters is possible. Moreover, we
consider the case of only one fixed covariate, but the all the considerations hold for any number of fixed
covariates P > 1.
6 In order for the metric to be consistent and for identifiabiliy issues, it is important to include only
standardized covariates. Variables x and z are allowed to be different between first and second response
variables (i.e. x1,i �= x2,i ).
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Table 1 Set of parameters used in Eq. (5) to simulate data

First response parameters Second response parameters
c1,11 = 5 c2,11 = 3

i = 1, . . . , 33 c1,21 = 10 c2,21 = 1
β1 = 3 β2 = 2

c1,12 = 2 c2,11 = 3
i = 34, . . . , 66 c1,22 = 5 c2,21 = 1

β1 = 3 β2 = 2
c1,13 = 0 c2,12 = 0

i = 67, . . . , 100 c1,23 = −2 c2,22 = −3
β1 = 3 β2 = 2

The intercepts and the coefficients of z differ across subpopulations, while the coefficients β of x are fixed.
Colours highlight the different subpopulations related to each response variable.We impose a structure with
three subpopulations in the first response (M = 3) and two subpopulations in the second one (K = 2)

Fig. 1 Data simulated with the set of parameters reported in Table 1 and values of x, z and ε defined in Eqs.
(6), (7) and (8) respectively. Figure on the left panel represents the first response and figure on the right
panel represents the second one. It is possible to identify the presence of three and two subpopulations in
the first and in the second response respectively. Colors are automatically assigned by the software R

related to the first response are clustered within three subpopulations (M=3), while the
ones related to the second one are clustered within two subpopulations (K=2). Figure
1 shows the data simulated with the set of parameters reported in Table 1.

The correlation among the two response variables depends both on the subpopula-
tions distributions that we use to generate them (i.e. on the choice of Cmk) and on the
correlation between the errors. In this perspective, the parameters distribution shown in
Table 1 induces a structural correlation among the subpopulations of the two response
variables, since the bivariate distribution ofCmk follows a precise structure among the
groups. Regarding the distribution of the errors, the covariance of the errors ε1 and
ε2 in Eq. (8) is set to zero, implying the absence of any further correlation among the
two responses.

We apply the BSPEM algorithm to this simulated dataset, choosing D = 1 and
tollR = tollF = 10−2 (see Algorithm 1 in Appendix A). We repeat the simulation
for 100 runs.On average, the algorithmconverges in 6 iterations and it always identifies
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Table 2 Values of the parameters of Eq. (5) estimated by the BSPEM algorithm, obtained as the average
over the 100 runs (for each parameter we also report its Mean Square Error in brackets)

First response parameters Second response parameters
ĉ1,11 = 5.00085 ĉ2,11 = 3.01097

(MSE1,11 = 0.00024) (MSE2,11 = 0.00024)
i = 1, . . . , 33 ĉ1,21 = 9.99876 ĉ2,21 = 1.00384

(MSE1,21 = 0.00028) (MSE2,21 = 0.00091)
β̂1 = 2.99856 β̂2 = 1.99854

(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)
ĉ1,12 = 2.01128 ĉ2,11 = 3.01066

(MSE1,12 = 0.00037) (MSE2,11 = 0.00024)
i = 34, . . . , 66 ĉ1,22 = 4.99942 ĉ2,21 = 1.01334

(MSE1,22 = 0.00024) (MSE2,21 = 0.00091)
β̂1 = 2.99856 β̂2 = 1.99854

(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)
ĉ1,13 = 0.00068 ĉ2,12 = −0.00768

(MSE1,13 = 0.00195) (MSE2,12 = 0.00065)
i = 67, . . . , 100 ĉ1,23 = −2.00531 ĉ2,22 = −2.99967

(MSE1,23 = 0.00203) (MSE2,22 = 0.00182)
β̂1 = 2.99856 β̂2 = 1.99854

(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)

Colors represent the different subpopulations identified by the algorithm. The algorithm identifies three
subpopulations (M = 3) for the first response and two subpopulations for the second one (K = 2)

Fig. 2 Simulated data with the regression planes identified by the BSPEM algorithm in one of the 100 runs.
Colors represent the different subpopulations: three for the first response (figure on the left panel) and two
for the second response (figure on the right panel). The estimated parameters of the regression planes are
shown in Table 2

the correct number of clusters for both the two response variables, whose estimated
parameters (mean and MSE over the 100 runs) are shown in Table 2.

Figure 2 shows the data with the regression planes identified by the algorithm in
one of the 100 runs, for both the two response variables.
The algorithm assigns each group i , for i = 1, . . . , 100, to the correct cluster related to
the two response variables, that means that assigns each group i , for i = 1, . . . , 100, to
the correct bivariate cluster (m, k). The estimates of the (M × K )-dimensional matrix

123



BSPEM algorithm for measuring bivariate class effects 2349

of weights w and of Σ , averaged over the 100 runs, are the following:

ŵ =
⎛
⎝0.33 0.00
0.33 0.00
0.00 0.34

⎞
⎠ Σ̂ =

(
1.0012 0.0022
0.0022 0.9996

)
(9)

MSEΣ =
(
0.0002 0.0001
0.0001 0.0002

)
. (10)

By looking at the matrix Ŵ , we can identify the distribution of the groups on the
support, composed by the 6 mass points. Since we impose a structural correlation
between the clusters distribution of the two response variables (see the coefficients in
Table 1), the estimated distribution of the weights wmk is not uniform on the M × K
masses, but it is possible to recognize the pattern that we used to generate the data.
Regarding the variance/covariance matrix Σ̂ , the covariance is correctly estimated as
null and the two estimated variances are also close to 1.

The case just shown represents the particular situation in which the subpopulations
distributions are not uniform on the mass points and the errors are not correlated, but it
can also be the case that the two response variables do not present correlated subpop-
ulations or even present correlated errors ε1 and ε2. In order to test the performance
of the BSPEM algorithm in these further cases, we modify the values of Cmk and ε

in order to simulate nine different scenarios. The simulated scenarios result from the
intersection of three different assumptions both on the structural correlation among
subpopulations and on the dependence structure of the errors. In particular,

– Latent subpopulations structure:

1. Structural correlation among subpopulations relative to the two response vari-
ables (i.e. maximum dependence in the weights matrix);

2. Partial structural correlation among subpopulations relative to the two response
variables;

3. No structural correlation among subpopulations relative to the two response
variables (i.e. independence in the weights matrix);

– Dependence between the errors:

1. Dependence between the errors ε1 and ε2 with correlation coefficient ρ = 1;
2. Dependence between the errors ε1 and ε2 with correlation coefficient ρ = 0.5;
3. Independence between the errors ε1 and ε2 with correlation coefficient ρ = 0.

In order to avoid any type of structural correlation among the subpopulations of
the two response variables, i.e. in order to have a subpopulations distribution uni-
form on the mass points, we randomly shuffle the order of the parameters shown in
Table 1 across the 100 groups, so that there are no definite patterns on the param-
eters Cmk between the two responses. For the case of partial structural correlation,
we shuffle only part of the groups. In particular, we maintain the first 33 groups as
shown in Table 1, while we shuffle the remaining 67 ones. In order to simulate the
dependence/independence among the errors ε1 and ε2, we set the variance/covariance
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matrix Σ =
(
0.51 0.5
0.5 0.51

)
for the first case (ρ = 1), Σ =

(
1 0.5
0.5 1

)
for the second

case (ρ = 0.5) and Σ =
(
1 0
0 1

)
for the third case (ρ = 0).

