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A B S T R A C T

Recent studies demonstrate the possibility of navigating in proximity of uncooperative space resident objects
by using only monocular images. Despite the results achieved, the development and testing of new algorithms
are strongly constrained by the availability of spaceborne image datasets. To overcome this, a new algorithm
embedded in a tool to generate synthetic high-fidelity spaceborne image datasets is presented here. The
architecture developed can be tailored to a wide range of scenarios and it is based on an open-source
ray-tracing software. All assumptions and simplifications adopted are discussed in detail for the different
models considered, including a trade-off between accuracy and rendering time. The new method described
is subsequently adapted to a baseline scenario where the optical properties of a reference spacecraft model are
tuned. Both qualitative and quantitative validations are detailed and successfully carried out for the baseline
case, demonstrating the high photo-realism achievable with the proposed method. As a consequence of this
main outcome, the paper details the generation of labeled spaceborne image datasets publicly available and
reports the analyses that confirm the high level of representativeness, making them suitable for training and
testing image-based navigation algorithms. As another outcome, the most comprehensive multi-purpose labeled
dataset of validated spaceborne synthetic images currently publicly available is presented.
1. Introduction

New classes of missions that envision a prominent role for au-
tonomous close proximity operations, with a particular interest in
cooperative and non-cooperative artificial objects, like formation flying
missions (FF) with fractionated scientific payloads, on-orbit servicing
demonstrators (OOS), and active debris removal, gained increasing
attention in the last few years, aiming to perform regular in-orbit
services [1]. Significant technology development is still needed to make
these missions feasible. The proximity operations and maneuvering
impose a high level of reactivity of the chaser, leading to the need for
guidance, navigation, and control (GNC) chains solved autonomously
onboard to ensure timeliness, reactivity, effectiveness, and robustness
in both nominal and off-nominal operations. The first ring of that
chain is the autonomous relative navigation, hence the estimation of
the relative pose (position and attitude) of the chaser with respect to
the target. Dealing with an uncooperative target represents the most
challenging scenario for the relative pose estimation task since no
information is shared between the two spacecraft (except for the a
priori knowledge of geometry in the case of a known target), reducing
the possibilities to only those that exploit only the capabilities of the
chaser. Among others, sensor suites that include monocular cameras
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are widely considered as one of the most attractive solutions to acquire
measurements for the onboard GNC chain [2,3]. In fact, solutions that
include cameras operating in the visible spectrum have been exten-
sively studied [4] and applied in the context of both cooperative [5]
and uncooperative [6] rendezvous.

‘‘Classical’’ solutions to deal with the pose estimation via monocular
images of known uncooperative targets include the extraction of hand-
crafted features of the target (corner [7], edges [8], etc.) via dedicated
image processing algorithms [9]. The relative pose of the chaser camera
with respect to the target is hence retrieved by solving the Perspective-
n-Points (PnP) problem between the 2D features extracted from the
image and the features of the 3D CAD model of the target available on-
board. Among the algorithms proposed, the Sharma–Ventura–D’Amico
(SVD) [10] achieved state-of-the-art (SOTA) performance by exploiting
the edges of the target extracted via Hough Transform [11]. More
recently, Artificial Neural Networks (ANNs) revealed to be a valuable
tool to process acquired images in many different contexts [12,13].
Hence, the wide range of ‘‘modern’’ approaches for relative pose esti-
mation involving the usage of ANNs, mostly Deep Convolutional Neural
Networks (CNNs), can be classified into two branches: direct CNN
regression [14,15], and PnP solvers aided by CNN [16,17]. The former
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approach aims to recover the relative pose via directly convolving the
input image with a CNN (usually split into two branches) that outputs
the relative position and the relative quaternion. The latter approach
includes a first step in which the CNN takes the image as an input and
outputs the 2D features that subsequently are fed to the PnP solver.

The results of the 2019 ESA’s Kelvins Pose Estimation Challenge
[18] demonstrate that the most effective approach to deal with relative
pose estimation via monocular images is to use CNNs-aided PnP solvers.
The robustness and effectiveness of this approach rely on the parame-
ters learned by the CNN during the training phase hence, labeled image
datasets are needed to correctly train CNNs. Despite that, currently,
there is a lack of publicly available spaceborne image datasets, strongly
limiting the applicability of CNNs-aided PnP solvers to a small range of
possible scenarios, acting also as a bottleneck for the development of
new algorithms. A spaceborne image dataset generation tool is here
proposed to overcome this limitation. The method adopted allows
the generation of synthetic noiseless images that have been validated
successfully by taking the Spacecraft Pose Estimation Dataset (SPEED)
Dataset [19] as reference. The tool developed has been used to generate
fully-synthetic spaceborne noiseless image datasets using a simplified
3D CAD model of Tango from PRISMA mission [20] reconstructed
from a previous work [10], since the official 3D CAD model is not
publicly available. The datasets generated are made publicly available
and comprise a Pose Estimation Dataset [21], a dataset tailored to
bounding box extraction and semantic segmentation [22], and a dataset
labeled with Tango edges in view at the current relative pose [23].

The main contributions of the proposed work are threefold. First, a
pipeline to generate spaceborne synthetic noiseless image datasets via
physically-based ray tracing is defined. It can be applied to a wide range
of scenarios including different spacecraft models, space resident ob-
jects as background (airless or with an atmosphere layer), and multiple
camera models. Then, a qualitative and quantitative validation scheme
is defined and applied successfully to the images generated by the
proposed tool using Tango as spacecraft and the SPEED dataset as refer-
ence. Lastly, spaceborne synthetic image datasets have been generated
and made publicly available. Note that the datasets generated can be
combined among them (through the different labels associated with the
same images common to all the datasets) to constitute a multi-purpose
dataset that can be applied to a wide range of tasks exploitable via
training of CNNs. Notice that the image noise level can be dependent
on the application scenario (e.g. for spacecraft orbiting airless bodies,
the electric field generated by the interaction between the plasma and
the body can be not negligible [24] and this can increase the electronic
noise in the images). Thus, to increase the flexibility of the tool, the
images generated by the tool are noiseless. Notice that the noises that
usually affect images can be easily added to the synthetic images in
post-processing.

