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A B S T R A C T

The aim of this study is to monitor tool wear through recurrent direct observation, to
automatically and optimally assess when it is really necessary to change tools. To achieve
this goal, a hybrid prognosis algorithm is formulated to estimate cutting tools’ remaining
useful life. Since cutting speed, and more generally process parameters, influences the rate
of tool degradation, an adaptive prognosis strategy is presented on the basis of flank wear
measurements through the application of a Particle Filter (PF) framework. The adaptability
feature allows tracking changes in flank wear evolution. The idea is to fit available degradation
curves of cutting tool flank land measurements, through the use of data-driven models, i.e.
Multi-Layer Perceptrons (MLP) and cubic polynomials (P3). The Remaining Useful Life of the
cutting tool is estimated together with its probability density function, by using a PF framework
to adapt MLP weights (or P3 coefficients) along with online flank wear measurements. The
devised algorithm was proven to adapt to wear trends from the field, obtained with cutting
parameters not previously tested, making it suitable for a robust implementation. The approach
was tested when trained upon a single run-to-failure, and validated upon four run-to-failures
in different cutting conditions according to a cross-validation inspired technique. P3 was found
to be more reliable (from the metrics perspective), whereas MLP allowed to be accurate with
greater advance, offering a practical advantage. The proposed algorithm may also be adapted
to integrate physical features, like specific force coefficients, with direct wear measurements.

. Introduction

Digital manufacturing represents the synergy of production processes and data acquisition systems [1,2]. Acquired data can
e employed to support different phases of the production process. Prognostics and Health Management (PHM) is one of these.
HM consists in the detection, diagnosis and prognosis of machine faults [3–5]. Anomaly detection consists in the identification
f abnormal states, i.e. deviations from normal operating conditions; diagnosis reflects in the classification of such deviations,
erforming the isolation and quantification of the abnormal states; at last, prognosis performs the prediction of abnormal states
volution up to a total failure [4].

Indeed, the main goal of prognosis is to predict the Remaining Useful Life (RUL) of faulty components, as well as the estimation
f its probability density function (PDF) and thus, its uncertainty bounds [6]. The prediction of faults is beneficial both in terms of
ost savings on materials and tools, but most importantly it allows decreasing maintenance time. When dealing with cutting tools,
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the estimation of failure before their occurrences may end up in saving up to 40% of maintenance costs [7] and about 20% of
downtimes of machine tools [8,9], responsible for production losses.

The focus of this paper is on the prognostics of cutting tools for turning operations. Turning is a widespread technology that
llows producing axial symmetric solids of rotation. The turning process is a subtractive manufacturing technique which has been
idely studied and modelled in the last decades. However, the possibility of developing adaptive strategies to estimate the remaining
seful life of tools is a challenging task that has not been investigated deeply enough yet. Tool wear is a complex stochastic
henomenon [10]. In order to make forecasts of its evolution, it is necessary to define a significant indicator that represents it.
lank wear measurement is the most relevant and common degradation indicator for cutting tools [11,12]. Flank wear is quantified
hrough the mean width of the wear land originated on the flank face of a cutting tool. Its computation follows international
tandards [13] and it will be indicated as VB.

Two main branches of research deal with the prognosis of cutting tool wear: namely, indirect and direct tool wear ap-
roaches [14]. Indirect methods consist in the evaluation of tool wear degradation through the use of cutting process quantities.
he commonly adopted variables include axis torque or current [15,16], vibrations [17–25], acoustic emissions [19,21,23,25,26],
pindle power [18,27–29] and cutting forces [10,11,19,21–25,30–36]. Main advantage of most indirect estimation techniques is
hat they could be developed to work in real-time, such that while the machine is running, an updated wear indicator is available.
owever, all indirect methods are limited by the fact that there are many other effects greater in magnitude than tool wear. This
akes indirect observation method still immature for general cutting conditions [4], even if it is possible to find some research
orks that try to deal with the normalisation of indirect quantities with respect to cutting parameters [11,37,38]. On the other
and, direct measurement of flank wear is more robust against the cutting process variability. Direct inspection could be obtained
hrough point wise scanning, profilometric acquisitions [39] or by 2D/3D calibrated picture analysis [39–41]. Direct methods still
ave some shortcomings. Firstly, uncertainties are related to the accuracy of the inspection system and the post-processing of the
easurements. Secondly, in general machining processes should be stopped and the cutting tool exposed to the inspection system

n order to measure the tool-tip status. Nevertheless, the inspection task could be performed at periodic stops in masked time, for
nstance at tool changes, or triggered by user defined events according to optimised production strategies.

When dealing with prognosis approaches, several researches tried to apply machine learning or data-driven methods (black-box
odels) for the prediction of tool wear. Black-box approaches try to learn complex relationships between indirect quantities and
ear directly from data, and they are typically less interpretable [4]. Cheng et al. applied Support Vector Regression in order to
redict flank wear evolution, starting from cutting forces, vibrational signals and machined surface pictures [42]. Guo et al. proposed
DenseNet algorithm in order to correlate flank wear to cutting forces, vibrations and acoustic emission signals. A multi-step

ncoder–decoder system predicted the short-term and long-term evolution of the flank wear [25]. A CNN was proposed by Zhang
t al. to predict the RUL of cutting tools starting from current, vibrations and acoustic emission signals [9]. Yan et al. proposed
esNets, in order to predict flank wear evolution in TC4 titanium alloy milling based on Short-Time Fourier Transformation of
ibrations and force signals. Nevertheless, future dataset expansion is needed to cope with other process parameters and processing
nvironments [24]. Wang et al. conceived a hybrid methodology based on machine learning capable of integrating heterogeneous
ata (process parameters, power profiles and tool wear images). Wear severity was assessed by a convolutional neural network,
hile RUL predictions were performed by a recurrent neural network [28]. Model-based approaches (white-box models) define the

degradation model on first principles and only few coefficients need to be tuned based on experiments [4]. Liu et al. proposed
a cutting force model including tool wear information. The model-based approach could be used for tool flank wear predictions
through cutting force and temperature measurements [36]. Statistical-based approaches (grey-box models), are based on user-
selected dynamical models whose parameters are estimated through data [4]. Yu et al. applied a weighted HMM framework for the
prediction of tool flank wear, based on vibrations and acoustic emission signals [21]. Zhang et al. proposed a particle filter scenario
including a linear degradation model. Its parameters are updated online from in-process vibrational measurements [43]. In some
cases, knowledge-based approaches (experience-based) are applied, where rule-based models are created upon expert knowledge [4],
like in [32]. Scientific works were mapped in Table 1, according to several criteria, highlighting some useful aspects of the proposed
methodologies like the availability of RUL PDF, the number of needed run-to-failures (RTFs), and algorithm domain.

Despite the amount of research works on tool prognostics, several challenges are common between them:

• need for several RTF experiments to train machine learning or data-driven models
• robustness of the solution with respect to cutting parameters
• prediction of the RUL PDF is missing
• algorithms are static, not updated through on-line measurements

The challenges above become more and more relevant when tool prognosis needs to be applied in one-of-a-kind or small batch
production scenarios, where available data are limited and cutting conditions are varying, bringing to limited knowledge of the
effect of parameters on tool lives. To overcome these limitations, a direct wear prognostic approach is here conceived. The solution
is based on a hybrid adaptive algorithm, fusing the statistical framework with the data-driven world. In fact, a particle filter state
observer is used to adapt on-line two different models: the weights of a simple multi-layer perceptron, and the coefficients of a cubic
polynomial. These models map the flank wear degradation curve with respect to the insert cutting time. The algorithm is assumed
to take as input flank wear measurements, typical of direct tool condition monitoring systems.

The structure of this paper is organised as follows: in Section 2, the experimental set-up and campaign are firstly described, then
the conceived adaptive and hybrid prognosis methodology is formulated, together with the description of the used performance
metrics. In Section 3, the analysis of the experimental data is discussed and the two versions of the hybrid methodology are
2

compared. At last, conclusions are drawn in Section 4.
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Table 1
Map of State-of-The-Art cutting tool prognosis approaches. Algorithms are described by application, employed sensors, measured features, class (i.e., direct,
indirect or mixed — direct and indirect), algorithm and relative domain, number of experimental RTFs, RUL PDF availability.