We apply the BSPEM algorithm to these four different types of simulated data (100
runs for each of the four cases), with the same choice of parameters D = 1, tollR
= tollF = 10−2 (see Algorithm 1 in Appendix A). The algorithm is able to identify
the correct subpopulations distribution in all the nine situations. The visualization of
the results in all the nine cases is similar to the one shown in Fig. 2 and the estimates
of the parameters Cmk , for m = 1, . . . , 3 and k = 1, 2 and B in the nine cases are
in line with the ones shown in Table 2. The differences across the nine cases are the
estimates of the weights matrices w and of Σ , whose means over the 100 runs are
shown in Table 3.

From Table 3, we see that the model is identifiable, since it is able to distinguish the
correlation among the two response variables that is given by a structural correlation
among subpopulations distribution (showed in w) from the correlation imposed by
dependent errors (showed inΣ). In the last column of Table 3, where we do not impose
any structural correlation among subpopulations, the distribution of the weights, less
than small variations, is uniform on the mass points. In the second column of the
table, where we impose a partial structural correlation among the two subpopulations
distributions, we observe that the 33% of groups belongs to subpopulation (1,1), while
the remaining 67% is uniformly distributed on the other support points.
Finally, since in the case study data have a group size ranging from 10 to 28, with a
mean of about 17, we add a further check repeating the first simulation, but considering
ni = 20 instead of ni = 100, for i = 1, . . . , 100. Appendix B reports the results that
confirm that the method is robust with respect to group sizes.

The only parameter that significantly influences the results of the BSPEMalgorithm
is the threshold distance D (see Algorithm 1 in Appendix A). In order to give an idea
of the sensitivity of the algorithm to the values of D, in the cases seen above, the
algorithm gives the same result for each value of D between 0.5 and 2. For values of
D < 0.5, the BSPEM algorithm is too sensitive to the variability among the data and
identifies more that 6 mass points, while for values of D > 2, the algorithm does not
entirely catch the variability among the data identifies less than 6 mass points.7

4 Case study: application to Italianmiddle schools (grades 6–8)

In this section, we present our dataset, that deals with a sample of Italian middle
schools in 2016/2017. We apply the BSPEM algorithm to identify subpopulations
of classes, on the basis of their different effects on mathematics and reading student
achievements.

The sample that we consider is composed by students and classes that take the
INVALSI test under the supervision of the INVALSI staff. This sample regards the
10% of the total population and it is directly selected by INVALSI in order to be

7 Further information regarding the choice of the threshold value D is given in Masci et al. (2019).
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Table 4 Student level variables
of the INVALSI database
2016/2017 used in the analysis
with their descriptive statistics

Variable Type Mean sd Median IQR

Math8 Cont 53.201 20.036 52.489 29.322

Read8 Cont 64.491 17.278 66.392 23.001

Math5 Cont 68.475 16.641 70.000 26.001

Read5 Cont 66.608 16.736 68.965 24.138

ESCS Cont 0.147 0.991 0.069 1.323

Gender 0/1 0.51 − − −
Immig 0/1 0.07 − − −

representative of the entire Italian population. Being the test in this sample supervised
by the INVALSI staff, we overcome the potential problems related to the cheating of
students or teachers. We restrict the sample to classes with at least 10 students. The
sample comprises 18,242 students nested within 1082 classes.8

4.1 The database about the Italianmiddle schools

The database includes data about students attending grade III of junior secondary
school in year 2016/2017. About these students, besides their results of the INVALSI
tests in reading and mathematics at grade 8 (read8 and math8 respectively), we
consider other five variables: the INVALSI test scores in reading and mathematics
of these students three years before, i.e. at the last year of primary school (read5
and math5 respectively); the socioeconomic index (ESCS) that is an index built by
INVALSI by considering parents’ occupation and educational titles and the possession
of certain goods at home (for instance, computer or the number of books); the gender
of the student (gender, 1 = female, 0 = male) and the immigrant status (immig,
0 = Italian, 1 = first/second generation immigrant).9 The INVALSI test score is a
continuous variable that takes values between 0 and 100 (proportion of correct answers
in the test), while the ESCS is built as a continuous variable with mean equal to 0 and
variance equal to 1. Controlling for prior achivement at grade 5 allows the model to be
specified as a value-added. Table 4 reports the five student level variables used in the
analysis with their descriptive statistics10. In the considered cohort of students, 51%
are females and 7% are not native Italians, but 1st or 2nd generation immigrants. On
average, the INVALSI test scores are slightly higher at grade 5 than at grade 8 (we
deal with this factor by standardizing values, see Sect. 4.2).

In 2016/2017, INVALSI collected information about classes and teachers by means
of a dedicated questionnaire. This questionnaire includes an abundant set of informa-
tion about the class body composition, the approach of the teacher to INVALSI tests,

8 We remind that in our sample each class is within a different school, i.e. we do not observe more classes
in the same school.
9 The choice of these variables relies on the fact that the literature identifies them as significant for predicting
student achievements, cross-sectionally tomany studies (see, among the others,Masci et al. (2017); Agasisti
et al. (2017); Agasisti and Vittadini (2012)).
10 In the analysis, these variables will be standardized.
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Table 5 Teacher and class levels variables of the INVALSI database 2016/2017 used in the analysis with
their explanation

Variable Type Explanation

Teachers general questions (for both maths and reading teachers)

Updated techniques y/n The teacher applies new techniques learned
at refreshment courses

Team work or research y/n The teacher organizes team work or research
in groups for students

Extra activities y/n The teacher organizes extra scholastic
activities for student reinforcement

Computer/internet y/n The teacher uses media support in class

Refresher courses Num Number of refreshment courses the teacher
had in the last two years

Contacts among teachers y/n Teacher exchanges views with other teachers

Teachers personal information (for both maths and reading teachers)

Num years of teaching here 1 : 4 Since how many years the teacher teaches in
the actual school. 1: one year or less; 2: 2-3
years; 3: 4-5 years; 4: > than 5 years.

Permanent job y/n The teacher has a permanent contract

Gender y/n y= male; n = female.

Age Num Age of the teacher

Education 1 : 3 Higher level of education of the teacher 1:
less than degree; 2: degree; 3: phd/master

personal information of the teacher (age, education, gender), teaching practices and
available materials in the class. Tables 5, 6, 7 report teacher and class level vari-
ables that we consider, following suggestions derived from the literature about school
effectiveness (David et al. 2000), with their explanation.

The variables shown in Table 7 cover the four areas that regard (i) the class body
composition, (ii) teacher personal information (gender, age, education,…), (iii) teach-
ing practices of the teacher and (iv) teacher’s perception about the work and the
collaboration within the school and about the school principal. Class body composi-
tion and teacher personal information have been broadly considered in the literature
as potential influencer of student learning (Palardy 2008; Winkler 1975; Dar and
Resh 1986, 2018; Belfi et al. 2012; Wayne and Youngs 2003). More recent studies
investigate also the effets of different teaching approaches (traditional versus mod-
ern teaching methods) on student learning, finding heterogeneous results (Brewer and
Goldhaber 1997; Schwerdt and Wuppermann 2011; Bietenbeck 2014; De Witte and
Van Klaveren 2014; Wenglinsky 2002). Therefore, besides information regarding the
class body composition, the geographical area and personal information of the teacher,
we decided to select from the questionnaire the information that describes the type
of teaching method of the teacher (i.e. the student skills that the teacher stress more
and aim to develop, the type of exercises that the teacher does in class and the type of
tests that the teacher prepares for students) and the managerial practices adopted by
the school principal.
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4.2 BSPEM applied to data of Italianmiddle schools: estimating subpopulations
of classes

The semi-parametric two-level linear model applied to INVALSI data, considering
students (level 1) nested within classes (level 2), takes the following form:

Yi = 1ni

(
c1,1m
c2,1k

)T

+
P∑

p=1

xi p

(
β1p
β2p

)T

+ zi

(
c1,2m
c2,2k

)T

+ εi

i = 1, . . . , N m = 1, . . . , M, k = 1, . . . , K

εTi =
(

ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(11)

where i is the class index and N is the total number of classes.Yi = (
math8i read8i