The remainder of the paper is organized as follows: Section 2 reports
an overview of the available software solutions for image generation
via ray-tracing and the already publicly available datasets. The tool
proposed is then described in detail in Section 3, while the validation
of the images generated is discussed in Section 4. The analysis of the
datasets generated and an overview of their labels are provided in
Section 5. Conclusions resuming the main outcomes of this work and
hints for possible future developments are finally reported in Section 6.

2. Available rendering software and image datasets

Although of a strong interest in spaceborne images for training and
testing algorithms for relative GNC, the availability of real spacecraft
images captured during space missions and properly labeled is lim-
ited. Hence, the need to generate realistic images synthetically arises.
Generating realistic synthetic images is a well-studied task that usually
is achieved via ray-tracing. Ray-tracing is a rendering technique that
relies on the evaluation and simulation of the paths of view lines
that start from the observer camera and interact with generic virtual
359
objects in the scene. Coupling this with the simulated light rays from
the light sources to the virtual object enables the evaluation of the
shadows and the calculation of the color intensity of the associated
pixels. Physically based ray-tracers, which simulate the physics of the
light, allow the generation of synthetic images with a high degree
of accuracy [25], and also to fully control the scene to be rendered.
Currently, there are several tools, mostly based on OpenGL, ray-tracing,
or path-tracing, that offer the possibility to create 3D scenes to be
rendered with various degrees of photo-realism. Among them, the
available commercial solutions comprise PANGU (Planet and Asteroid
Natural Scene Generation Utility) [26], and Airbus SurRender [27].
The former was developed to create synthetic planetary surface images,
then the possibility of generating also images of artificial objects was
implemented in the software. The latter can handle various space
objects such as planets, asteroids, satellites, and spacecraft by providing
both a fast real-time and a more accurate but slower rendering scheme.
Some well-known simulators widely adopted for video games and ani-
mations, like Blender [28] and Unreal Engine [29], have been used to
render space-related scenes but, despite the visually impressive images
generated, these simulators lack the realism needed, being devoted to
cope with human vision [27]. Among the open-source software, POV-
Ray (Persistence of Vision Raytracer) [30] and PBRT (Physically Based
Ray-Tracing) [31] are the most promising, offering the possibility of
directly accessing the code and eventually patching it to tailor the
software to the user’s needs.

Concerning the spaceborne synthetic image datasets, the only ones
publicly available are URSO (Unreal Rendered Spacecraft On-Orbit)
[14], SPEED (Spacecraft Pose Estimation Dataset) [19], and SPEED+
[32] (improved version of SPEED). URSO is a synthetic dataset of
5000 RGB images of both Soyuz and Dragon spacecraft models with
Earth as background, rendered with a simulator based on Unreal En-
gine 4 with a resolution of 1080 × 960 pixels. Game engines have
been criticized for the lack of photometric accuracy of the camera
sensors [27], but the author of URSO claims that efforts have been
put to implement physically-based shading models and cameras in such
engines (e.g. by using path-tracing) and that the custom simulator
used to synthesize URSO obtains photorealistic images. Despite that, no
validation of the images in URSO is provided. The SPEED dataset and
its improved version, the SPEED+, are used for the ESA’s Kelvins Pose
Estimation Challenges, with SPEED being the first publicly available
dataset of spaceborne labeled images ever released. SPEED comprises
15,000 synthetic grayscale images of Tango obtained using the Optical
Simulator [33], based on an OpenGL rendering pipeline, and 300
grayscale images obtained using a mock-up. The SPEED+ contains
60,000 synthetic grayscale images of Tango generated like in SPEED,
6740 grayscale mock-up images obtained by introducing hardware-in-
the-loop to simulate the Earth albedo, and 2791 grayscale mock-up
images with sun-lamps used to simulate effects like flares and satura-
tion [34]. All the images have a resolution of 1920 × 1200 pixels and
are validated against real images of Tango from the PRISMA mission
by employing histogram comparison [18]. Further details regarding
SPEED and SPEED+ are available in the related articles [18,34] for the
interested reader.

3. Image dataset generation via ray-tracing

The possibility of using PBRT as a ray-tracer, the core of the im-
age generation algorithm implemented, has been evaluated. The main
advantage offered by PBRT is the possibility of directly simulating the
entire lens set of real cameras [31] in a physically-based way, making
it possible to model more realistically the image acquisition device and
the sensor characteristics. Despite that, the main issue identified in
PBRT is the simulation of the Earth’s atmosphere and the scattering
properties. The density of the atmosphere layer can be defined in
PBRT only on a regular grid that is then interpolated to retrieve the
scattering effects on the light rays. This leads to artifacts in the image,
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Fig. 1. Example of artifacts in atmosphere layer rendered with PBRT.

as shown in Fig. 1 (notice the brighter regular dots, more evident
over the seas), also for a highly refined mesh with a grid resolution of
1 km. It is acknowledged that this issue could be overcome by patching
the source code, but here it has been preferred to use a ray-tracing
software that more easily handles the atmosphere scattering evaluation,
due to its crucial role in achieving realistic and representative images.
Due to this issue, and although PBRT offers in its latest release the
possibility of performing ray-tracing via GPU acceleration, here it has
been decided to adopt POV-Ray as ray-tracer, despite a few well-known
limitations [35] (no GPU acceleration, long parsing time, etc.). POV-
Ray has been already successfully employed to render via ray-tracing
both spaceborne natural landscapes, like the Moon’s craters [35,36],
and spacecraft [37,38]. The POV-Ray release used for this tool is a
patched version of POV-Ray 3.7 made available in [38] that restores
the possibility to exclude the computation of the bounding box around
each object, avoiding errors in the rendering of scenes with space-scale
distances (notice that the unit of measure used here is the km).

The remainder of this section is devoted to the modeling assump-
tions used to render spaceborne synthetic images, with a particular
focus on Earth modeling, including the atmosphere simulation, in
Section 3.1, and on the spacecraft model adopted and the pipeline
to feed the mesh to POV-Ray in Section 3.2. It is worth pointing
out that the assumptions introduced in the following sections can be
easily generalized to several celestial bodies and target spacecraft by
simply changing a few hyperparameters or the ‘‘include file’’ for the
3D model of the target spacecraft but keeping the core of the tool
unchanged. Hence, the image generation pipeline is well suited to
simulate several scenarios of interest as Mars and its atmosphere as
background, airless celestial bodies, and multiple target spacecraft with
different geometries.