Ref. Machining
process

Measurements Features Class Algorithm Domain Varying
cutting
parameters

RTFs RUL
PDF

[31] Broaching Cutting forces,
strain,
vibration

PCA on force
covariance matrix

Indirect Support Vector
Machine

Black-box No – No

[15] Drilling Current Energy of wavelet
packet signal node

Indirect ARMA Grey-box Yes 2 No

[18] Turning Flank Wear,
power
consumption,
vibrations

VB, power mean,
vibration moving
average
(separately)

Mixed A sort of
similarity method

Grey-box No 30 (some of
them
discarded)

Yes

[20] Milling Vibrations A set of time
domain features

Indirect Neuro-fuzzy
Neural Networks

Black-box No 7800 (points) No

[17] Milling Cutting forces,
vibrations,
acoustic
emissions

Root mean square
(rms), standard
deviation (std),
peak (forces); rms,
kurtosis
(accelerometers);
mean, std
(acoustic emission)

Indirect Dynamic Bayesian
Networks

Grey-box &
Black-box &
experience-
based

No 3 No

[32] Milling Cutting forces Peak, amplitude,
average, std

Indirect Fuzzy inference Experience-
based

– – –

[30] Milling Cutting forces Time-domain
features

Indirect Multiple
regression models

Grey-box No 2 (109600
points)

Yes

[33] Milling Cutting forces,
vibration,
acoustic
emission

– Indirect Artificial Neural
Network (Extreme
Learning Machine)

Black-box No 1 (945
points)

No

[19] Milling Cutting forces,
vibration,
acoustic
emission

Time–frequency
domain features

Indirect Support Vector
Regression

Black-box No 2 Yes

[34] Milling Cutting forces Energy from
time–frequency
domain features

Indirect Continuous
Hidden Markov
Models and
Gaussian Process
Regression

Grey-box No 7 No

[22] Milling Cutting forces,
vibrations

Four time domain
features

Indirect Extreme learning
machine

Black-box No 1 (945
points)

Yes

[27] Milling Spindle power Rms Indirect Artificial Neural
Network

Black-box Yes 4 No

[23] Milling Cutting force,
vibration,
acoustic
emission
(workpiece
side)

Energy features
from wavelet
transform and
blind source
separation

Indirect Non-linear
regression with
different model
for each cutting
tool tested

Grey-box – – –

[35] Milling Cutting forces Time and
frequency domain
features

Indirect Bayesian
multi-layer
perceptron

Grey-box &
black-box

Yes 12 Yes

[21] Milling Cutting forces,
vibrations,
acoustic
emissions

rms
(accelerometers)

Indirect Weighted
Hidden-Markov
Models

Grey-box No 3 No

[25] Milling Flank wear,
cutting forces,
vibrations,
acoustic
emission

Learned features
(deep learning)

Mixed DenseNets and
auto-encoder

Black-box No 2 No

[28] Milling Spindle power,
milled surface
images, tool
wear images

Learned features
(deep learning)

Mixed Convolutional
Neural Network
and Recurrent
Neural Network

Black-box Yes 6300 images No

(continued on next page)
3



Mechanical Systems and Signal Processing 210 (2024) 111163L. Bernini et al.
Table 1 (continued).
Ref. Machining

process
Measurements Features Class Algorithm Domain Varying

cutting
parameters

RTFs RUL
PDF

[24] Milling Vibrations and
cutting forces

Short-Time Fourier
Transformation

Indirect ResNet Black-box No 7 No

[36] Milling Cutting forces
and
temperature

– Indirect Tool wear model
estimation from
cutting forces and
temperature

Model-based Yes 9 No

[10] Micro-
milling

Flank wear
measurements,
cutting forces

– Mixed Particle Filter and
Long Short Term
Memory network

Grey-box &
black-box

Yes 9 Yes

Fig. 1. Workflow for the conceived methodology. From tool pictures up to the estimation of the cutting tool Remaining Useful Life, as well as the prognostics
metrics.

2. Materials and methods

In the next subsection, all the elements of the developed prognostics approach are presented. Following the general framework
of Fig. 1, the solution is based on three steps: firstly a visual inspection of the cutting tool is carried out to obtain flank
wear measurements; a hybrid particle filter framework, embedding multi-layer perceptrons or cubic polynomials, constitutes the
monitoring and prognostics tool, allowing for the prediction of cutting tools’ remaining useful life; at last, prognostics metrics are
defined as means for prognosis performances and robustness analysis. The last subsection deals with the experimental set-up and
campaign.

2.1. Particle filter hybrid framework definition

In this section, the hybrid (statistical-based and data-driven) adaptive approach for tool wear prognosis is presented. The solution
is based on a combination of particle filter (PF) state observer, to set-up a bayesian update framework for a set of multi-layer
perceptrons (MLPs) and a set of cubic polynomials (P3s), referred as data-driven models (DDMs), in general. The approach (in
similar fashions) was investigated in other applications (such as crack growth prediction and lithium-ion batteries prognostics),
highlighting its interesting adaptive capabilities [44,45]. Furthermore, this algorithm allows for the prediction of the cutting tool
4
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Fig. 2. (a) Proposed MLP architecture. The input neuron normalises time values and propagates it to the hidden layer, which features three neurons. The
normalised 𝑉 𝐵 is the result of the output layer, which is then mapped back to VB. (b) comparison between the tan-sigmoid activation function (red dashed
line) [45] and the Elliot-sigmoid activation function (blue solid line) [46].

RUL PDF, required by the international standards [6] but rarely available on state-of-art approaches. In order to present the approach
it is necessary to start with the description of the adopted DDMs.

2.1.1. Multi-layer perceptron
In the conceived scheme, the MLP represents a non-linear mapping of the flank wear width (VB, see Section 2.3) evolution with

respect to insert cutting time 𝑡. MLP was chosen due to its demonstrated universal fitting capabilities [47], but other functions may
e used (i.e., polynomials, see Section 2.1.2). In this case, the network complexity is reduced at minimum: the input and output
ayers are composed of one neuron; the hidden layer is composed of three neurons. The structure and nomenclature of the MLP
s shown in Fig. 2(a). The input of the network (insert cutting time 𝑡) is normalised to 𝑡 = 𝑚(0)(𝑡) = 𝑡− + (𝑡+ − 𝑡−)(𝑡 − 𝑡−)∕(𝑡+ − 𝑡−),
.e. mapped from the interval [𝑡−; 𝑡+] to [𝑡−; 𝑡+]. The output 𝑜(𝑙)𝑖 of a neuron 𝑖 in layer 𝑙 is computed through Eq. (1):

𝑜(𝑙)𝑖 = 𝑔(𝑙)
( 𝑛𝑗
∑

𝑗=1
𝑤(𝑙)
𝑖𝑗 𝑜

(𝑙−1)
𝑗

)

(1)

here 𝑗 indicates the neuron of the preceding layer 𝑙 − 1; 𝑔(𝑙)(⋅) is the activation function of layer 𝑙; 𝑤(𝑙)
𝑖𝑗 is the weight 𝑖 of layer

, that multiplies the output 𝑜(𝑙−1)𝑗 of the previous layer 𝑙 − 1. In the conceived scheme two different activation functions are used,
epending on the layer. In the hidden layer, Elliot-sigmoid function (Eq. (2)) was used [46]:

𝑔(1)(𝑢′) = 𝑢′

1 + |𝑢′|
(2)

where 𝑢′ is a generic variable. A first difference with the architecture in [45] is found in the choice of the activation function. Cadini
et al. adopted with success a tan-sigmoid activation function for crack growth prognosis, but the same function demonstrated not
to be suitable for our scenario (tool prognosis). In fact, tan-sigmoid exhibits a fast transient towards the horizontal asymptote.
The asymptote governs the curve fitting near the end-of-life of the tool. A fast convergence to the asymptote led in multiple cases
to failures in finding the intersections with the prognosis threshold. The Elliot-sigmoid activation function is instead featured by
a slower transient which solved the convergence problem (Fig. 2(b)). In the output layer, a pure linear (i.e., identity function)
activation function was used, obtaining the normalised flank wear width 𝑉 𝐵. The resulting MLP non-linear function can be written
s Eq. (3), where 𝑉 𝐵𝑀𝐿𝑃 (𝑡) is the output and 𝑡 is its input:

𝑉 𝐵𝑀𝐿𝑃 (𝑡) = 𝑚(2)

( 3
∑

𝑗=1
𝑤(2)

1𝑗 ⋅ 𝑔(1)
(

𝑤(1)
𝑗1 ⋅ 𝑚(0) (𝑡)