)
is the bivariate vector of the INVALSI test scores of students attending grade 8, inmath-
ematics and reading. X = (x1, x2, x3) is the (ni × 3)-matrix of the fixed covariates,
that comprehends socioeconomic index, gender and immigrant status. z is the vector
of INVALSI test score of the same students but three years before (at grade 5), that
differs across the two response variables, being math5 for the first response (math8)
and read5 for the second one (read8). In particular, we standardize the variables
math8, read8, math5, read5 and ESCS, so that they all have mean equal to 0 and
variance equal to 1. Our interest is to see how the association between the INVALSI
test score at the end of the primary school/beginning of the junior secondary school
and the INVALSI test score at the end of the junior secondary school does change
across students attending different classes, after adjusting for some student level con-
founding factors (socioeconomic index, gender and immigrant status), both in reading
and mathematics. The period between grade 5 and grade 8 is the entire period of the
junior secondary school and this association represents a kind of class effect, seen as
the impact that the class has on the evolution of its student achievements. With this
modeling, we identify subpopulations of classes within which class impacts are sim-
ilar and across which they are different. The bivariate nature of the modeling allows
to do that both for reading and mathematics achievements, considering also the joint
effect of the class on the two school subjects. We apply the BSPEM algorithm with
the following choice of parameters: D1 = D2 = 0.3, w̃1 = w̃2 = 0.01, tollR =
tollF = 10−2, it = 40, itmax=20, it1=20 (see Algorithm 1 in Appendix A).11

The algorithm converges in 30 iterations and identifies M = 5 mass points for the
random coefficients distribution related to the first response (mathematics) and K = 4
mass points for the one related to the second response (reading). From an educational
viewpoint, for interpretation, classes can be classified into five homogeneous groups

11 We choose w̃1 = w̃2 = 0.01 in order to observe subpopulations of classes containing at least 100 classes.
Our interest is in the identification of relevant trends that describe most of the population and that can be
characterized a posteriori in terms of class- and school-level variables. A lower value of w̃ is possible and
it allows to identify smaller subpopulations composed by what we interpret as outlier classes. The choice
of the threshold distances D1 and D2 is driven by the entropy of the conditional weights matrices W1 and
W2. We choose for D1 and D2 the lowest values that allow to maintain low entropy values (see Appendix
A for details about the computation of the entropy).
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Fig. 3 Regression planes projected on the 2-dimensional plane identified by the answer variable and the
random covariate, identified by the parameters of Eq. (11) estimated by the BSPEM algorithm and whose
parameters are shown in Table 8. Panel on the left reports the results for the first response, while panel on
the right reports the results for the second one. The algorithm identifies M = 5 mass points for the first
response and K = 4 mass points for the second one. For a better visualization, we do not represent all the
observations but only the identified regression lines. Line widths are proportional to the marginal weights
w1 and w2

when considering value-added in mathematics, while in four groups when considering
value-added in reading. The estimates of the identified parameters (which measure the
effectiveness of classes) are shown in Table 8.

β̂1 and β̂2 are the fixed coefficients and therefore their estimates are stable across
the subpopulations; ĉ1,m , for m = 1, . . . , 5 and ĉ2,k , for k = 1, . . . , 4 are the esti-
mates of the random coefficients and ŵ1 and ŵ2 are the estimated weights related to
the marginal distributions of the two random effects. Regarding the fixed effects (i.e.
the individual-level covariates that affect students’ performance), the positive coeffi-
cient of the variable ESCS (0.089 for mathematics and 0.095 for reading) suggests that
students with higher ESCS are associated to a higher progress between grade 5 and
grade 8 INVALSI scores; females have on average higher scores in reading and lower
ones in mathematics, with respect to males (coefficient of gender is −0.055 for
mathematics and 0.219 for reading); being an immigrant student has a negative effect
in reading, but a slightly positive one in mathematics, once controlling for other indi-
vidual characteristics (coefficient of immigrant is −0.083 for reading and 0.048
for mathematics). In order to visualize the results related to random effects (class
effectiveness), Fig. 3 reports the regression planes identified for both the two response
variables, projected on the 2-dimensional plane identified by the answer variable and
the random covariate.

By looking at the estimated parameters in Table 8 and the regression lines in Fig. 3,
it is possible to make considerations about the identified subpopulations of classes.
Such classification is particularly useful for decision-makers, who can have a clear
image of the heterogeneous effect of attending classes with different characteristics.
Among the five identified subpopulations related to the class effect in mathematics,
subpopulation m = 4 (containing 6.4% of the classes) clearly contains the classes
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ĉ 2
,2

(r
e
a
d
5
)

ŵ
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with the worse effect on student achievements, since the predicted values of y are the
lowest for almost the entire range of previous score math5. Subpopulations m = 1
and m = 2 (containing 45.8% and 38.4% of the classes, respectively) represent the
most common trends and with respect to them, subpopulations m = 3 and m = 5
have the two following characteristics: subpopulationm = 3 (2.5% of the classes) can
be interpreted as the best set of classes since the predicted values of y are the highest
in almost the entire range of the covariate math5; subpopulation m = 5 (6.9% of
the classes) contains classes where students have on average higher predicted values
of INVALSI score at grade 8 than the ones in subpopulation m = 2, while with
respect to population m = 1 they have higher predicted values of y for values of
math5 smaller than 0, while they have lower predicted values of y for values of
math5bigger than 0. These subpopulations contain classeswhich exert heterogeneous
effects on achievements, namely their effectiveness is different along the distribution
of initial students’ ability (as measured by test score at grade 5). Regarding the results
of reading, the four identified subpopulations are very well distinct. The subpopulation
of the worst classes corresponds to subpopulation k = 1 (containing about 2% of the
classes), that is characterized by a very low intercept and a slightly negative slope:
students attending classes that belong to this subpopulation have a low predicted value
of INVALSI score, regardless of the fact that they had high or low scores at grade 5.
On the opposite, subpopulation k = 4 (containing 86.8% of the classes) contains the
set of the best classes since for all values of previous score z between -3 and 2, i.e.
for almost the entire range of values of the random covariate, the predicted value of
y is higher that the ones of the other subpopulations of classes. Subpopulation k = 2
(containing 9.5% of the classes) is the second one in terms of high values of predicted
score y, while subpopulation k = 3 (containing 1.8% of the classes) have predicted
values of y lower than the ones of subpopulations k = 4 and k = 2 but higher than
the ones of subpopulation k = 1.

The algorithm also identifies the reference subpopulations, that are themost numer-
ous ones, and the subpopulations that depart from them, composed by classes that have
an exceptional effect, whether positive or negative.

The interpretations of these subpopulations are also supported by the average values
of the standardized variables across them,12 reported in Table 9. Regarding mathe-
matics, subpopulation m = 4 contains classes where the average score of math5 is
the highest (math51 = 0.224), but where the average score of math8 is the lowest
(math81 = −1.351), confirming the negative effects (value-added) of the classes
that belong to this subpopulation on students’ achievement. Subpopulation m = 3,
interpreted as the subpopulation containing classes with the highest positive effect, is
characterized by the lowest average score of math5 (math52 = −0.118), but with
the highest average score of math8 (math82 = 0.753). This subpopulation is the
one with the highest average student ESCS. When considering reading, subpopulation
k = 4, interpreted as the one containing the best classes, is indeed characterized by the
lowest average value of read5 (read51 = −0.051) and the highest average score of
read8 (read81 = 0.138). Also in this case, this subpopulation is characterized by

12 These average values are obtained by computing the means of the variables over all students attending
classes that belong to the different subpopulations.
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Table 9 Average values of some
student level variables used in
the analysis, across the identified
subpopulations (five for
mathematics and four for
reading)

First response variable
math8 math5 ESCS

m=1 0.259 −0.049 0.103

m=2 −0.214 0.007 −0.106

m=3 0.753 −0.118 0.102

m=4 −1.351 0.224 −0.432

m=5 0.326 −0.075 −0.078

Second response variable
read8 read5 ESCS

k=1 −2.78 0.427 −0.075

k=2 −0.518 0.149 −0.345

k=3 −1.398 0.342 −0.128

k=4 0.138 −0.051 0.014

the highest average value of ESCS. On the other side, subpopulation k = 1, associated
to a negative class effect, has the highest average value of read5 (read54 = 0.427)
and the lowest average value of read8 (read84 = −2.78).