3.1. Earth and atmosphere modeling

The first step in modeling a celestial body is to retrieve its shape.
Concerning objects like the planets of the Solar System and most
of their moons, they could be represented in first approximation as
spheres. It is possible to recover the correct ellipsoidal shape of a planet
360
by modeling it as a sphere and then applying a scale factor, to improve
the realism of the images. The scale factor used to simulate the Earth’s
oblateness is equal to 0.9967 applied along the 𝑧-axis of the Earth-
centered inertial (ECI) reference frame. For more complex bodies such
as asteroids, the ellipsoidal approximations could be excessively rough
hence, to properly handle the complex geometries, it is here preferred
to import into the scene a dedicated external file, named ‘‘include file’’,
that contains the refined mesh of the object. Please refer to Section 3.2
for a step-by-step discussion on the generation of mesh files compatible
with POV-Ray. The next step toward photo-realistic synthetic images is
the definition of textures. For airless bodies with regular shape, like
the Moon, the only step needed is to apply a realistic surface texture
by using in POV-Ray the option ‘‘map_type 1’’ that directly attaches
the 2D texture over a 3D sphere, with the relative latitude-dependent
shrinking. This process could apply even to the more complex case of
celestial bodies with atmosphere and clouds since texture maps that
include both the surface and the clouds map in a single image are
available such as for the Earth case. This approach leads to good-
quality images, but this approach is still not well suited to build datasets
for CNN training. The following main issues have been observed: the
clouds are stuck over the same regions of the Earth for all images, the
optical properties of clouds, seas, and terrains are all the same, and the
diffusion of sunlight through the atmosphere is not considered.

In the image generation pipeline adopted here, a clouds-only texture
is used here and applied over a shell defined to have a random thickness
between 625 m and 1250 m and an altitude from 650 m to 3150 m at
most. Since the cloud map is a grayscale image, with black associated
with regions where there are no clouds and white where there are
thick and dense clouds, it is possible to tune the channel related to
the transparency of the texture in POV-Ray such that it is mapped
following the density of the cloud layer. This makes it possible to have
the Earth’s surface still visible under low-density clouds (see Fig. 2
where the semi-transparent clouds are evident). Notice that the cloud
texture is detached and independent from the Earth, allowing the user
to independently tune their optical properties and orientation in the
scene, overcoming the issue related to the fixed clouds and common
optical properties. A random rotation angle with respect to the 𝑧-axis
of the ECI frame is defined at each image generation step and applied
to the cloud texture to make the clouds rotate with respect to the
ground. Concerning the Earth’s surface, a differentiation of the optical
parameters of the lands with respect to the seas has been included in
the Earth’s model, similarly to [35,38]. A binary map of the Earth is
adopted to split the waters from the lands. The splitting allows the
definition of different optical properties (especially for the reflection
of light over the seas) making the images more photorealistic.

The possibility of including the simulation of the topography of
the terrain has been evaluated to further improve the accuracy of the
images. There are two options available to deal with topography in
POV-Ray:

• Bump-map approximation: the irregularities of the surface are
emulated by modifying the normal vector of each surface, hence
by altering the light reflection. Notice that this approach gener-
ates irregularities (i.e. bumps) by modifying only the reflection of
the light, while the geometry is not affected. Hence, the original
shape is preserved.

• Isosurface function: the isosurface object mathematically
describes the topography of the terrain in POV-Ray. In this case,
the geometry of the object is modified according to a model
defined by the user. Hence, the accuracy is high also in terms
of shadows in the image.

Both the bump-map approximation and the isosurface can be defined
starting from a grayscale texture. The texture has the altitude mapped
into the intensity of each pixel. The output map is here scaled to have
a maximum altitude of about 9 km over the sea level, corresponding to
the altitude of Mount Everest. A comparison between the same scene
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Fig. 2. Comparison of images rendered with and without topography information.
rendered without topography (Fig. 2(a)), with bumpmap approxima-
tion (Fig. 2(b)), and with isosurface function (Fig. 2(c)) is reported
in Fig. 2. All images in Fig. 2 are overexposed and rendered without
considering the atmosphere to make more evident the differences in the
topography. The reported images show that excluding the topography
leads to unrealistic images and poor quality. The image obtained using
the bumpmap approximation has a higher quality than the ‘‘flat’’ image,
with mountains visible (due to the correct shadowing). The image
achieved using the isosurface is almost identical to the one rendered
by including the bumpmap approximation. The only exception is the
region close to the terminator, where the shadows are better evaluated
and defined in the case of the isosurface option.

From this, it is clear that it is mandatory to include topography
information in the image generation pipeline to achieve highly pho-
torealistic images. This result holds for any celestial body used as
background for spaceborne images. Moreover, the improvement in
photorealism is as high as the relative distance between the camera and
the celestial body is reduced (e.g. for Low Earth Orbit missions). Despite
the comparable results in terms of quality of the images rendered with
topography taken into account during the rendering process, it should
be noticed that using the bumpmap approximation gives a computa-
tional burden almost null compared to the case without topography.
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Instead, by using the isosurface, the rendering time is highly increased.
Hence, due to the reduced computational time and the high quality of
the output images, the bumpmap approximation is clearly selected as
the default method in the image generation pipeline.