)

)

(3)

where the normalised output 𝑉 𝐵 is inversely mapped to 𝑉 𝐵 = 𝑚(2)(𝑉 𝐵) = 𝑉 𝐵− + (𝑉 𝐵+ − 𝑉 𝐵−)(𝑉 𝐵 − 𝑉 𝐵
−
)∕(𝑉 𝐵

+
− 𝑉 𝐵

−
), which

estores the VB range from [𝑉 𝐵
−
;𝑉 𝐵

+
] to [𝑉 𝐵−;𝑉 𝐵+]. Eq. (3) represents a non-linear parametric function of time, whose parameters

are the weights of the MLP. Weights are initialised according to the Nguyen–Widrow method [48]. During the application of the
algorithm, these parameters will be trained upon a single tool wear degradation curve. 𝑡− and 𝑡+ represent the minimum and
maximum time values for the training RTF (thus 𝑡− = 0), while 𝑉 𝐵− and 𝑉 𝐵+ are the minimum and maximum VB of the training
RTF (thus 𝑉 𝐵− = 0). 𝑡− and 𝑡+, 𝑉 𝐵

−
and 𝑉 𝐵

+
are set by the user (here, they are 0 and 1, 0 and 1, respectively). The particular

choice of these parameters, combined with the absence of bias terms in the MLP, allows the network to have a null intercept and
to have only six parameters. The parameters, the MLP weights 𝑤(𝑙)

𝑖𝑗 are collected in the 𝜽𝑀𝐿𝑃 vector. These choices represent the
second main difference with respect to the formulation in [45]. In [44], the authors adopted radial basis functions that led to a
different formulation of the problem (compare Eq. (2) from [44] and (3) in this paper).
5
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2.1.2. Cubic polynomials
An alternative scenario is represented by the utilisation of P3 to describe the tool wear degradation curve:

𝑉 𝐵𝑃3(𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 (4)

In Eq. (4) the intercept (coefficient 𝑑) was set to zero, in order to generate a P3 passing through the origin. P3 curve was also
designed to be a monotonically increasing function for non-negative values of 𝑡 (negative values of 𝑡 are not of interest, thus it is
not necessary to over-constrain P3 coefficients in that domain). These assumptions led to the following sets of constraints for the
P3 coefficients:

⎧

⎪

⎨

⎪

⎩

𝑎 ≥ 0
𝑏 ≥ 0
𝑐 ≥ 0

∨

⎧

⎪

⎨

⎪

⎩

𝑎 > 0
𝑏 < 0
𝑐 > 𝑏2∕(3𝑎)

(5)

As for MLP, P3 represents a non-linear parametric function of time, whose parameters are the coefficients 𝑎, 𝑏 and 𝑐. The set of P3
coefficients is collected in the 𝜽𝑃3 vector. During the application of the algorithm, these parameters will be trained upon a single
tool wear degradation curve.

2.1.3. Particle filter
PF is a state observer capable to work with non-linear dynamical systems and non-gaussian states, disturbances and noises [4,49].

In the proposed prognostics scheme, the DDM describes a possible degradation curve of the tool (VB evolution over time). Although
the degradation curve is initialised upon a historical RTF, it may not represent the actual degradation of the current cutting tool.
Thus, the DDM parameters should be updated with online measurements of the cutting tool flank wear. To perform such operation,
the DDM parameters, i.e., vectors 𝜽𝑀𝐿𝑃 and 𝜽𝑃3, are assumed to be states of a dynamical system, evolving during time according
to the process equation (Eq. (6)):

𝐱𝑘+1 = 𝐱𝑘 + 𝝎𝑘 (6)

where the index 𝑘 represents the discrete time step; 𝐱𝑘 is the state vector at time step 𝑘, containing the parameters of a DDM; 𝝎𝑘 is
a vector of random variables assumed to have variance proportional to the corresponding parameter 𝝎𝑘 ∼  (𝟎,𝜮𝒌); where the 𝑠th
element of 𝜮𝒌 diagonal is 𝑄 ⋅ 𝑥𝑘,𝑠; 𝑄 represents disturbance intensity.

The observation equation associates the state vector (i.e., DDM parameters) to the system measurements, i.e. VB (Eq. (7)):

𝑦𝑘 = ℎ(𝑡𝑘, 𝐱𝑘) + 𝜂𝑘 (7)

where 𝑦𝑘 is the predicted VB through the DDM; 𝑡𝑘 is the current cutting time; ℎ(𝑡𝑘, 𝐱𝑘) is either 𝑉 𝐵𝑀𝐿𝑃 (𝑡𝑘) or 𝑉 𝐵𝑃3(𝑡𝑘), depending
on the used DDM, with the parameters estimated at the current time step in the PF state 𝐱𝑘; 𝜂𝑘 is the measurement noise, following

normal distribution with null mean and standard deviation equal to 𝑅.
Objective of the PF is the description of the posterior PDF of the DDM parameters, conditioned on the observed data

(𝐱𝑘|𝑦1∶𝑘) [45]. The PDF of the DDM parameters is approximated by a set of 𝑁𝑝 samples, referred as particles. In practice, 𝑁𝑝
DDMs are generated, each of them creating a different map between insert cutting time and VB. A PF iteration consists of two
phases. A prediction phase estimates the new particle values according to the process equation. At the end of this step a full set of
new DDMs is obtained, which represents the ‘‘a priori’’ distribution of the DDM parameters (none of the measurements are used).
An update phase improves the state PDF estimation. A likelihood equation 𝐿(𝑦1∶𝑘|𝐱𝑘) is computed for each particle, accounting for
all the available measurements from the beginning (𝑘 = 1) up to the discrete time step 𝑘 (Eq. (8)):

𝐿(𝑦1∶𝑘|𝐱𝑘) = exp

(

− 1
2𝑅2

𝑘
∑

𝑧=1

(

𝑦𝑧 − ℎ(𝑡𝑧, 𝐱𝑘)
)2 𝑣𝑧(𝑘)

)

(8)

where 𝑧 is the index used to represent each discrete time step up to 𝑘. A weight term, denoted as 𝑣𝑧(𝑘), is assigned to each time
instant using the exponential law 𝑣𝑧(𝑘) = exp(−𝜉(𝑘 − 𝑧)), driven by the non-negative parameter 𝜉 (when 𝜉 is set to 0, all samples
are equally important; the larger the value of 𝜉, the quicker past samples lose their significance). Eq. (8) expresses the likelihood
of observing the measured VB curve (giving more relevance to more recent measurements), depending on the current estimation of
the state 𝐱𝑘 described by a particle. Thus, the likelihood tells us how much we should trust that particle (i.e, the parameters of the
associated DDM). Indeed, a weight 𝑢𝑘,𝑠 is given to a particle 𝑠 proportional to its likelihood (Eq. (9)):

𝑢𝑘,𝑠 =
𝐿(𝑦1∶𝑘|𝐱𝑘,𝑠)

∑𝑁𝑝
𝑠=1 𝐿(𝑦1∶𝑘|𝐱𝑘,𝑠)

(9)

where 𝐱𝑘,𝑠 is the state represented by particle 𝑠. The PF iteration ends with the resampling stage (performed according to [45]),
where the particles probabilities of being redrawn are proportional to their likelihood. The new set of particles represents the discrete
approximation of the posterior PDF 𝑝(𝐱𝑘|𝑦1∶𝑘) of the DDM parameters. At this point the PF iteration is finished. The prediction and
update stages are repeated every time a new flank wear measurement is available.

This implementation differs from [44,45], where exponentially decreasing variances were adopted. Despite their formulation
allowed improving the RUL confidence intervals in time, the adaptability of the algorithm is reduced, and at the same time more
hyperparameters have to be tuned. Here, the main hyperparameters are 𝑄 and 𝑅, whose effect is shown in Fig. 3:
6
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Fig. 3. Effect of PF hyperparameters on the algorithm behaviour. Red solid horizontal line is the prognostics threshold; orange solid line is the validation
degradation curve; orange dashed line is the training degradation curve; blue dotted lines are PF explorations of degradation curves; green dotted lines are
resampled curves (accepted for the ‘‘a posteriori’’ RUL predictions); grey dotted lines are refused curves (not included in the ‘‘a posteriori’’ RUL predictions).
In order to reach the desired algorithm performances, a trade-off between the four cases must be chosen. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

• a too high process disturbance (high 𝑄) generates a completely random exploration of the DDM parameters’ space. The DDM
forgets its initialisation, which, in turn, provides random RUL predictions (Fig. 3(a)).