The M × K matrix of the joint weights w and the variance/covariance matrix Σ

are estimated as follows:

ŵ =

⎛
⎜⎜⎜⎜⎝

0.0000 0.0007 0.0003 0.4571
0.0054 0.0518 0.0047 0.3220
0.0022 0.0000 0.0023 0.0204
0.0068 0.0312 0.0082 0.0179
0.0043 0.0111 0.0029 0.0507

⎞
⎟⎟⎟⎟⎠ Σ̂ =

(
0.455 0.183
0.183 0.451

)
.

The covariance and the correlation among the errors ε1 and ε2 are 0.183 and 0.404,
respectively. We now focus on the distributions of groups on the bivariate subpop-
ulations (weights matrix ŵ) in order to estimate the association between the two
random effects distributions. The Pearson chi-squared test of independence produces
a p-value lower than 2.2e−16, rejecting the hypothesis of independence. The Cramér’s
V takes value 0.3176. This result suggests that there is a pattern in the distribution of
groupswithin the subpopulations relative to reading andmathematics. The dependence
between the two distributions supports the importance of the bivariate modelling. In
order to investigate the correlation between the two 2-dimensional vectors of sup-
port point, we compute the correlation coefficients between random vectors (Puccetti
2019), as follows:

ρ(C1,C2) = tr(ΣC1C2)

tr((ΣC1 × ΣC2)
1/2)
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Fig. 4 Normalised entropy
distributions of the conditional
weights matrices W1 and W2

where ΣC1 and ΣC2 are the variance/covariance matrices of random effects relative
to the first and second responses, respectively; ΣC1C2 is the cross-covariance matrix
whose elements (ΣC1C2)i j are computed as Cov(c1i , c2 j ), for i, j = 1, 2. The cor-
relation ρ(C1,C2) results to be 0.3497. This low value of correlation reveals that
the internal dynamics of a class in reading and mathematics might be substantially
different. In the literature, authors have found different magnitude of class effects
correlation between reading and mathematics [see, among the others, Grilli et al.
(2016); Masci et al. (2017)]. In the comparison of this result with the ones obtained
in the previous literature, we would like to remark that the inclusion of both random
intercept and slope and, consequently, the use of Puccetti’s correlation coefficient for
2-dimensional vectors instead of the classical Pearson’s correlation coefficient might
lead to unbalanced comparisons.

In order to measure the uncertainty of classification of the BSPEM method, we
compute the entropy of the conditional weights matrices W1 and W2. In order to
compare the results between mathematics and reading, we normalise the two entropy
distributionswith respect to their maxima (that are−log(1/5) = 1.61 formathematics
and−log(1/4) = 1.38 for reading). Figure 4 shows the distribution of the normalised
entropy, computed on the rows of the two conditional weights matrices W1 and W2
(details in Appendix A).

The mean and the median of the two normalised entropy distributions are respec-
tively 0.173 and 0.117 for mathematics and 0.059 and 0.002 for reading. On a scale
between 0 and 1, where 0 corresponds to the minimum entropy and 1 to the maximum
one, the low normalised entropy values of our case study confirm that the method
assigns classes to the identified subpopulations with a low level of uncertainty, on
average. In particular, the level of uncertainty is, on average, significantly lower for
reading than for mathematics, suggesting that subpopulations of classes are better
distinguished for reading than for mathematics.

Finally, we focus on the residual variation of the model, investigating it for our
discrete random effects case. In multilevel models, the residual variation is split into
component parts that are attributed to both student and class levels. The Variance
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Partition Coefficient (VPC) measures the percentage of variation that is attributable
to the highest-level (classes) sources of variation and conveniently summarizes the
‘importance’ of classes (Goldstein et al. 2002). The VPC is expressed as:

V PC = τ

τ + σ 2 (12)

where τ is the between-classes variance and σ 2 is thewithin-classes variance. In order
to compute the between-classes variance, we need to explicate the variance/covariance
matrix of random effects. Following the theory presented by Rights and Sterba (2016)
about the relationship between parametric and non-parametric mixed-effects mod-
els, we compute the implied variance/covariance matrix Γ of random effects. In our
random intercept + slope multilevel model, Γ is expressed as:

Γ =
(

Var[c1] Cov(c1, c2)
Cov(c1, c2) Var[c2]

)

The between-classes variance τ is:

τ = Γ11 + 2 × Γ21 × z + Γ22 × z2

where z is the random-effects predictor (Snijders and Bosker 1999). The VPC is,
therefore, a function of the random-effects predictor.
We compute the implied variance/covariance matrices Γ1 and Γ2 of random effects,
relative to the two response variables:

Γ1 =
(
0.0511 0.1164
0.1164 0.6314

)
Γ2 =

(
0.0702 0.3237
0.3237 1.5810

)
. (13)

Considering the variance/covariance matrices Γ1 and Γ2 of random effects and the
variance/covariance matrix of errors Σ̂ , we compute the VPCs relative to the two
response variables. Figure 5 plots the VPCs as a function of the previous test score.

Of particular interest here is the way in which the ‘importance’ of the class attended
increases markedly when grade 5 test scores deviate from the mean, especially for
reading.

With increasing test score above the mean, especially for reading.
Considering the two marginal distributions of the class effects, we observe from

Table 8 that, in the case of mathematics (first response variable), classes are divided
into five subpopulations, two numerous ones containing 84.2% of the total number
of classes (45.8% + 38.4%) and three smaller subpopulations containing the remain-
ing 15% of the classes. The distribution of the class effects in reading on the four
subpopulations also sees a very numerous subpopulation containing the 86.8% of the
classes, followed by a subpopulation containing about the 9.5% of the classes and
by two very small subpopulations containing the remaining 3.7% of the classes. By
looking at the matrix Ŵ of the joint weights, we see that the joint distribution of the
class effects on reading and mathematics is not uniform on the 20 mass points, but it
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Fig. 5 VPCs relative to the two response variables (mathematics and reading, respectively), plotted as a
function of the relative test score at grade 5

is mainly concentrated on certain mass points. This result further highlights the utility
and the advantage of the bivariate modeling. The most numerous subpopulation is
(m = 1, k = 4), that contains the 45.71% of the classes, followed by subpopulation
(m = 2, k = 4) with the 32.20% of the classes. These two subpopulations represent
the reference trend, the most common one, where classes, with respect to the other
subpopulations, have the highest positive effect in reading (k = 4) and a positive
(but not the highest) effect in mathematics (m = {1, 2}). In terms of weights, these
subpopulations are followed by subpopulation (m = 2, k = 2), that contains 5.18%
of the classes, that are characterized by slightly lower positive effects than the ones
in the reference subpopulations. Subpopulations (m = 3, k = 4) and (m = 5, k = 4)
contain the 2.04% and the 5.07% of the classes, respectively, and are composed by
classes with the best effects both in reading andmathematics. This finding also corrob-
orates the idea that the proportion of classes that are able to influence their students’
achievement in a very positive way for both subjects is quite limited. On the opposite,
subpopulations (m = 4, k = 1) and (m = 4, k = 3) are the worst subpopulations
since students in these classes have the lowest increment in their achievements both in
reading and mathematics. There are also cases where the class effects in reading and
mathematics are opposite: subpopulations (m = 5, k = 1) and (m = 5, k = 3) are
composed by classes with a very high positive effect in mathematics and a very low
effect in reading; on the other side, subpopulation (m = 4, k = 4) contains classes
with a negative class effect in mathematics but a very high positive effect in reading.