The last part considered in the background modeling is the at-
mosphere. The colors assumed by the atmosphere (from dark blue to
red close to the terminator) are due to light scattering. The scattering
depends on the spectrum of the light emitted by the Sun (here modeled
as a white light), the density of the particles in the atmosphere, their
kind, and on the length of the light path through the atmosphere.
Concerning the interaction between the particles and the light, it is well
known that the incident light over particles scatters in all directions
by following given laws. The Rayleigh scattering well approximates
the interaction between the sunlight and the atmospheric particles.
Following this model, the quantity of scattered light depends on the
angle of the incident light. The scattering is higher when the incident
light is parallel or antiparallel to the direction of observation and
smaller when the incident light is perpendicular to the direction of
observation. To implement a high-fidelity model, it must be included
that the Rayleigh scattering in the atmosphere is also proportional to
1∕𝜆4, where 𝜆 is the light wavelength. Hence, the scattering is higher for
short wavelengths (blue color) than for long wavelengths (red color).
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Fig. 3. Comparison of images rendered with different atmospheric models against a true Earth picture.
The Rayleigh scattering model already available in POV-Ray includes
the dependency from the direction of the incoming light, while it does
not consider the wavelengths. As a consequence, two different models
are considered here: the first is a simple but computationally efficient
model based on the simplified Rayleigh scattering available in POV-
Ray with scattering color hand-tuned to achieve photorealistic results,
while the second is a high-fidelity model that uses a custom function
to restore the dependency also from the wavelength. The high-fidelity
model uses the exponential law for the variation of the atmospheric
density of the atmosphere with the height: 𝜌 = 𝜌0 exp (−ℎ∕𝐻), where
𝜌0 = 1.225 kg/m3 is the density at sea level for the International
Standard Atmosphere (ISA) [39], ℎ is the altitude above sea level of
the point considered, and 𝐻 is the scale height. The scale height is
the height at which the density falls to a value of 1/e of the surface
density [40]. The scale height can be defined as 𝐻 = 𝑘𝑇 ∕𝑚𝑔, where 𝑘
is the Boltzmann’s constant, 𝑇 is the atmospheric temperature, 𝑚 is the
mean molecular mass, and 𝑔 is the gravitational acceleration [40,41].
The average composition of the atmosphere can be assumed to be
almost constant up to about 90 km [39]. Thus, the scale height is
affected only by the temperature as a function of the altitude above sea
level. Therefore, by using the given equation for the computation of the
scale height, it is possible to compute 𝐻 at sea level for ISA (𝑇 = 288K),
resulting in 𝐻 = 8.4 km. In the same way, the temperature at h = 90 km
above sea level is about 190 K [40,41] hence, it is possible to get 𝐻 =
5.5 km at h = 90 km. The scale height value adopted in the high-fidelity
model is the mean value between 5.5 km and 8.4 km. We acknowledge
that more complex models for the variations of the scale height and
the atmospheric density as a function of the altitude above sea level
could be adopted, but the improvements in the quality of the rendered
images will be small despite the computational overhead introduced.
A comparison of images rendered with the Earth fully in view, with a
simplified and accurate atmosphere model respectively against a true
picture of the Earth from the Apollo 17 mission [42], is provided in
Fig. 3. Notice that, although both the synthetic images in Figs 3(b)–
3(c) cannot perfectly replicate the ground truth image in Fig. 3(a) due
to a difference in image resolution, optical parameters of the actual
camera not modeled, and different exposure or light conditions, the
synthetic images have both a high degree of similarity with the real
one. It should be also taken into account that the iconic real image
used in Fig. 3 just for comparison was extensively post-processed on
ground to optimize the color and contrast. As for the case of topography
mapping, also for the atmosphere, the high-fidelity method has an
extremely high computational burden compared to the simpler model.
Despite that, the results are comparable, as it can be noticed from
Fig. 3, for altitudes above 1000 km. This outcome also confirms that
the simple exponential model adopted here for the atmosphere density
is well suited, confirming that more complex atmospheric models are
not needed for the range of scenarios considered. For lower altitudes,
the results achieved by the low-fidelity model are poor, mainly in the
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transition region between the atmosphere and deep space. As a conse-
quence, here it is applied the accurate model only for camera altitudes
below 1000 km, while the simplified model is the default choice. It is
worth remarking that the models discussed above are all included in
the image generation algorithm, and they can be selected and combined
by the user. By changing a few parameters in the atmospheric model
(i.e. the density model and the wavelength dependency), it is possible
to simulate different atmospheres from different celestial bodies. The
same holds for the texture and the topography map applied to more
complex bodies such as asteroids. Therefore, the tool can generate
images for a wide range of natural space resident objects ranging from
regularly shaped objects with an atmosphere layer (e.g. the Earth) to
highly irregularly shaped airless bodies, such as asteroids. Fig. 4 reports
an example of 162173 Ryugu rendered in POV-Ray with the proposed
pipeline. Notice that, in contrast to the SPEED and SPEED+ datasets,
where the background is not rendered with the spacecraft in the same
scene but is added in post-processing, here the background is included
in the scene and rendered together with the spacecraft, making it
possible to directly evaluate in the images the effect of the albedo on
the spacecraft itself, without using other light sources to simulate it.

Fig. 4. 162173 Ryugu rendered in POV-Ray.

3.2. Spacecraft modeling

The spacecraft (or any other object) can be included in the ren-
dered scene by modeling it directly in POV-Ray with primitive shapes.
This method is simple but not efficient, especially for spacecraft with
complex geometries. The pipeline adopted here uses input files named
‘‘include files’’ compatible with POV-Ray that already contain all the in-
formation about the target, from its geometry to all the needed textures.
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The input files can be exported in a POV-Ray compatible format directly
from Blender, as already used in [38]. The input to the entire pipeline
is a 3D CAD model representative of the target spacecraft. The 3D CAD
model is exported in Standard Triangle Language (STL) and directly
imported into Blender, where the optical properties and the textures
can be easily defined and applied. Notice that, to assign to each surface
different optical properties or textures, it is needed to import the STL
generated by a 3D CAD assembly, hence composed of parts bonded in
a final assembly, that are interpreted in Blender as children objects. An
equivalent but more time-consuming process consists in splitting the
parent object into children objects in Blender (by selecting the faces of
the mesh belonging to each child) and then defining for each child the
optical properties. After that, by using the POV-Ray add-on available
for Blender, it is possible to both add custom code to assign textures and
optical properties to the objects and to render the scene in Blender with
POV-Ray as the rendering engine. Optionally, it is possible to export
also the file used to render the scene in Scene Descriptor Language
(SDL). The SDL exported contains indeed all the information about the
textures and the custom code previously added, together with all the
children objects, but treated as split entities. To ease working with the
exported spacecraft model, the SDL file is hand-modified by merging
all children objects in a single general parent object representative of
the entire spacecraft, which is then converted into a POV-Ray include
file. Note that all children’s optical properties are preserved also once
they are merged into a single parent object. The ‘‘include file’’ is then
used as an external object to be added to the scene description file when
needed at the desired location and attitude with respect to the POV-Ray
reference frame. It is important to point out that the process previously
detailed must be accomplished only once per spacecraft model when
the target object is modeled for the first time. Once the ‘‘include file’’ is
defined, it can be called and added to each scene in POV-Ray without
any modification needed, for all positions and attitudes wanted. This
procedure will be tailored to a simplified model of the Tango spacecraft
from the PRISMA mission in Section 4, to validate the tool, but it can
be generalized to all spacecraft models available, as it can be noticed
from Fig. 5 where the tool has been successfully adopted to render an
artificial space resident object. The optical properties of the surfaces of
the simplified Tango model are tuned during the validation phase.