• a too low process disturbance (low 𝑄) makes the algorithm not adaptive. The DDM parameters’ space is not explored at all
(Fig. 3(b)).

• a too high measurement noise (high 𝑅) means accepting all the ‘‘a priori’’ DDM fittings, even if they do not follow
measurements (Fig. 3(c)).

• a too low measurement noise (low 𝑅) means to refuse a lot of ‘‘a priori’’ DDM fittings, leading to the preservation of a really
limited number of DDM estimations, and losing any probabilistic description of the estimated quantities (Fig. 3(d)).

𝑄 and 𝑅 tuning is obtained through a trade-off between these limit cases.

2.1.4. Cutting tool RUL prediction
At each time instant 𝑡𝑘, the diagnosis phase can be performed after the update phase. Each particle provides the estimate for the

cutting tool flank wear 𝑉 𝐵𝑘,𝑠, by evaluating the associated DDM curve at 𝑡𝑘. Thus, the full set of particles provides the approximated
posterior PDF of the flank wear 𝑝(𝑉 𝐵𝑘|𝑦1∶𝑘). In order to realise the final objective of PHM, prognosis must be integrated. With this
aim a threshold value 𝑉 𝐵𝑡 for the limit flank wear was set to 150 μm. At every discrete time step 𝑘, after the update phase, it is
possible to compute the estimated time of end-of-life 𝑡𝐸𝑜𝐿,𝑘,𝑠 of each particle 𝑠. This is performed by evaluating the associated DDM
for future values of time, until the predicted VB intersects the threshold line. The time at which the DDM non-linear map crosses
the threshold gives the 𝑡𝐸𝑜𝐿,𝑘,𝑠 estimate. The set of estimated end-of-life times, constitutes the approximated PDF 𝑝(𝑡𝐸𝑜𝐿,𝑘|𝑦1∶𝑘). RUL
is computed as the difference between the time of end-of-life estimate 𝑡𝐸𝑜𝐿,𝑘,𝑠 and the prediction instant 𝑡𝑘, for every particle. As
for the time of end-of-life, the set of RUL estimations gives the approximated posterior probability 𝑝(𝑟𝑢𝑙𝑘|𝑦1∶𝑘). We will denote the
RUL prediction of the hybrid algorithm at time step 𝑘 as the median of the ‘‘a posteriori’’ RUL PDF 𝑅𝑈𝐿𝑘 = 𝑚𝑒𝑑(𝑝(𝑟𝑢𝑙𝑘|𝑦1∶𝑘)). We
also define the normalisation of RUL as 𝜌 = 𝑅𝑈𝐿 ∕𝑡 .
7
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2.2. Prognostic metrics

Prognostics metrics are a valuable tool for measuring the performances of a prognosis approach. In addition to quantitative
ssessment they also offer a comprehensive visual perspective that can be used in designing the prognostic system. Furthermore,
hey allow comparing the performances of an algorithm with respect to others. Here, three main prognostics metrics [50] are used
o analyse the behaviour of the conceived approach on the experimental tests and to compare the performances across the cases.

The first metric is the absolute prediction error (APE). APE is a function of the time step 𝑘, and it is computed as the absolute
value of the difference between the true RUL at time step 𝑘 (𝑅𝑈𝐿𝑡𝑟𝑢𝑒,𝑘) and the RUL prediction (𝑅𝑈𝐿𝑘, Eq. (10)):

𝐴𝑃𝐸𝑘 = |𝑅𝑈𝐿𝑡𝑟𝑢𝑒,𝑘 − 𝑅𝑈𝐿𝑘| (10)

where 𝐴𝑃𝐸𝑘 is the absolute prediction error at time instant 𝑡𝑘. APE furnishes a direct measure of the RUL prediction error during the
cutting test. Here, it is used in place of relative error, since 𝑅𝑈𝐿𝑡𝑟𝑢𝑒,𝑘 tends to zero as 𝑡𝑘 approaches the time of end-of-life 𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒
of the tool, leading by definition to an infinite relative error. Then, we define a normalised error 𝜓𝑘 = 𝐴𝑃𝐸𝑘∕𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒. The second
metric of interest is the prognostics horizon (PH). PH was proposed in two fashions [50]. Here, the probabilistic one is computed.1
PH is defined by Eq. (11):

𝑃𝐻 =
𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒 − 𝑡𝑘𝛼𝛽

𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒
(11)

where 𝑡𝑘𝛼𝛽 is defined as:

𝑡𝑘𝛼𝛽 = min
𝑘 ∫

𝛼+

𝛼−
𝑝(𝑟𝑢𝑙𝑘|𝑦1∶𝑘)𝑑𝑡 ≥ 𝛽 (12)

where 𝛼− = 𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒(1 − 𝛼) and 𝛼+ = 𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒(1 + 𝛼), with 𝛼 representing the allowable prediction error; 𝛽 is the minimum admissible
probability mass. Indeed, PH represents the percentage of tool life at which the required prognostics accuracy is met. As the PH
increases, more time becomes available for intervention before tool failure.

The last prognosis metric is convergence (C). Convergence is a meta-metric quantifying the speed of decay of another prognosis
metric [50]. Here, the convergence of the APE is proposed. It is defined by Eq. (13):

𝐶𝐴𝑃𝐸 =
√

𝐴𝑃𝐸2
𝑥 + 𝐴𝑃𝐸

2
𝑦 (13)

where 𝐴𝑃𝐸𝑥 and 𝐴𝑃𝐸𝑦 are the coordinates of the centre of mass of the area under the 𝐴𝑃𝐸 curve on the time and APE axes,
respectively. 𝐶𝐴𝑃𝐸 thus represents the euclidean distance from the origin of such centre of mass. The closer is this point with
respect to the origin, the faster is the convergence of its metric (i.e., APE). Convergence is effective only for decreasing metrics [50].
Convergence is presented in its normalised fashion as: 𝜒𝜓 =

√

𝜓2
𝑥 + 𝜓2

𝑦 and it is computed on the 𝜆 − 𝜓 chart, where 𝜆𝑘 is the
normalised cutting time: 𝜆𝑘 = 𝑡𝑘∕𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒.

2.3. Experimental set-up and campaign

The experimental campaign consisted of a set of five RTFs in turning applications. The tests were performed on a SOMAB UNIMAB
400 lathe, equipped with an analogical numerical control. A carbide tool with a lead angle of 95◦ was adopted (ISO standard code:
TNMG220404-M5 5625, tool radius equal to 𝑟𝜀 = 0.4 mm, rake angle of 13◦ and a relief angle equal to 0◦, with 𝐴𝑙2𝑂3 − 𝑇 𝑖𝐶𝑁
coatings) and fixed on tool holder, ISO code MTJNL2525M22. Hardened and tempered steel bars of UNI 39𝑁𝑖𝐶𝑟𝑀𝑜3 were used
to perform the wear tests. RTFs were performed with conventional lubrication, using cutting fluid (oil–water emulsion with 5% of
HOCUT 795 SC), adduced through nozzle on the cutting zone, in order to reproduce realistic industrial production scenarios.

Experimental tests were performed according to a full factorial design with one central point and no replicates (thus one test per
corner and a central point test), following [51]. Two factors were chosen, namely cutting speed and feed per revolution. These two
parameters were chosen since they have strong influences on the cutting tool lives [52]. The factor levels for the RTFs were reported
in Table 2. The radial depth of cut was set to 2 mm. Direct measurements of tool flank wear were performed through recurrent visual
inspection. Starting from calibrated macro pictures of cutting edges, the VB was computed with a manual procedure. However, this
step does not limit the application of the conceived prognostic approach, since similar results can be obtained through machine
vision algorithms, as in [39–41]. It is important to have high quality pictures of clean cutting edges and properly define a region
of interest. Then, thresholding, contouring, aligning and measuring should be performed. A Stereomicroscope Optika SZN-T with
Motic SMZ-168T support was used to take flank wear width (VB) images during the cutting tests. A RTF test was stopped when the
measured VB overcame 0.15 mm. The corresponding time of end-of-life of the tool (𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒) was reported in Table 2. The threshold
was chosen lower than what is suggested by ISO 3685 [13], in order to avoid too high dispersion of the results in terms of insert
duration, seen in preliminary tests. The choice was taken to limit the experimental effort, too. In fact, carrying out many experiments
up to a VB of 0.3 mm would have required too many machining tool hours, considering the fact that flank wear measurements take
8

an amount of time comparable or higher than the effective machining time [26]. This would have lead to unsustainable experimental
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Fig. 4. Main quantities involved in the flank wear computation.