In particular, among the entire set of different behaviors of classes, we are interested
in identifying and analyzing the behaviors of the classes that significantly differ in
their effects on student achievements from the ones of the reference subpopulation
and, therefore, we focus our attention on four types of subpopulations:

– Sre f = the union of subpopulations (m = {1, 2}, k = 4) - the reference subpopu-
lation. It contains 843 classes, that are associated to the highest positive impact in
reading and a positive impact (but not the highest) in mathematics.
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Table 10 Distribution of the selected four subpopulations (Sre f , S2, S3 and S4) in the joint distribution
of the 5 × 4 subpopulations identified by the BSPEM algorithm. Except for the reference subpopulation
(Sre f , in bold), for each subpopulation, the signs into the brackets represent the positive (+) or negative (-)
class effect in mathematics and reading, respectively

k = 1 k = 2 k = 3 k = 4

m = 1 Sre f
m = 2 Sre f
m = 3 S3(+−) S3(+−)

m = 4 S2(−−) S2(−−) S4(−+)

m = 5 S3(+−) S3(+−)

– S2 = union of subpopulations (m = 4, k = {1, 3}). It contains 16 classes, that are
associated to negative impacts, with respect to the others, both in mathematics and
reading.

– S3 = union of subpopulations (m = {3, 5}, k = {1, 3}). It contains 13 classes,
that are associated to a very positive impact in mathematics and a negative one in
reading.

– S4 = subpopulation (m = 4, k = 4). It contains 19 classes, that are associated to
a negative impact in mathematics and a positive one in reading.

Table 10 highlights these four subpopulations in the joint distribution of the sub-
populations. The subpopulations Sre f and S2 contain classes that have homogeneous
effects in reading and mathematics, since they exert both negative or both positive
effects on their student achievements. On the other side, S3 and S4 contain classes
that have heterogeneous effects in the two school subjects, since they exert a positive
effect in mathematics and a negative one in reading and viceversa. We focus our atten-
tion on these four cases since they represent the borderline cases of all the possible
interactions between class effects in mathematics and reading. Indeed, they result of
great interest in the perpective of investigating eventual influences between teaching
and learning dynamics in the two school subjects.

As a final remark, we must recall that in this analysis we cosider only one level of
grouping, i.e. students nested within classes. As a consequence, part of the correlation
that we identify among the class effects might be due to the school in which classes
are nested. Future research will be dedicated to understand how schools are shaping
the effectiveness of their classes in a different way.

4.3 Factors associated to the class effects

The presence of subpopulations of classes that differ in their effect on mathematics
and reading student achievements might be the consequence of different class body-
compositions, peers, teachers or teaching practices. These aspects may influence the
class effect in reading,mathematics or both of them.Moreover, having a disadvantaged
situation in one school subject learning may favor student learning in the other school
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subject and viceversa. Therefore, we are interested in investigating whether there are
some class and teacher level variables associated to the four heterogeneous types
of subpopulations. Such an exercise can be relevant for decision-makers, who can
make interventions to modify schools’ and classes’ activities and characteristics, in
search of higher levels of effectiveness. To this end, we apply a multinomial lasso
logit model (Tibshirani 1996; Lokhorst 1999) by treating the class and teacher levels
characteristics as covariates and the belonging of classes to the 4 subpopulations
(Sre f , S2, S3, S4) as outcome variable. This choice is driven by the fact that the number
of class and teacher levels covariates is very high and we do not expect all of them
to be significant. Using a lasso model allows us to select the significant covariates,
addressing multicollinearity issues, and to estimate their association with the response
variable. From a methodological point of view, this approach is more robust and
preferable than the traditional linear modelling often used in educational research.

Denoting with Yi the cluster of belonging of class i , for i = 1, . . . , N , and con-
sidering K = {Sre f , S2, S3, S4} the set of possible values of Y, the multinomial lasso
logit model takes the following form:

P(Yi = k|Xi = xi ) = eβ0k+βT
k x∑K

k=1 e
β0l+βT

l xi
, (14)

where K is the total number of categories assumed by Y, i.e. 4, and X is the N × Q
matrix of class and teacher levels covariates shown in Table 7. Precisely, we use as
covariates all the variables presented in Table 7 except for the class body compositional
variables 1st and 2nd-gen immig. Since we used the student-level variable immig
as control variable in the multilevel model, using its percentage in the class as a
compositional variable in the multinomial model would be misleading (Raudenbush
andWillms 1995). Denoting by Ỹ the N ×K indicator response matrix, with elements
ỹil = I (yi = l), the elastic-net penalized negative log-likelihood function is

l({β0k , βk}K1 ) = −
[
1

N

N∑
i=1

(
K∑

k=1

ỹil (β0k + xTi βk) − log(
K∑

k=1

eβ0k+xTi βk )

)]
+ λ

Q∑
j=1

||β j ||1,

(15)
where λ is a tuning parameter that controls the overall strength of the penalty, β is a
Q × K matrix of coefficients, βk refers to the k−th column (for outcome category
k), and β j to the j−th row (vector of K coefficients for variable j). We choose to
perform a lasso penalty on each of the parameters.

By using cross-validation, we select the penalization term λ of the lasso regression
in order to minimize the mean-squared error. The results of the lasso multinomial
logit model, with the best selected choice of λ, are obtained by using the R package
glmnet (Friedman et al. 2010) and are shown in Table 11.

According to the results of the multinomial logit model shown in Table 11, the vari-
ables that result to be significant in predicting the belonging of the classes to the four
subpopulations regard contacts among teachers, the age and the gender of teachers,
some aspects of the teaching methods in both mathematics and reading, the amount of
hours of reading lesson and the geographical area. Classes where teachers of reading
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Table 11 Results of the lasso multinomial logit regression in Eq. (14). We report in the table only the
coefficients of the variables at class and teacher levels that result to be significant in the model

Variable name Sre f S2 S3 S4

Teachers general questions

Contacts among maths teachers −0.1986

Contacts among reading teachers −0.1546

Teachers personal information

Maths teacher age −0.0265

Reading teacher age −0.0046

Reading teacher gender (male=1) 0.2316

Only for mathematics teachers

Main teaching method ‘a’ −0.1213

Teacher written exams −1.8238

Only for reading teachers

Num years of teaching here −0.0131

Num reading hours −0.0188

Summarize text −0.0872

Read newspapaper 0.6127

Class information and body composition

Area geo South −1.6268 0.0417

and mathematics are used to exchange views about teaching with other teachers are
less likely to belong to the reference subpopulation Sre f (variablecontacts among
reading/maths teachers). The elder are the mathematics and reading teach-
ers the less likely are classes to belong to the reference subpopulaton Sre f (variable
maths/reading teacher age). This suggests that younger teachers are asso-
ciated to worse class effects in reading and both to very positive or very negative class
effects in mathematics. Classes with male reading teachers are more likely to belong
to subpopulation S4, that is the one associated to a negative impact in mathematics
and a positive one in reading (variable reading teacher gender). Speaking
about mathematics teaching methods, classes where teachers follow the method ‘a’ -
teach definitions and theorems that students can apply to solve new problems - are less
likely to belong to Sre f (the reference method is ‘d’ - the teacher favors the capacity of
build concepts, models and theory). Classes where the mathematics teacher personally
prepares the written exam for the students are less likely to belong to subpopulation S2
(variable teacher written exam). In this case, having a mathematics teacher
who does not elaborate the tests and adapt them to his/her students results to be a
disadvantage, since this characteristic increases the probability of a class of being in
a subpopulation with a negative effect in mathematics. Regarding the characteristics
of reading, the higher is the number of hours per week dedicated to reading lesson the
lower is the probability of belonging to the reference subpopulation Sre f (variable num
reading hour). Classes where the reading teacher works in the school since many
years are less likely to belong to Sre f (this association is in line with the one of the age
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of the reading teacher). Moreover, classes where the reading teacher trains students
in summarinzg texts are less likely to belong to Sre f (variable summarize text).
Lastly, classes where the reading teacher reads newspapers in class as part of the lesson
are more likely to be associated to subpopulation S2 (variable read newspaper).
Classes in Southern Italy are less likely to belong to the reference subpopulation Sre f
and are more likely to belong to S2 (variable area geo south). Subpopulation
S2 contains classes with a worse effect than the ones in Sre f and, therefore, classes
in Southern Italy have on average worse effects on student achievements than to the
ones in Northern Italy.