Fig. 5. Vega Secondary Payload Adapter rendered in POV-Ray.

4. Synthetic images validation

The SPEED dataset has been used as a reference to validate the
images generated with the method previously described. The optical
properties of the spacecraft surfaces have been tuned during the vali-
dation phase. The validation of the SPEED dataset with respect to actual
images from the PRISMA mission has been achieved by comparing the
363
Table 1
Parameters of the camera used for the SPEED dataset.
Parameter Value

Number of horizontal pixels 1920 px
Number of vertical pixels 1200 px
Focal length 17.6 mm
Pixel length 5.86 × 10−3 mm

pixel intensity histograms of synthetic images with respect to the real
ones [18]. The validation of the synthetic rendered scenes is carried out
here by considering only the case without background. This constraint
for the validation is set because the information about the rotation of
the Earth with respect to the 𝑧-axis of the ECI frame and the position of
the light source is missing for the SPEED images annotations. Moreover,
the clouds in the SPEED images are not reproduced by textures since
they are taken from actual pictures of the Earth [18], making the exact
reproduction of the SPEED images with background not possible, jeop-
ardizing the validation procedure. Concerning the spacecraft model,
the official CAD used for the SPEED dataset is not publicly available,
hence a simplified 3D CAD model has been reconstructed from the
dimensions of the main components available in [10]: the single body-
mounted solar panel is a polygon of 560 × 750 mm, the main body
is a polyhedron of 560 × 550 × 300 mm, and all appendages have
a length of 204 mm. Concerning the camera parameters used for the
SPEED dataset [18], they are reported in Table 1. These parameters are
defined to tailor the perspective pinhole camera model used in POV-Ray
to generate the images for validation. Notice that in POV-Ray, it is also
needed to specify the aspect ratio, equal to 𝐴𝑅 = 1920∕1200 = 1.6 for
the SPEED images, and the angular field of view of the camera that is
computed for a pinhole camera with squared pixels as:

𝛼 = 2 arctan
(

𝐶𝐶𝐷𝑠𝑖𝑧𝑒
2𝑓

)

(1)

where 𝐶𝐶𝐷𝑠𝑖𝑧𝑒 is the size of the sensor and 𝑓 is the focal length.
For the SPEED camera 𝛼 ≈ 35.45◦. To properly recover the relative
pose associated with each image of the SPEED dataset, the left-handed
reference frame in POV-Ray is shifted to a right-handed reference frame
by defining in the camera specifications a right vector (the vector
used in POV-Ray to describe the direction to the right of the camera)
equal to [−𝐴𝑅, 0, 0]𝑇 and the sky vector to [0, 0, 1]𝑇 . In doing so, the
POV-Ray global reference frame coincides with the ECI frame [38].
The last parameters to be specified to reproduce the images in the
SPEED dataset are the location and pointing direction (boresight axis)
for the camera, the position of the arealight used to approximate the
Sun, and the location and attitude of the spacecraft. Having available
only the relative position between the spacecraft and the camera per
each SPEED image, the camera has been placed in the origin of the
POV-Ray global reference frame, with pointing direction coincident
with the 𝑧-axis in the ECI frame, the relative pose annotated has been
then used to locate and rotate the Tango model properly in the scene.
The position of the Sun has been hand-tuned to have shadows in the
rendered image as close as possible to the SPEED image considered.
Notice that to compare the SPEED images with those generated by
the proposed tool, the noiseless images are processed to add the same
noise level as the SPEED images before performing the validation. In
agreement with [18], the images are blurred by applying a Gaussian
blurring with 𝜎 = 1 and then an additive white Gaussian noise with
variance 𝜎2 = 0.0022 is added to the blurred grayscale image.

Since the size of the spacecraft reported in [10] and used here for
the simplified model is not perfectly the one of the Tango spacecraft
(whose size is not publicly available, up to our knowledge) and since
the 3D model is a simplified version that lacks the details of the official
mock-up used for the SPEED dataset, the images are firstly preliminarily
validated by performing the histogram comparison as in [18] by using
the SPEED images as ground truth. Then, to have quantitative indexes,
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the validation is carried out also by considering the shadow index and
the feature quality index [43]. The shadow index 𝐽𝑠 is computed as:

𝐽𝑠 = 1 −
𝐷𝑠
𝑆𝑟𝑒𝑎𝑙

(2)

where 𝐷𝑠 is the sum of non-zero pixels in the disparity map and 𝑆𝑟𝑒𝑎𝑙 is
the number of pixels classified as ‘‘in shadow’’ in the reference SPEED
image. The disparity map is defined by subtracting the binary images
obtained by applying the Otsu thresholding [44] to both the tested and
the reference image in all validation pairs. The threshold level auto-
matically identified to discriminate between shadowed and illuminated
pixels in the SPEED image is used to define 𝑆𝑟𝑒𝑎𝑙. Therefore, the index
𝐽𝑠 represents the number of pixels in shadow correctly reproduced in
the rendered image. The feature quality index 𝐹𝑄𝐼 is computed as:

𝐹𝑄𝐼 = 1 −
𝜇(𝐻𝑑 )
𝐻𝑑,𝑚𝑎𝑥

(3)

where 𝐻𝑑 is the Hamming distance between two corresponding feature
descriptors extracted and matched in both images and 𝐻𝑑,𝑚𝑎𝑥 is the
maximum possible Hamming distance. The mean value 𝜇(𝐻𝑑 ) is com-
puted from 10 matched features extracted using ORB [7]. This index
is adopted since several algorithms rely on feature extraction. Thus,
comparing the features extracted in the reference image with those
coming from the synthetic rendered image offers an evaluation of the
similarity of the images at the features level. Both 𝐽𝑠 and 𝐹𝑄𝐼 are
such that the closer to 1, the higher the similarities between images.
In agreement with [43], the validation is successful if 𝐽𝑠 > 0.90 and
𝑄𝐼 > 0.80.