Table 2
Run-to-failure turning tests process parameters: cutting speed (𝑣𝑐 ) and
feed rate (𝑐) are the two factors of the full-factorial design. Tool life, i.e.
time of end-of-life (𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒), is also reported.

ID 𝑣𝑐 [m/min] 𝑐 [mm/turn] 𝑡𝐸𝑜𝐿,𝑡𝑟𝑢𝑒 [s]

1 220 0.1 765.6
2 220 0.3 345.6
3 190 0.2 798.2
4 160 0.1 2736.5
5 160 0.3 1062.1

Table 3
Chosen hyper-parameters for the conceived approach: 𝑁𝑝 corresponds to the number of particles (equal for both cases); number of neurons per layer (only for
MLP); 𝑄 is the process disturbances intensity (different for MLP and P3); 𝑅 is the measurement noise standard deviation (different for MLP and P3); 𝜉 is the
hyperparameter for exponential weighting (equal for both cases); 𝑉 𝐵𝑡 is the prognosis threshold (equal for both cases); 𝛼 is the admissible prediction error
(equal for both cases); 𝛽 is the minimum acceptable probability mass (equal for both cases).
𝑁𝑝 [−] Neurons [−] 𝑄𝑀𝐿𝑃 [−] 𝑄𝑃3 [−] 𝑅𝑀𝐿𝑃 [μm] 𝑅𝑃 3 [μm] 𝜉 [−] 𝑉 𝐵𝑡 [μm] 𝛼 [−] 𝛽 [−]

5000 1-3-1 0.003 0.08 2.5 1.5 0.1 150 0.2 0.95

costs. Optimal cutting speeds and feed rates were adopted under conventional lubrication of steel cutting. The computation of the
VB is performed following international standards [13] (Fig. 4).

As can be seen from Fig. 4, the flank wear width determination starts from a set of 𝑛𝑉 𝐵 local measurements 𝑉 𝐵𝑣. The region of
interest starts at a distance from the edge equal to the tool radius. Each measurement accounts for a small finite width 𝛥𝑙𝑣. Thus,
the average flank wear VB can be computed over the region of interest by Eq. (14):

𝑉 𝐵 = 1
𝑛𝑉 𝐵

𝑛𝑉 𝐵
∑

𝑣=1
𝑉 𝐵𝑣𝛥𝑙𝑣 (14)

3. Results and discussion

Results are presented in two phases. In a first section (Section 3.1), the adaptability of the conceived approach, RUL estimation
and metrics will be discussed for a single train-validation RTFs combination. The objective of this first section is to provide an
explanatory example, to show and describe the useful features of the algorithm and the related metrics. The reference case is
presented for MLP only, and more specifically it represents the case when the MLP is initialised on RTF 5 and the algorithm is
applied for the prognosis of the cutting tool of RTF 1. A second section (Section 3.2) deals with the discussion of the whole set of
results, thus all the combination of train and validation RTFs. This section is divided in MLP and P3 results. A general analysis of
the algorithm performances on all the RTFs is thus provided in this section. Here, the algorithm will be validated with a particular
approach, inspired by Leave-One-Out Cross-Validation (LOO-CV), which will validate the hybrid framework performances right after
the first DDM training RTF is available. This strategy is adopted to evaluate the performances on the first algorithm run. In both
the cases, the hyper-parameters selected for the algorithms are reported in Table 3.

1 This version of PH can be adopted only for prognosis algorithms providing PDF estimates of the RUL. A deterministic version of PH is described in [50]
for algorithms providing only RUL point estimates, too.
9
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3.1. Single train-validation combination

In this section, the performances of the algorithm and the prognostics metrics are analysed for a reference combination of train-
alidation RTFs. More specifically, training is performed on RTF 5 and validation on RTF 1. Results are reported for the hybrid
F+MLP algorithm. This particular combination, allows to clearly identify the adaptability characteristic of the conceived approach
nd to discuss the adopted metrics. Given that certain performance metrics and RUL are inherently affected by the end-of-life of

the analysed tool, we opt for generalisation and effectiveness in result comparison by presenting their normalised values. Thus,
time-evolving results are plotted as functions of 𝜆. VB axis is normalised as 𝜈𝑘 = 𝑉 𝐵𝑘∕𝑉 𝐵𝑡, RUL axis is normalised as 𝜌 and APE
axis is normalised as 𝜓 . The discussion of this section makes reference to Fig. 5, and reports also the relationship between each
quantity and its normalised counterpart. MLPs’ configurations and evolution along the RTF, as a consequence of the PF update,
are presented at three different instants, i.e. 1% (Fig. 5(a)), 50% (Fig. 5(b)) and 80% (Fig. 5(c)) of the validation cutting tool life.
This choice was taken for conciseness reasons, while keeping enough information content. First of all, in Fig. 5(a), it is possible
to see the difference between the training and validation flank wear evolutions (diamonds and circular data points, respectively).
Such difference is mainly associated to the cutting parameters adopted for the RTF and secondly, to the stochastic nature of the
tool wear phenomenon: training RTF 5 was performed at a low cutting speed and high feed rate, whereas validation RTF 1 was
performed at high cutting speed and low feed rate. As expected, during RTF 1, the cutting tool degradation was faster with respect
to RTF 5. At the top of the graph, a solid red line represents the selected prognosis threshold, thus the flank wear limit for RUL
prognosis. Diamond grey points were used to initially train the MLP. Thus, in a practical scenario, diamond data points constitute
the only historical RTF needed to train and run the approach. Green circles are the data points received by PF from the field up to
the current prediction time. As long as the RTF goes on, more experimental data (blue points) become available. Grey lines show
the MLP curves associated with the particle distributions. 1% of cutting tool life, represents a condition in which the algorithm is
still very confident about the initialisation phase. Thus, the set of MLPs faithfully pursuits the training RTF data. Nevertheless, the
process equation disturbances are already trying to further explore the MLP fitting space. Since the prediction is made extremely
early in the tool life, the spread of the MLP curves at the threshold of flank wear is quite wide. Intersecting the MLP curves with a
vertical line at the prediction time (corresponding to the last green circle) and illustrating the corresponding values in a histogram
would offer a graphical representation of the approximate posterior PDF of flank wear 𝑝(𝑉 𝐵𝑘|𝑦1∶𝑘). Another intersection can be
performed between MLP curves and the threshold line, providing a visual representation of the estimated RUL PDF at the current
prediction time 𝑝(𝑟𝑢𝑙𝑘|𝑦1∶𝑘). In Fig. 5(d), the main quantities related to 𝑝(𝑟𝑢𝑙𝑘|𝑦1∶𝑘) are drawn as a function of time: namely, RUL
estimate median (blue solid line), 2.5% and 97.5% percentiles, representing the 95% confidence bounds of the predictions (dashed
blue lines). Their evolution is compared to the ground truth (true RUL red dash–dot line) and the prediction acceptability bounds
(red dotted lines). As time passes by, the algorithm makes use of more experimental data to adapt to the current tool degradation
rate. At 50% of tool life (Fig. 5(b)), the MLP curves lay on the available validation experimental data, causing MLPs RUL predictions
to reduce their spread and shift towards the true RUL. Two regions should be emphasised in the comparison between training and
validation VB curves, to better understand the algorithm behaviour: training VB degrades more rapidly in the region with 𝜆 values
between about 0.25 and 0.35; training VB exhibits a flatter trend beyond 0.35. In the first region the algorithm starts to adapt
the initial part of the MLP curves causing the RUL predictions to shift further away from the true RUL (note the maximum of
RUL prediction in Fig. 5(d), where the evolving behaviour of the algorithm is summarised) and continuously overestimate it. At the
beginning of the second region the PF effectively acts on the flatter part of the MLP curve by increasing its slope, and the predictions
starts to converge towards the true RUL. Thus, at 50% of validation tool life (Fig. 5(b)), the algorithm enters into a more stable
region, where the RUL median become more reliable and more accurate. It is worth noting that the algorithm progressively gains
confidence in its predictions, resulting in MLP curves that more closely align with the experimental data and exhibit more uniform
shapes; as a consequence, the prediction intervals for RUL are narrowing, too. Near the end-of-life of the cutting tool 5(c), the
algorithm is fully adapted to the validation tool wear trend and the algorithm has finally converged to the true RUL.