Besides the geographical area or the number of hours of lesson per week, these
results reflect the fact that personal and working characteristics of teachers are in some
way associated to student learning. For instance, being a “not proactive” teacher, who
simply follows the book and who does not make personalized tests, has a negative
effect in mathematics and spending time in reading newspapers in class results to be
a disadvantage in reading.

It is worth to remark that we do not provide any measure of uncertainty of these
results since they are based on a two stage procedure and this second stage relies on
the subpopulations identified at the first stage.

5 Conclusions

In this paper, we develop a bivariate semi-parametric model with random coefficients,
together with an EM algorithm for estimating its parameters (BSPEM algorithm),
for hierarchical data. We apply this new algorithm to Italian middle schools data of
2016/2017 for performing a classification of Italian classes. The BSPEM algorithm
is the extension to the bivariate case of the SPEM algorithm presented in Masci et al.
(2019). We assume the random coefficients of the model to follow a discrete distri-
bution, where the numbers of support points of the coefficients distribution related to
the multiple responses are unknown and are allowed to be different. Each group, i.e.
observation at the higher level of hierarchy (classes), is assigned to one of the sub-
populations identified, that characterizes the effect of the group related to the multiple
response variables. The novelty and the advantage of this modeling is twofold. First,
the BSPEM algorithm identifies two latent structures among the higher level of hier-
archy, one related to the first response and one related to the second one (in our case,
they represent test scores in two different subjects within the same class). Second,
the joint modeling reveals two natures of the correlation between the two response
variables: one is the correlation among the distribution of the subpopulations, that
can be seen in the matrix of weights w, that tells us how groups are distributed on
the M × K mass points; the second correlation is among the unexplained variance of
the two response variables, i.e. Σ12, that tells us whether in the variance of the two
response variables that we are unable to explain with themodel there is still correlation
or not. In this perspective, the BSPEM algorithm is unique in the literature and can be
applied in many classification problems, also in different fields than education, with
the aim of individuating latent patterns within data or also for confirming the presence
of a theoretically known number of subpopulations.
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Applying the BSPEM algorithm to the achievement data of Italian middle school
students, considering students as level 1 and classes as level 2, we jointly model
the impact of the class on both mathematics and reading student achievements. We
interpret the impact of a class as the linear relation between previous (grade 5) and
current (grade 8) INVALSI test scores of students within a class, adjusting for student
socio-economic index, gender and immigrant status (i.e. the value-added of class). The
algorithm reveals the presence of five different trends (class effects) in mathematics
and four different ones in reading. The distribution of classes on these 5 × 4 mass
points is not uniform but it is possible to identify some more common behaviors. In
particular, we distinguish classes that have a positive impacts on student achievements
in both maths and reading, from the ones that have a negative one, from the ones that
have heterogeneous impacts on the two school subjects.

Interested in characterizing the identified subpopulations of classes, we apply, in
a second step, a lasso multinomial logit model to explain the belonging of classes to
the subpopulations by means of teacher and class levels variables. It emerges that,
in addition to the classical information about class body composition or peers, there
are certain teacher practices or characteristics that are associated to different class
impacts. In particular, the attitude, the pro-activeness and the preparation of teachers
result to be effective on student learning.

The method and the results presented in this paper have three clear and impor-
tant policy and managerial implications. Firstly, it is useful to classify the classes in
groups on the basis of their likely effect on student achievement, instead of creating
“rankings” among them. This way, the characteristics of groups can be analysed, and
decision makers can have clear indications about how to intervene to try boosting the
effectiveness of educational activities. For example, our results point at demonstrating
that classes where the effects on achievement are more positive are those in which
teachers adopt a more proactive in building concepts, methods and theories. Secondly,
the effectiveness of classes must be judged on the basis of their joint effect on differ-
ent subjects, in a multidimensional perspective. Our results indicate that many classes
are able to exert a positive effect on students’ achievement in one subject but not
the other. The proportion of classes that contribute very positively to achievement in
both reading and mathematics is quite limited (around 10%), and they should serve
as a benchmark and reference point to understand the key features that make them
particularly effective. Anyway, most of previous literature in the field focuses on one
subject at a time, so neglecting a lot of the complex interaction in teaching and educa-
tional practices that have an effect on students’ results - and our work overcomes this
problem. Thirdly, background individual characteristics of the students are confirmed
to be very important in influencing their academic results. The estimate of classes’
effects that we provide are determined net of students’ characteristics, but a necessary
development of our methodology will be to study more profoundly the interaction
between individual features’ and classes’ characteristics and activities. This way, the
proposed method could provide useful insights to understand which are the likely
results of moving students between classes.

A limitation of our study, determined by data availability, is that we do not have
information about multiple classes within the same school. Potentially, the proposed
model can be extended to the case of a three-level hierarchy: students as level 1, classes
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as level 2 and schools as level 3. In so doing, thanks to the random effect at school
level, the effect of the second level, i.e. the class effect, would be the within-school
class effect, allowing to model both between schools and within-school variabilities.
We believe in the potential of this approach but, since the available INVALSI data
that we presented in Sect. 2 regard classes that are all nested within different schools
(each class corresponds to a different school), we could not consider three different
levels in our application. For this reason, an interesting development of our research
effort will consist in obtaining new data and exploring how the information about the
clustering in different schools influences the heterogeneity of classes’ effectiveness,
adjusting for individual students’ characteristics.

Summing up, the present study pares the way for extensions towards better
understanding of the educational production process, in particular for modelling het-
erogeneity of effects within classes and schools.
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Appendix A

The EM algorithm for bivariate semi-parametric linear models with random
coefficients

The EM algorithm that we propose to estimate the parameters of the model in (3) is
the generalization for the bivariate case of the one proposed in Masci et al. (2019).
It alternates two steps: the expectation step (E step) in which we compute the condi-
tional expectation of the likelihood function with respect to the random coefficients,
given the observations and the parameters computed in the previous iteration; and the
maximization step (M step) in which we maximize the conditional expectation of the
likelihood function. At each iteration, the EM algorithm updates the parameters in
order to increase the likelihood in Eq. (4) and it continues until the convergence. The
update of the parameters is the following:

w
(up)
mk = 1

N

N∑
i=1

Wimk for m = 1, . . . , M, k = 1, . . . , K (16)
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and

(B(up),C(up)
mk ,Σ (up)) = argmax

B,Cmk ,Σ

M∑
m=1

K∑
k=1

N∑
i=1

Wimk ln p(yi |B,Σ,Cmk) (17)

where

Wimk = wmk p(yi |B,Σ,Cmk)∑M
m=1

∑K
k=1 wmk p(yi |B,Σ,Cmk)

(18)

and

p(yi |B,Σ,Cmk) = 1√|det(2πΣ)|ni

× exp

⎧⎨
⎩

ni∑
j=1

−1

2

(
y1,i j − c1,1m − ∑P

p=1 β1px1p,i j − c1,2mz1,i j
y2,i j − c2,1k − ∑P

p=1 β2px2p,i j − c2,2k z2,i j

)T

Σ−1

×
(
y1,i j − c1,1m − ∑P

p=1 β1px1p,i j − c1,2mz1,i j
y2,i j − c2,1k − ∑P

p=1 β2px2p,i j − c2,2k z2,i j

)}
.