The validation is performed by replicating 20 random images from
he SPEED dataset with the proposed method. Table 2 reports the
oefficients of the optical parameters used for the spacecraft model
nd tuned during the validation steps. Fig. 6 gives an example of
he comparison of the histograms computed for a couple of images
uring the validation phase, where Fig. 6(a) shows the reference SPEED
mage, Fig. 6(b) shows the noised image reproduced with the presented
ool, and Fig. 6(c) shows the two histograms compared. By comparing
ig. 6(a) and Fig. 6(b), it can be noticed that, visually, the two images
re close, even if the dimensions given in [18] and used here only
pproximate the actual shape of the Tango spacecraft, and despite that
he simplified CAD model used in Fig. 6(b) does not include all the
etails included in the official CAD, like the support structures for the
ntennas.
Table 2
Optical parameters scaling coefficients of the spacecraft main components.

Parameter Solar panel Antennas Main body

Ambient 0.0001 0.2 0.2
Roughness 0.15 0.0005 0.0005
Brillance 0 3.15 3.15
Diffuse 0.3 0.95 0.99
Reflection 0.25 – 0.5 0.65 – 1.0 0.65 – 1.0
Specular 0.005 0.95 0.95
Phong 0 0.43 0.43
Phong size 0 0.25 0.25

The histograms in Fig. 6(c) show that, even if they are not perfectly
atching, the trends are close. The differences between the two his-

ograms are given mainly by a bias in the black region that is due
o a slightly different illumination condition between the two images
nd a lack of details that are darker in the original SPEED image,
xplaining why this bias has been obtained in all the images. Notice
hat the light-source position has been hand-tuned by taking the SPEED
mages as references. Table 3 contains the 𝐽𝑠 and 𝐹𝑄𝐼 indexes for
he 20 random images compared during the validation process. The
esults show that with an average value of 𝐽𝑠 = 0.98, the rendered
mages have a shadow distribution extremely close to the reference
PEED images. The same holds for the quality of the features extracted,
ith an average score of 𝐹𝑄𝐼 = 0.83. Notice that scoring a high 𝐹𝑄𝐼

means that the ORB descriptors extracted in the two images are similar
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Table 3
𝐽𝑠 and 𝐹𝑄𝐼 indexes evaluated for the tested images.
SPEED image number 𝐽𝑠 > 0.90 𝐹𝑄𝐼 > 0.80

img000012 0.93 0.83
img000043 0.99 0.83
img000059 0.99 0.85
img000114 0.99 0.81
img000138 0.99 0.84
img000324 0.97 0.86
img000388 0.99 0.84
img000468 0.96 0.81
img000486 0.97 0.81
img002122 0.99 0.81
img002156 0.99 0.87
img002350 0.99 0.85
img003271 0.99 0.82
img003849 0.99 0.83
img004386 0.99 0.86
img005964 0.98 0.81
img006967 0.99 0.82
img007408 0.99 0.83
img007461 0.99 0.83
img007485 0.92 0.84

Average value 0.98 0.83

hence, both the illumination and the material of the original image are
reproduced correctly in the rendered image. From the results obtained,
since both indexes satisfy the requirements 𝐽𝑠 > 0.90 and 𝐹𝑄𝐼 > 0.80
for all random images taken into account, the validation campaign is
considered concluded and performed successfully. The successful vali-
dation demonstrates that with the proposed image generation pipeline,
it is possible to generate photo-realistic images, paving the way to the
generation of validated synthetic image datasets with the simplified
Tango model as the target.

5. Multi-purpose labeled spacecraft dataset

The image generation pipeline described and validated above has
been used as the main core in an algorithm to produce sets of images
of the simplified and validated Tango model with the Earth in the
background. The parameters of the camera model adopted for the
dataset generation are reported in Table 4. The camera is modeled from
the parameters of the Chameleon 3 by FLIR, with a reduced array size.
The aspect ratio is equal to 1 and, from Eq. (1), the angular field of view
results to be 𝛼 ≈ 45.55◦. The dataset produced contains about 30,000
synthetic noiseless images for training and 3000 for testing, partitioned
with a 10:1 ratio between the train and test set. About 1/6 of the images
for each split show the Earth in the background, while the others have
the background perfectly black, representing deep space. All images are
16-bit grayscale in PNG format with 1024 × 1024 pixels resolution. The
scenes are such that the target spacecraft altitude ranges from 1500 km
to 6500 km with respect to the Earth’s surface. The relative distance
between the target and the camera is uniformly distributed in the range
from 5 m to 30 m. Fig. 7 reports examples of random images with Earth
in the background extracted from the dataset.

Table 4
Parameters of the camera used for datasets generation.
Parameter Value

Number of horizontal pixels 1024 px
Number of vertical pixels 1024 px
Focal length 6 mm
Pixel length 4.8×10−3 mm

The main algorithm places the Earth in the scene at the origin of
the ECI frame. After that, the position of the target around the Earth is
prescribed by randomly picking the altitude in the previously defined
range. Then the 3D coordinates in ECI of the target are selected by
following a uniform distribution over a shell around the Earth of thick-
ness equal to the altitude randomly picked in the previously defined
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Fig. 6. Histogram comparison between SPEED image ‘‘img002350.jpg ’’ and the reproduced noised image.
𝑧

𝑥

range (see Fig. 8(a)). The attitude of the target, i.e. the orientation
of the target reference frame (TRG), with respect to the ECI frame,
named 𝑅𝐸𝐶𝐼→𝑇𝑅𝐺, is randomly defined and used to correctly place the
Tango model in the POV-Ray scene. As it can be noticed from Fig. 8(b),
the attitude of the target, with respect to the ECI frame, is uniformly
distributed in roll, pitch, and yaw angles.