As previously explained, prognostic metrics allow quantifying the performances of the algorithm, comparing different algorithms
and different scenarios. Here, the metrics are computed with respect to the reference train-validation combination. The first metric
(𝐴𝑃𝐸) is reported in Fig. 6. APE gives an immediate visual idea on how the algorithm is converging to the ground truth RUL. The
same phases described above can be identified here. At the beginning of the RTF, the algorithm uses the information coming from
the training data. The initial APE is approximately equal to the difference between validation and training time of end-of-lives.
Within 25% and 35% of cutting tool life the algorithm adapts the first region of the MLP curves, leading to an overestimation of
the RUL. In the second region between 𝜆 = 0.35 and 𝜆 = 0.5, the algorithm starts adapting the flatter part of the MLP curves; as a
consequence the algorithm starts converging towards the true RUL of the validation cutting tool. Beyond 𝜆 = 0.5 the error becomes
negligible and the algorithm predicts in advance the end-of-life of the tools.

The convergence metric is shown in the APE chart, too. As seen in Section 2.2, its value can be computed as the distance of
the red circle (the centre of mass of the area beneath the APE curve) from the origin of the chart. Its normalised counterpart is
computed on the 𝜆 − 𝜓 chart (top and right axis of Fig. 6). The normalised convergence for this RTFs combination is 0.79. This
value provides a benchmark for the convergence time of the algorithm in case other algorithms are tested on the same scenario. In
the next section, convergence will be discussed much further in order to compare different train-validation scenarios.

The prognosis horizon is partially represented in Fig. 5(d). In fact, the two red dotted lines represent the allowable prediction
bounds, determined by the 𝛼 value. PH is defined as the percentage of cutting tool life during which the beta criterion of Eq. (12)
s satisfied. In this case, the criterion is satisfied from 𝜆 = 0.55 up to the cutting tool end-of-life. PH is thus equal to 45% of cutting
ool life. This means that when the 55% of cutting tool life is expired, the algorithm accurately and robustly predicts the RUL. As
10

H increases, more time becomes available for preparing maintenance actions.
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Fig. 5. RUL predictions when training on RTF 5, and validating on RTF 1. (a), (b) and (c) figures show the adaptability of the prognosis approach. Grey diamonds
represent the training data for MLP initialisation. Green circles are the already available flank measurements. Blue points are the upcoming experimental points.
Red line is the end-of-life threshold. Grey lines are the MLPs generated by the resampled particles. Blue solid line in (d) represents the evolution of the estimated
RUL (i.e., RUL median); blue dashed lines represent the associated 95% confidence bounds; red dash–dot lines is the true RUL. Red dotted lines describe the
allowable prediction bounds. Red arrows indicate the position of the (a), (b) and (c) figures in the full RUL prediction history. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Absolute prediction error 𝐴𝑃𝐸 (blue solid line) as a function of the normalised cutting time 𝜆. Its convergence is represented with the red circle and
red dashed line. This is the case in which training was performed on RTF 5 and validation on RTF 1.

3.2. Full set performances

In this section, a cross-validation inspired approach is presented. Since the objective of the conceived algorithm is to reduce as
much as possible the experimental effort to perform prognostics, the validation of the devised method is carried out on a grid of
cases. The grid is composed by different combinations of train and validation RTFs. Thus, at each iteration, one of the RTFs in Table 2
is used for DDM initialisation, while the others are used to discuss the adaptability performances of the hybrid methodology. In this
sense, the proposed validation approach differs from LOO-CV, since LOO-CV would consist of iteratively training the algorithm on
all the RTFs but one (used for validation). Here, the idea is to analyse how the algorithm works with different training conditions
11
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Table 4
Prognostic metrics quantitative results for PF+MLP.

(a) Prognostics horizon.

PF+MLP Val. 1 Val. 2 Val. 3 Val. 4 Val. 5

Train 1 99% 52% 41% 32% 34%
Train 2 66% 99% 53% 0% 42%
Train 3 99% 55% 37% 0% 24%
Train 4 30% 56% 4% 37% 0%
Train 5 45% 39% 10% 22% 23%

(b) Normalised convergence.

PF+MLP Val. 1 Val. 2 Val. 3 Val. 4 Val. 5

Train 1 0.40 0.48 0.49 0.43 0.41
Train 2 0.33 0.52 0.35 0.66 0.37
Train 3 0.50 0.42 0.50 0.57 0.45
Train 4 6.65 1.91 1.49 0.37 8.03
Train 5 0.79 0.42 0.55 0.44 0.45

and also suggest the best cutting parameters choice for the training RTF. With this in mind, the reported results refer to the minimum
performances obtainable with the algorithm. Improvements may be obtained by training the DDM on more tests.

3.2.1. MLP results
Two figures are reported representing this scenario. The first one reports the RUL predictions, the bounds for PH computation,

rue RUL and flank wear data for the training and validation RTFs (Fig. 7). In this sense, this figure is equivalent to Fig. 5(d) but
eported for the whole grid of combinations. The second one is the summary of prognostics metrics for the whole set of combinations
Fig. 8). In both graphs the training RTF number corresponds to the row index, while the validation one to the column index. For
larity, graphs will be referred by the letter indicated in the box.

The first results to be observed, are the ones on the main diagonal of Fig. 7. These represent the cases where the train RTF is the
ame as the validation one. In Fig. 7A-G-M-S it can be seen that, as expected, the RUL predictions are accurate and the confidence
ounds are almost completely enclosed in the allowable prediction bounds for a reasonable part of the tool life. This is confirmed
y Table 4, where the PHs of all the diagonal terms are large (99%, 99%, 37% and 37%, respectively). This means that RUL is

computed correctly from the beginning in A and G cases, and when 63% of tool lives are passed for cases M and S. APE plots in
Fig. 8A-G-M-S and the convergence table (Table 4) are in agreement. In fact, these diagonal elements exhibit low values for both
the metrics when compared to other grid cases. The grid element (5–5) (Fig. 7Y) exhibits a behaviour similar to that of case S;
however, the RUL starts to consistently fall within the acceptability bounds at 𝜆 = 0.77. PH highlights this behaviour by reaching a
value of 23%, showing a convergence in the final part of cutting tool life of case Y. Indeed, all the combinations on the diagonal
exhibit PHs greater than 20%. Cases facing a PH greater than 20% are highlighted in Figs. 7 and 8 by axes coloured in green; cases
that do not meet such criterion are represented with axes in red.

The second possible analysis regards the identification of critical tests and the associated cutting parameters. In order to perform
such analysis it is necessary to look at a column per time. In fact, a column represents all the training scenarios for which the
validation RTF was the same. By looking at Fig. 7, two columns seem more critical than others and face some issues in the
adaptability of the prognosis approach: namely, column 3 and column 4. The fourth column is well estimated when training is
performed on RTFs 1-4-5 (Fig. 7D-S-X). Predictions are instead unreliable for cases I and 𝑁 (Fig. 7I-N). This behaviour is evident
even from the metrics perspectives (Fig. 8), where APE is constant during the whole lives of cases I and N. The algorithm is thus
facing trouble in the adaptation with these RTFs combinations. Column 4 of Table 4 provides similar information: on average, it
exhibits the lowest PHs of the grid; rows 2 and 3 have null PHs. Convergence (Table 4) reaches higher values for cases I and 𝑁
(row 2 and 3) than for the other combinations in the column, pointing out the worse performances of the algorithm in these cases.