(19)

For each response variable, W represents the the conditional weight matrix: the coef-
ficient Wimk represents the probability of 1i being equal to Cmk conditionally to
observations yi and given the fixed coefficient B and the variance/covariance matrix
Σ . Indeed, since wmk = p(1i = Cmk), then

Wimk = wmk p(yi |B,Σ,Cmk)∑M
m=1

∑K
k=1 wmk p(yi |B,Σ,Cmk)

= p(1i = Cmk) p(yi |B,Σ,Cmk)

p(yi |B,Σ)

= p(yi , 1i = Cmk |B,Σ)

p(yi |B,Σ)
= p(1i = Cmk |yi , B,Σ).

(20)
Therefore, in order to compute the point Cmk for each group i , for i = 1, . . . , N , we
maximize the conditional probability of 1i given the observations yi , the coefficient B
and the error variance/covariance matrix Σ . So that, the estimation of the coefficients
1i for each group i is obtained maximizing Wimk over m and k, that is

1̂i = Cm̃k where m̃k = argmax
m,k

Wimk i = 1, . . . , N . (21)

The maximization in Eq. (17) involves two steps and it is done iteratively. In the first
step, we compute the arg-max with respect to the support points Cmk , keeping B
and Σ fixed to the last computed values. In this way, we can maximize the expected
log-likelihood with respect to all support points Cmk separately, that means

C(up)
mk = argmax

C

N∑
i=1

Wimk ln p(yi |B,Σ,Cmk) m = 1, . . . , M k = 1, . . . , K .

(22)
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Since we are considering the linear case, the maximization step is done in closed-
form.13 In the second step, we fix the support points of the random coefficients
distribution computed in the previous step and we compute the arg-max in Eq. (17)
with respect to B and Σ . Again, this step is done in closed-form.

The initialization of the support points of the discrete distribution S∗ and the cri-
teria for the convergence of the EM algorithm are the direct extension of the ones
chosen in Masci et al. (2019) for the bivariate case. In particular, the algorithm starts
considering N support points for the random coefficients and a starting estimate for
the fixed coefficients, for both the response variables. These parameters are chosen in
the following way:

– random coefficients: for each response variable, the starting N support points are
obtained fitting a simple linear regression within each group and estimating the
couple of parameters (both the intercept and the slope) for each one of the N
groups. The weights are uniformly distributed on these N × N support points;

– fixed coefficients: the starting values of B and Σ are estimated by fitting a unique
bivariate linear regression on the entire population (i.e. without considering the
nesting of the observations within groups).

Nonetheless, if the number of starting support pointsN is extremely large, the algorithm
is relatively slow and using N starting support points becomes not strictly necessary. In
this case, the initialization of the support points of the random coefficients distribution
is done in the following way:

– we choose a number N∗ < N of support points, that is the same for both the two
response variables;

– for each response variable, we extract N∗ points from a uniform distribution with
support on the entire range of possible values for each parameter, that is estimated
by fitting N distinct linear regressions for each one of the N groups, as before, and
identifying the minimum and the maximum values;

– we uniformly distribute the weights on these N∗ × N∗ support points.

The M × K matrix of weights, that is composed by the elements wmk previously
described, represents the joint distribution of groups across the bivariate clusters
and, by summing over rows and columns respectively, it represents the marginal
distribution of the groups across the univariate clusters, for each single response vari-
able.

During the iterations, the EM algorithm performs the support reduction of the dis-
crete distribution of random coefficients, in order to identify M × K mass points
(starting from N ×N mass points), where both M and K are smaller than N . The sup-
port reduction is made standing on two criteria. The former is that we fix a threshold
value D and if two mass points are closer, in terms of euclidean distance, than D, they
collapse to a unique point. This procedure is separately applied to the clusters related
to the first and second response variable respectively. In particular, considering, for
example, the case of the first response variable, if two mass points c1,h and c1,g , for
h, g = 1, . . . , M , are closer than D, they collapse to a unique point c1,(hg), where

13 Closed-form calculations of model parameters can be found in Masci et al. (2019).
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c1,(hg) = c1,h+c1,g
2 . Consequently, Mnew = Mold − 1, the new marginal weight is

obtained as w1,(hg) = w1,h + w1,g and the joint weights w(hg)k = whk + wgk , for
k = 1, . . . , K . The same criterion applies to the clusters related to the second response
variable. The first two masses collapsing to a unique point are the two masses with
the minimum euclidean distance, among the couples of masses with euclidean dis-
tance less than D, and so on so forth. note that, even if D1 and D2 assume the same
value for the clusters related to the two response variables, the procedure might lead
to different number of mass points M and K . Regarding this procedure, it is also
worth to notice that it is important to standardize the covariates, in order to make
the computation based on the Euclidean distance fair. Indeed, in order for the met-
ric to be consistent, units of measurement of the coefficients have to be the same.
The second criterium is that, starting from a given iteration up to the end, we fix a
threshold value w̃ and we remove mass points with marginal weights w1,m ≤ w̃, for
m = 1, . . . , M and w2,k ≤ w̃, for k = 1, . . . , K or that are not associated to any
subpopulation. D and w̃ are two parameters that tune the estimates of the subpopula-
tions. The choice of these two tuning parameters is not trivial, but it can be driven by
the application aim. Setting a minimum weight w̃ > 0 serves to delete those groups
that have anomalous behaviours, different from the identified main subpopulations.
Researchers might set a w̃ > 0 when their interest is in the identificaton of big sub-
populations and not in the outlier groups (that can therefore be deleted) or when the
number of groups is prohibitively high to consider all the singleton groups. On the
opposite, setting w̃ = 0 allows to take into consideration all types of subpopula-
tions, included the ones composed by single groups (interpreted as outlier groups).
As introduced in Sect. 2, the value D sets the minimum heterogeneity across sub-
populations and can be chosen depending on how much we want to be sensitive on
the differences across groups. The choice of D can also be supported by evaluat-
ing the uncertainty of classification (with which the algorithm classifies groups into
subpopulations), measured by the entropy of the rows of the 3-dimensional array W .
W is the (N × M × K )−dimensional array of conditional joint weights. In the best
case, i.e. when the algorithm assigns each group i to a joint subpopulation mk with
probability 1, each row i , for i = 1, . . . , N , of the array W would be composed of
(M × K − 1) values equal to 0 and a value equal to 1. In this scenario, the entropy
Ei = −∑M

m=1
∑K

k=1 Wimk ln(Wimk) of each row i of the array W would be equal
to 0. The more the distribution of the weights is uniform on the M × K mass points,
the higher is the entropy and, therefore, the higher is the uncertainty of classification.
The worst case happens when the distribution of the weights of a group i is uniform
on the M × K subpopulations (Wimk = 1

M×K ), which corresponds to an entropy

Ei = −∑M
m=1

∑K
k=1

1
M×K ln( 1

M×K ) = − ln( 1
M×K ). The entropy of the matrix W

constitutes a driver for the choice of the tuning parameter D, suggesting a lower bound
for D that minimizes the entropy. Further insights on the choice of these parameters
can be found in Masci et al. (2019).