The camera is located in the scene by randomly selecting a position
in a sphere centered at the target position with a radius ranging from
5 m to 30 m. The pointing direction (i.e. the ‘‘look_at ’’ parameter in
POV-Ray) is needed to fully define the attitude of the camera with
respect to the ECI frame. The pointing vector has been computed by
adding a random displacement vector to the target position vector in
the ECI frame to avoid having the target always located at the center of
the image. The displacement vector magnitude is constrained to keep
365
the target in the scene inside the field of view of the selected camera.
The components of the attitude of the camera, i.e. the orientation of the
camera reference frame (CAM), with respect to the ECI frame, named
𝑅𝐸𝐶𝐼→𝐶𝐴𝑀 , can be defined as:

̂𝐸𝐶𝐼→𝐶𝐴𝑀 =
𝑝𝑐𝑎𝑚 − 𝑙𝑐𝑎𝑚

‖𝑝𝑐𝑎𝑚 − 𝑙𝑐𝑎𝑚‖
(4)

̂𝐸𝐶𝐼→𝐶𝐴𝑀 =
�̂�𝐸𝐶𝐼→𝐶𝐴𝑀 × 𝑠𝑐𝑎𝑚

‖�̂�𝐸𝐶𝐼→𝐶𝐴𝑀 × 𝑠𝑐𝑎𝑚‖
(5)

�̂�𝐸𝐶𝐼→𝐶𝐴𝑀 =
�̂�𝐸𝐶𝐼→𝐶𝐴𝑀 × �̂�𝐸𝐶𝐼→𝐶𝐴𝑀

‖�̂�𝐸𝐶𝐼→𝐶𝐴𝑀 × �̂�𝐸𝐶𝐼→𝐶𝐴𝑀‖

(6)

where 𝑝𝑐𝑎𝑚 is the camera pointing vector in the ECI frame, 𝑙𝑐𝑎𝑚 is the
camera location vector in the ECI frame, and 𝑠𝑐𝑎𝑚 = [0, 0, 1]𝑇 is the
‘‘sky ’’ vector in POV-Ray. Note that now it is possible to define the
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Fig. 7. Random images with background from the generated dataset.
Fig. 8. Target position and attitude distribution with respect to ECI reference frame in test set.
Fig. 9. Target relative position and attitude distribution with respect to camera reference frame in test set.
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ground truth relative pose, i.e. the attitude of the target with respect
to the camera in camera reference frame 𝑅𝑇𝑅𝐺→𝐶𝐴𝑀 and the relative
position of the target with respect to the camera in camera reference
frame 𝑡𝐶𝐴𝑀→𝑇𝑅𝐺 as:

𝑅𝑇𝑅𝐺→𝐶𝐴𝑀 = 𝑅𝐸𝐶𝐼→𝐶𝐴𝑀
(

𝑅𝐸𝐶𝐼→𝑇𝑅𝐺
)𝑇 (7)

𝑡𝐶𝐴𝑀→𝑇𝑅𝐺 = 𝑅𝐸𝐶𝐼→𝐶𝐴𝑀
(

𝑙𝑡𝑟𝑔 − 𝑙𝑐𝑎𝑚
)

(8)

where 𝑙𝑡𝑟𝑔 is the location vector of the target in the ECI frame. By
following the steps formulated above, it is possible to obtain a uni-
form random distribution of the relative attitude and position of the
target with respect to the camera. Fig. 9 shows the relative position
distribution (Fig. 9(a)) and the relative attitude distribution (Fig. 9(b))
in the test set. Notice that the distribution in Fig. 9(a) has a conical
shape because the target is constrained to be inside the field of view
of the selected camera. Finally, to correctly render the image, the light
source (i.e. the Sun model) is placed in the scene on the ecliptic plane
by following a random uniform distribution to ensure a complete range
of illumination conditions inside the dataset. Notice that the position
of the Sun is constrained to be out of the field of view of the camera.
Moreover, imposing that neither the camera nor the target can be in
eclipse avoids having black images in the dataset. From all previous
information, by exploiting simple geometric relations, it is possible to
define before the rendering if the Earth is in the scene and if it is
in light or shadow. To speed up the image generation, the Earth is
modeled as in Section 3.1 only if it is visible and in light. Otherwise,
it is substituted by an equivalent sphere with equivalent reflection
properties to take always into account the albedo. Note that this step
is highly advantageous in terms of computational time because both
the parsing time and the rendering time strongly increase if the full
Earth model has to be rendered. With the current implementation, the
parsing time and rendering time for an image without background are
in the order of 0.5 s and 0.4 s, respectively, while in the case the Earth is
visible the parsing time is about 5 s per image, while the rendering time
has a high variance, but on average it takes about 2 min per image. The
parsing time is evaluated on a single-thread single-CPU process, while
the rendering time is on a 16-threads 8-CPUs process. The CPUs used
are Intel® Core™ i7-9700 CPU, clocked at 3.00 GHz.

The plots shown in Figs. 8 and 9, together with the normalized Sun
position distribution with respect to the target reference frame shown in
Fig. 10, confirm the uniform distribution of all main parameters of the
image dataset generated and confirm the representativeness of a wide
range of orbital scenarios and illumination conditions for the given
target, making the dataset itself well suited for GNC algorithms testing
and development. Notice that the images in Figs. 8–10 are reported
only for the test set but also hold for the training set since it has

Fig. 10. Normalized Sun position distribution in the test set in Target reference frame.
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been obtained with the same tool just by increasing the number of the
desired output images. The output pose labels coupled with the images
have been collected in a dataset named Tango Spacecraft Dataset for
Monocular Pose Estimation that has been made publicly available [21].