As for column 4, 2 cases out of 5 in column 3 have a PH below 20%. In three training cases (Fig. 7C-H-M) the algorithm correctly
converge to the true RUL trajectory. The algorithm results are stable and reliable for a large portion of the tool life, such that these
cases have PHs of 41%, 53% and 37%, respectively. The same can be seen from the APE graphs in Fig. 8, where the prediction
rrors remain really low in most part of the tool lives. Convergence of the APE exhibits low values for these cases. Cases W and R are
nstead more critical for the convergence and stability of the algorithm. In fact, there is a small region near the end-of-life of the tool
𝜆 comprised between 0.7 and 0.9) where the predictions of the algorithm overestimate the true RUL of the tool. This behaviour is
n general associated to fast and drastic changes in the flank wear evolution of a cutting tool. This phenomenon is visible in Fig. 7R,
here the test VB features constant degradation rate for the main part of tool life (up to 𝜆 = 0.75), when a sudden change in the

ate is found. For the main part of the tool life, the training and test curves almost overlap, telling the algorithm that the current
LP curves are really good predictors and only small adaptations are required. Despite this, the last parts of MLP curves (the ones

esponsible for RUL predictions) are dramatically overestimating tool life. Nevertheless, these data points are not available to the
lgorithm until the end-of-life is almost reached. As soon as they have been acquired, the PF tries to follow the new degradation
ate and adapts really fast to them. Convergence is particularly effective in highlighting this behaviour of the algorithm (see column
12

, row 4 of Table 4). A similar behaviour is the cause of failure in the prediction for the case T, and for the sudden increase of RUL
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Fig. 7. Row index corresponds to the train RTF number, whereas column index to the validation RTF number. Graphs are identified by the letter in the box.
UL predictions (blue solid lines) and their confidence bounds (blue dashed lines) are compared to the true RUL (red dash–dot line) and the allowed prediction
ounds (red dotted lines). Training (orange dashed line) and test (orange solid line) flank wear measurements are also compared. The graphs are reported on
he normalised axes. Axes are coloured in green for cases with 𝑃𝐻 ≥ 20%, in red for cases with 𝑃𝐻 < 20%. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)
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t

Fig. 8. Row index corresponds to the train RTF number, whereas column index to the validation RTF number. Graphs are identified by the letter in the
box. Prognostic metrics (𝐴𝑃𝐸 and 𝐶𝐴𝑃𝐸 ) are represented for each train-validation combination on normalised axes. Axes are coloured in green for cases with
𝑃𝐻 ≥ 20%, in red for cases with 𝑃𝐻 < 20%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)
14
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Table 5
Prognostic metrics quantitative results for PF+P3.

(a) Prognostics horizon.

PF+P3 Val. 1 Val. 2 Val. 3 Val. 4 Val. 5

Train 1 34% 27% 21% 22% 29%
Train 2 33% 27% 21% 23% 28%
Train 3 34% 28% 21% 23% 28%
Train 4 14% 30% 16% 22% 29%
Train 5 33% 27% 21% 23% 28%

(b) Normalised convergence.

PF+P3 Val. 1 Val. 2 Val. 3 Val. 4 Val. 5

Train 1 0.37 0.41 0.40 0.43 0.37
Train 2 0.40 0.38 0.43 0.44 0.38
Train 3 0.37 0.40 0.41 0.44 0.38
Train 4 0.42 0.44 0.46 0.44 0.42
Train 5 0.38 0.40 0.41 0.43 0.37

prediction in case P, in correspondence of 𝜆 between 0.2 and 0.6. Even for these cases the normalised convergence metric exhibits
really high values (8.03 and 6.65, respectively), compared to the other cases in the grid. In general, the results suggest the fact that
longer RTFs (low cutting speed) are more critical to adapt to.

The last analysis to be performed is the selection of the best training experiment. From a practical perspective, this analysis
helps a company to decide how to select the parameters for the training RTF(s) to be performed. To this objective, it is necessary
to have a look at Figs. 7 and 8, and Table 4 row-wise. In fact, once the row is fixed, the corresponding training RTF is set and
the performances are validated on all the other RTFs. Referring to Fig. 7, all the predictions in row 1 converge to the RUL ground
truths of the validation tests. The RUL median is smooth and stable and the algorithm shows good confidence. In Table 4, RTF 1 is
the only training RTF with showing good predictions for all the cases, i.e., all the PHs are greater than 20%. Convergence shows
stable results and low values (below 0.49), confirming that this choice of parameters (high cutting speed, low feed rate) is by far
the best option for training the algorithm. Rows 2, 3 and 5 are fair options for training, too. 80% of the cases show PHs higher
than 20%. In general when training on faster RTFs (high cutting speeds) seem to provide more stability, accuracy and robustness to
the algorithm. Convergence metric is in accordance, too. Case 4 is the worst scenario, not allowing for a good PH for RTFs 3 and 5
(cases R and T). Nevertheless, although the predictions for this scenario are not the best, 60% of the cases have a PH greater than
20%. This means that the algorithm performances are, in general, reliable despite the choice of the RTF cutting parameters.

3.2.2. P3 results
The results relative to RUL predictions for the hybrid implementation of P3 are reported in Fig. 9. As for the MLP case, this figure

is equivalent to Fig. 5(d) but reported for the whole grid of combinations. A second figure (Fig. 10) summarises prognostics metrics
for the whole set of combinations. In both graphs the training RTF number corresponds to the row index, while the validation one
to the column index. For clarity, graphs will be referred by the letter indicated in the box.

First and foremost, this hybrid solution allows PHs to reach the 20% threshold on 92% of the cases. This implies that in nearly
all cases, the RUL converges to the true RUL with a reasonable lead time, leaving room to the operator to change the tool in time.
Having a look at RUL predictions in Fig. 9 and errors in Fig. 10, the adaptation of the predictions shows common features among
the validation cases. Convergence table highlights a similar behaviour of the algorithm throughout the tests, with uniform values
comprised between 0.37 and 0.46. In the next paragraphs the results will be commented as for the PF+MLP case, trying to highlight
the differences between the reported cases.

The first considerations to be drawn are those related to the main diagonal of Fig. 9. These represent the cases where the train RTF
is the same as the validation one. In Fig. 9A-G-M-Y it can be seen that, as expected from the PHs, the RUL predictions are accurate
for more than the 20% of the tool life. In particular, cases A-G-Y show the highest PHs equal to 34%, 27% and 28%, respectively.
Cases M-S feature lower PHs: 21% and 22%. A first comment should be done on cases A-G-M and Y, since RUL predictions of
these combinations feature similar behaviours (actually the shape of the curve is common for most of the combinations of the grid,
with slight differences). The prediction of PF+P3 exhibits similar behaviour in these tests: a first drop in the RUL is present at the
beginning of the tool life, that leads to a constant underestimation of the tool life; a fast adaptation of the polynomials generates
a second region in which the RUL prediction is stable; at last, a final convergence brings the RUL prediction towards the real RUL
near the end-of-life of the tool. APE plots in Fig. 10A-G-M and Y are in agreement and show the same three regions described for
the RUL predictions. In Table 5, cases A-G-Y three diagonal elements feature the lowest convergence values, highlighting the fastest
adaptation of the RUL predictions, while for case M, convergence assumes a higher value, 0.41, in accordance to the lower PH.
Comments on case S will be done together with column 4 of cases in the next paragraph.

The identification of critical tests and the associated cutting parameters is performed by looking at the grid column-wise. By
looking at Figs. 9, 10 and Table 5, columns 1 and 3 are the only ones showing a PH below the 20% of the tool-life. Anyway the
performances on the rest of the combinations are good and satisfactory. An extended comment should be dedicated to column 4
15

(the axes of charts associated to these tests in Figs. 9 and 10 are highlighted in magenta). For these cases, the RUL predictions are
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Fig. 9. Row index corresponds to the train RTF number, whereas column index to the validation RTF number. Graphs are identified by the letter in the box.
UL predictions (blue solid lines) and their confidence bounds (blue dashed lines) are compared to the true RUL (red dash–dot line) and the allowed prediction
ounds (red dotted lines). Training (orange dashed line) and validation (orange solid line) flank wear measurements are also compared. Axes are coloured
n green for cases with 𝑃𝐻 ≥ 20%, in magenta for cases with 𝑃𝐻 ≥ 20% but critical for a practical implementation, in red for cases with 𝑃𝐻 < 20%. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Row index corresponds to the train RTF number, whereas column index to the validation RTF number. Graphs are identified by the letter in the box.
Prognostic metrics (𝐴𝑃𝐸 and 𝐶𝐴𝑃𝐸 ) are represented for each train-validation combination. Axes are coloured in green for cases with 𝑃𝐻 ≥ 20%, in magenta for
cases with 𝑃𝐻 ≥ 20% but critical for a practical implementation, in red for cases with 𝑃𝐻 < 20%. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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almost flat and underestimate the true RUL for a wide range of tool life. This behaviour is due to the fact that the algorithm tends
to forget the initialisation and adapts to the faster degradation visible in the first region of the flank wear evolution. Even if the PHs
re above 20% for these validation RTFs, these result are critical from a practical perspective. In fact, the algorithm predicts a null
UL for the major part of the tool life. This means that the algorithm considers the tool as failed earlier even with respect to the