The sketch of the BSPEM algorithm is shown in Algorithm 1. At each iteration a,
the algorithm, given the estimated number of mass points, estimates all the param-
eters in Eq. (3) in an iterative way, updating both fixed and random coefficients,
until convergence or until it reaches the maximum number of sub-iterations fixed
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Algorithm 1: EM algorithm for bivariate semi-parametric models with random
coefficients
input : Initial estimates for (C(0)

11 , . . . ,C(0)
MK ) and (w

(0)
11 , . . . , w

(0)
MK ), with M = N and K = N ;

Initial estimates for B(0) and Σ(0);
Tolerance parameters D1, D2, w̃1, w̃2, tollR, tollF, it, it1, itmax.

output: Final estimates of C(a)
mk , w

(a)
mk , for m = 1, . . . , M , k = 1, . . . , K , B(a) and Σ(a).

a=1; conv1=0; conv2=0;
while (conv1 == 0 or conv2 == 0 & a < it) do

compute the distance matrices DIST1 and DIST2 for both the subpopulations distribution

(where, e.g.,for the first response variable, DI ST 1st =
√

(c1,1s − c1,1t )2 + (c1,2s − c1,2t )2 is
the euclidean distance between each couple of mass points s, t ∀s, t = 1, . . . , M, s �= t);
if (DI ST 1st < D1 & DI ST 1st = min(DI ST 1) (∀s, t = 1, . . . , M, s �= t)) then

collapse marginal masses s and t to a unique mass point;

if (DI ST 2st < D2 & DI ST 2st = min(DI ST 2) (∀s, t = 1, . . . , K , s �= t)) then
collapse marginal masses s and t to a unique mass point;

compute the new distance matrices DIST1 and DIST2;
if conv1 == 1 or a ≥ it1 then

if w
(a)
1,m ≤ w̃1 (∀m = 1, . . . , M) then
delete marginal mass point m;
reparameterize the weights;

if w
(a)
2,k ≤ w̃2 (∀k = 1, . . . , K ) then
delete marginal mass point k;
reparameterize the weights;

if no changes are done then
conv2 = 1;

given C(a−1)
mk , w

(a−1)
mk for m = 1, . . . , M and k = 1, . . . , K , B(a−1) and Σ(a−1), compute the

matrix W according to Eq. (20);

update the weights w
(a)
11 , . . . , w

(a)
MK according to Eq. (16);

B(a,0) = B(a−1);
Σ(a,0) = Σ(a−1);
C(a,0)
mk = C(a−1)

mk ;

w
(a,0)
mk = w

(a−1)
mk ;

keeping B(a,0) and Σ(k,0) fixed, update the M × K support points C(a,1)
11 , . . . ,C(a,1)

MK according
to Eq. (17);

keeping C(a,1)
mk , w

(a,0)
mk for m = 1, . . . , M and k = 1, . . . , K fixed, update B(a,1) and Σ(a,1)

according to Eq. (17);
j=1;
while (|B(a, j−1) − B(a, j)| ≥ toll F or |Σ(a, j−1) − Σ(a, j)| ≥
toll F or |C(a, j−1)

mk − C(a, j)
mk | ≥ toll R) & j ≤ itmax do

j=j+1;

keeping B(a, j−1) and Σ(a, j−1) fixed, update the M × K support points C(a, j)
11 , . . . ,C(a, j)

MK
according to Eq. (17);

keeping C(a, j)
mk , w

(a, j−1)
mk for m = 1, . . . , M and k = 1, . . . , K fixed, update B(a, j) and

Σ(a, j) according to Eq. (17);

set C(a)
mk = C(a, j)

mk for m = 1, . . . , M and k = 1, . . . , K , B(a) = B(a, j), Σ(a) = Σ(a, j);
estimate subpopulation mk for each group i according to Eq. (21);

if (B(a) − B(a−1) < toll F) & (Σ(k) − Σ(k−1) < toll F) & (C(a)
mk − C(a−1)

mk < toll R) then
conv1 = 1;

a= a+1;
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a priori for this stage (itmax). At the beginning of the iterative process, the algo-
rithm performs the dimensional reduction of the mass points standing only on the
distance between the mass points. When the estimates are stable, meaning that all
the differences between the estimates of the parameters at two consecutive itera-
tions are smaller than fixed tolerance values, or after a given number of iterations
it1, the algorithm continues performing the dimensional reduction of the support
points standing also on the criterion of the minimum weight w̃. The final conver-
gence is reached when all the differences between the estimates of the parameters
at two consecutive iterations are smaller than fixed tolerance values, or after a given
number of iterations it. In particular, we fix the tolerance values for the estimates
of both the fixed and random coefficients to tollF and tollR respectively, which
depend on the scale of the parameters. The usage of the maximum number of itera-
tions it, it1 and itmax is merely to avoid an infinite loop and their values depend
on the complexity of the data and on the consequent convergence rate. The code
is implemented using the R software (R Core Team 2014) and it is available upon
request.

Appendix B

Further simulations: BSPEM algorithm convergence and robustness with respect
to group sizes

In this section, we repeat the first simulation study presented in Sect. 3, but considering
ni = 20 instead of ni = 100, for i = 1, . . . , 100. We add this simulation in order to
check whether the method converges and identifies the simulated parameters also with
a smaller number of observations within groups.14 Table 12 reports the parameters
estimated by the BSPEM algorithm, obtained as the average over the 100 runs. On
average, the algorithm converges in 7 iterations and it always identifies the correct
number of clusters for both the two response variables.

The estimated weights matrix and the variance/covariance matrix Σ with its Mean
Squared Error are the following:

Ŵ =
⎛
⎝0.33 0.00
0.33 0.00
0.00 0.34

⎞
⎠ Σ̂ =

(
0.9939 0.0049
0.0049 0.9919

)

MSEΣ =
(
0.0009 0.0005
0.0005 0.0007

)
.

Results are consistent with the ones obtained by considering ni = 100 observations
within each group, shown in Table 2. Table 12 shows that the estimated parameters
are very close to the real ones used to simulate the data and their MSE is also very low.

14 We choose ni = 20 to simulate the average group size in the case study.
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Table 12 Values of the parameters of Eq. (5) estimated by the BSPEM algorithm, obtained as the average
over the 100 runs (for each parameter we also report its Mean Square Error in brackets) and considering
ni = 20

First response parameters Second response parameters
ĉ1,11 = 4.99334 ĉ2,11 = 3.000301

(MSE1,11 = 0.00181) (MSE2,11 = 0.00103)
i = 1, . . . , 33 ĉ1,21 = 9.99898 ĉ2,21 = 0.99858

(MSE1,21 = 0.00171) (MSE2,21 = 0.00086)
β̂1 = 3.00171 β̂2 = 1.99854

(MSEβ1 = 0.00073) (MSEβ2 = 0.00065)
ĉ1,12 = 1.99934 ĉ2,11 = 3.00030

(MSE1,12 = 0.00167) (MSE2,11 = 0.00103)
i = 34, . . . , 66 ĉ1,22 = 4.99161 ĉ2,21 = 0.99858

(MSE1,22 = 0.00229) (MSE2,21 = 0.00086)
β̂1 = 3.00171 β̂2 = 1.99854

(MSEβ1 = 0.00073) (MSEβ2 = 0.00065)
ĉ1,13 = −0.00168 ĉ2,12 = −0.00470

(MSE1,13 = 0.00147) (MSE2,12 = 0.00171)
i = 67, . . . , 100 ĉ1,23 = −1.99569 ĉ2,22 = −3.00502

(MSE1,23 = 0.00246) (MSE2,22 = 0.00137)
β̂1 = 3.00171 β̂2 = 1.99854

(MSEβ1 = 0.00073) (MSEβ2 = 0.00065)

Colors represent the different subpopulations identified by the algorithm. The algorithm identifies three
subpopulations (M=3) for the first response and two subpopulations for the second one (K=2)

Comparing the MSEs of Tables 2 and 12, emerges that the MSEs in Table 2 usually
differ from 0 at the fourth decimal digit while the MSEs in Table 12 usually differ
from 0 at the third one. The BSPEMmethod results to be robust with respect to group
sizes.
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