The same pipeline discussed above has also been exploited to create
RGB masks for each scene. The RGB images are such that the R-
channel (red) corresponds to the spacecraft, the G-channel (green) to
the Earth (if present), and the B-channel (blue) to the background
(deep space). Per each channel, the pixels have non-zero values only
in correspondence with the object they represent (Tango, Earth, Deep
Space). The scene is rendered by adopting a properly tuned single-color
texture for both the spacecraft and the total volume occupied by the
Earth and the atmosphere. Fig. 11(a) shows an example of a RGB mask.
Notice that the RGB masks can be exploited for semantic segmentation
tasks. In addition, by using the spacecraft-related channel, it is possible
to extract the associated bounding box for each image. This task has
been accomplished, and both the RGB masks and the bounding box
annotations have been collected together with the related grayscale
images (shared with the dataset in [21]) in a dataset that has been made
publicly available [22], named Tango Spacecraft Dataset for Region of
Interest Estimation and Semantic Segmentation. Concerning the bounding
box annotations, they are taken in the image reference frame, with the
origin located in the top-left corner of the image. The bounding box
is labeled through the top-left corner, the bottom-right corner, and the
center coordinates in pixels . To prove the correctness of the relative
pose annotations, they have been exploited to project a simplified
wireframe model of the Tango spacecraft in the image space, by using
the following transformation:

𝑥𝑝𝑥 = 𝐾 [𝑅𝑇𝑅𝐺→𝐶𝐴𝑀 | 𝑡𝐶𝐴𝑀→𝑇𝑅𝐺 ] 𝑥𝐻𝑇𝑅𝐺 (9)

where 𝑥𝑝𝑥 = [𝑥𝑝𝑥∕𝑧𝑝𝑥, 𝑦𝑝𝑥∕𝑧𝑝𝑥, 1]𝑇 is the position vector in the image
frame in pixels of the projected point, 𝐾 ∈ R3×3 is the camera
intrinsic matrix, and 𝑥𝐻𝑇𝑅𝐺 = [𝑥𝑇𝑅𝐺 , 𝑦𝑇𝑅𝐺 , 𝑧𝑇𝑅𝐺 , 1]𝑇 is the position
homogeneous vector in the target reference frame of a specific point. By
using a properly defined simplified mesh of the target spacecraft and ex-
ploiting the Möller–Trumbore ray-triangle intersection algorithm [45],
it is possible to extract the line-segment portions that are in view
per each image (see Fig. 11(b) for an example). Another dataset has
been created to include this additional information. Hence, the same
images of the two datasets previously discussed (both in full-scale and
in a bounding-box cropped version) have been labeled with the line
segments in view per each image. This dataset, named Tango Spacecraft
Wireframe Dataset Model for Line Segments Detection, has been made
publicly available [23].

It is here remarked that these datasets [21–23] contain the same
fullscale images, hence they can be used together by combining the
annotations of the relative pose, the reprojected wireframe model of
Tango, and also the region of interest. These three datasets constitute
together the most comprehensive multi-purpose labeled dataset of vali-
dated spaceborne synthetic images publicly available, at least up to our
knowledge.

6. Conclusions and future works

The paper presented here highlighted the necessity of a viable
method to generate high-quality spaceborne synthetic images to sup-
port the development of new algorithms for relative navigation and to
serve as a starting point through new missions with a high level of au-
tonomy required. This need is addressed with a new image generation
tool based on POV-Ray, an open-source ray-tracing software, exploited
here as the core of the dataset rendering chain developed. The main
assumptions and simplifications adopted for creating representative
space-related images in POV-Ray are discussed in detail, leading to
models for both the target spacecraft and the celestial body (used here
as background) with a high degree of photo-realism. The simplifications
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Fig. 11. Examples of additional annotations generated. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
used to model a celestial body with an atmospheric layer and a well-
defined topography have been analyzed both in terms of accuracy
and rendering time, leading to a trade-off selection of the default
functionality implemented in the tool. The implementation for the
background object, which can be chosen by the user to be included or
not in the scene, can be used to model several celestial bodies by tuning
a few hyperparameters, making the tool proposed highly flexible. The
full pipeline to generate a spacecraft model compatible with POV-Ray
has been explained in detail, from the 3D CAD model to the textured
POV-Ray readable ‘‘include file’’ that can be handled easily by the
image generation tool. It is here acknowledged that having a highly
detailed CAD model is mandatory for some applications such as image
segmentation and neural networks training since a strong drift between
the training set and the actual application scenario, commonly named
domain gap, can jeopardize the entire image processing pipeline. The
pipeline discussed has been applied to a simplified model of the Tango
spacecraft from PRISMA mission. The optical properties of the space-
craft have been tuned during the validation phase. The validation of
the proposed tool tailored to the generation of spaceborne synthetic
noiseless image dataset via physically-based ray-tracing has been car-
ried out qualitatively via histogram comparison, and quantitatively by
evaluating two different indexes with respect to the SPEED dataset
images. Despite the assumptions made and the simplified CAD model
used, the validation phase highlighted the high level of accuracy of the
synthetic images rendered with the proposed tool. In conclusion, the
successful validation phase carried out by using the SPEED dataset as
ground truth demonstrates that the proposed image generation chain
can generate high-fidelity spaceborne images. The last part of the paper
delves into the details of the datasets that have been created by using
the previously discussed image generation pipeline and further delving
into the details of the image dataset generation algorithm. In particular,
the distributions of the relative pose and the illumination conditions
of the target through the datasets show that the images included are
representative of a wide range of scenarios. It is worth remarking that
the images are noiseless to increase the flexibility of the datasets since
the noises can be easily added in the postprocessing phase to properly
tailor the images to the final application scenario. We acknowledge
here that some disturbances in the images, such as flares and stray
lights, are due to the refraction and reflection of the light inside the
lens set of a real camera. Hence, algorithms to simulate the physics of
the light inside a complete set of lenses during ray-tracing still need
to be developed to include these effects in the synthetic images. The
annotations of the images are extracted automatically during the image
generation and, in particular, the equations and algorithms needed to
extract the relative pose annotations, as well as additional labels as the
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RGB masks for each scene and the in-view wireframe reprojections in
the image reference frame, have been discussed. The datasets created
have been made publicly available. Since the datasets share the same
fullscale images, but with different annotations, they can be combined
to constitute the most comprehensive multi-purpose labeled dataset of
validated spaceborne synthetic images publicly available, at least up to
our knowledge.
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