ower acceptability bound of the true RUL. Thus, the PF+P3 would suggested the operator to change the tool too early. Indeed these
ases are considered as failed, despite the PH metric suggests the contrary. As a consequence, the authors believe that the field of
rognosis metrics should be considered an area that has not been fully explored, yet. Therefore, researchers should put efforts to
urther develop off-line and on-line metrics for prognosis. Another consideration to be drawn to the reader attention regards the
act that in general, the shape described for cases A-G-M and Y is recurrent in most of the grid cases. Cases P and R are the only
rid combinations that produce a PH below 20%. These cases exhibit similar characteristics associated with training and validation
B curves: the training VB curves share a similar initial region with the validation curves; in the final stage of the tool life, the
alidation VB curves show a rapid increase in slope. At the beginning, the algorithm starts to forget the initialisation and adapts to
he available experimental data. This leads to an underestimation of the real RUL at the starting instants. Then, the algorithm tries
o adapt the polynomials to the slower degradation in the region between 60% and 90% of tool life. Nevertheless, at this point of the
TF, the algorithm has not enough time to reach convergence with a PH beyond 20%. From APE plots (Fig. 10), this behaviour is
ighlighted by a longer region (between 𝜆 = 0 and about 𝜆 = 0.6) featuring higher errors with respect to the other cases. These cases
xhibit PH values of 14% and 16% for cases P and R, and convergence values slightly higher with respect to the mean convergence
n the grid, similarly to column 4 cases (Table 5).

When looking at one column per time in Fig. 9, it is worth nothing how the hybrid PF+P3 algorithm behaves in a similar way,
ndependently from the training test. In fact, each column features comparable prediction shapes. Test Q is the only one showing
smoother adaptability rate, almost constant over time with respect to the other elements of the column. Despite the convergence
etrics takes on the value of 0.44 (almost the maximum value among the other grid elements), PH is quite high and equal to 30%.
espite cases P and R do not meet the 20% threshold on PH, they seem to be isolated cases, and we consider critical, from the
pplication point of view, the prediction over column 4 for the algorithm. Thus, the slowest combination of cutting parameters,
.e. low cutting speed and low feed rate, can be considered as the most critical.

As for the MLP case, the last analysis to be performed is the selection of the best cutting parameters for the initial training of
he algorithm, which in turn means to look at the result grids row-wise. With this point of view, the hybrid PF+P3 scheme performs
ell in general. As shown in the previous paragraph each column of Fig. 9 features a similar prediction shape. Consequently, the

raining condition has a low influence on the prediction results. This is clear even from Fig. 10, PHs from Table 5 and convergences
n Table 5. The only row resulting in poorer prediction outcomes is the fourth one, where two PHs fall below 20% of the tool life.
hus, the training condition to be avoided is surely the low cutting speed and feed rate combination.

.2.3. Comparison and discussion
In this subsection, the results of the proposed hybrid schemes are compared with respect to standard applications of the PF

nd MLP. Furthermore, a comparison between the two hybrid solutions is performed, highlighting advantages and disadvantages of
ach solution. With regards to PF, two standard solutions were tested: a first one with an implementation that extended the Kalman
ilter (referred as linearPF ) in [53]; a second one, which extended the linearPF solution with a cubic process equation (referred as
ubicPF ). The performances of all the algorithms are here compared on the basis of PHs. Table 6 summarises the PHs of the full set
f algorithms in order to highlight differences between them.

First of all, the optimised linearPF and cubicPF solutions, although promising, were not as good as the ones for the conceived
ybrid approach. Since in the cases of linearPF and cubicPF there was no initialisation, results were shown for all the validation
ests only once. The adaptability of PF was kept and, for linearPF, RUL predictions reached the acceptability region near the end of
he RTFs. Nevertheless, RUL confidence intervals were really large, leading to null probabilistic PHs for all the validation scenarios
Table 6). On the contrary, the optimal cubicPF results faced low adaptability to the true RUL of RTFs, with narrow confidence
ounds. cubicPF exhibited two PH values equal to 21% out of 5. Nevertheless, the RUL behaviour for these conditions was similar
o column 4 of PF+P3, resulting in critical RUL predictions, from the application point of view. On the other hand, the MLP becomes a
tatic, non adaptive solution that predicts only the training VB curve. As a consequence, APEs are constant and have no convergence
t all. Furthermore, no statistical description of RUL is provided. Indeed, in the case of MLP, only deterministic PHs [50] could be
stimated and were reported in Table 6. Validation scenarios on the main diagonal of the table (same training and validation
ondition) provided exceptional results, with PHs equal to 100%. These results were expected since the MLP prediction curve
oincides with the training curve. Nevertheless, considering the stochastic nature of tool wear, this is never the case, even for tests
eplicated in the same cutting conditions. An example can be found in the RTFs of the Prognostic Data Challenge 2010 dataset
eported in [21], where different RTFs where performed at constant process parameters and the MLP would have failed to predict
ome cases, showing a 0% PH . More interesting is the behaviour on off-diagonal terms, where the MLP could predict correctly only
airs (train 1 — validation 3) and (train 3 — validation 1), which were featured by similar VB degradation curves. Therefore, the
LP could predict in advance 5 out of 5 main diagonal terms (100%, with a 100% PH), 2 out of 20 off-diagonal cases (10%, with
100% PH), all accounting for 28% of the validation cases. In contrast, the two hybrid architectures could predict in advance the
UL of the validation tools in much more cases: the PF+MLP solution correctly predicted 5 out of 5 diagonal validations (100%,
ith a PH greater than 20%), 15 out of 20 off-diagonal cases (75%, with a PH greater than 20%), all accounting for 80% of the

ases; the PF+P3 solution correctly predicts 4 out of 5 diagonal validations (100%, with a PH greater than 20%, but one critical for
18

he application point of view), 14 out of 20 off-diagonal cases (90%, with a PH greater than 20%, but 4 critical for the application
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Table 6
Prognostic horizons comparison. In green the PF+MLP results over 20%, in orange the PF+P3 results over 20%
and in blue the MLP results over 20%. Critical results, from the application point of view, were not highlighted,
regardless of the assumed PH value for the RTF.

PH [%] Val. 1 Val. 2 Val. 3 Val. 4 Val. 5

Train 1
PF + MLP 99% 52% 41% 32% 34%
PF + P3 34% 27% 21% 22% 29%
MLP 100% 0% 100% 0% 0%

Train 2
PF + MLP 66% 99% 53% 0% 42%
PF + P3 33% 27% 21% 23% 28%
MLP 0% 100% 0% 0% 0%

Train 3
PF + MLP 99% 55% 37% 0% 24%
PF + P3 34% 28% 21% 23% 28%
MLP 100% 0% 100% 0% 0%

Train 4
PF + MLP 30% 56% 4% 37% 0%
PF + P3 14% 30% 16% 22% 29%
MLP 0% 0% 0% 100% 0%

Train 5
PF + MLP 45% 39% 10% 22% 23%
PF + P3 33% 27% 21% 23% 28%
MLP 0% 0% 0% 0% 100%

linear PF 0% 0% 0% 0% 0%

cubic PF 21% 0% 21% 0% 0%

Table 7
Qualitative comparison of algorithm characteristics. Initialisation: whether the algorithm is trained on a RTF or not. Adaptability: whether the algorithm can
make use of online measurements or not. Speed: computational speed. RUL PDF: whether the algorithm can estimate the RUL PDF or not. Complexity: fitting
model complexity. Reliability: capability of converging when varying RTF cutting parameters. Convergence speed: the higher the convergence speed, the higher
the prognostics horizons.

Purely data-driven

Initialisation Adaptability Speed RUL PDF Complexity Reliability Conv. Speed
MLP + – + + + – + + – + +

Purely statistical

Initialisation Adaptability Speed RUL PDF Complexity Reliability Conv. Speed
linearPF – + + + + – – –
cubicPF – + + + + – –

Hybrid framework

Initialisation Adaptability Speed RUL PDF Complexity Reliability Conv. Speed
PF+MLP + + + - - + + + + + +
PF+P3 + + + – + + + +

point of view), all accounting for 72% of the cases. Indeed, it is evident that the adaptability feature of the hybrid framework allows
to predict in advance more validation cases, at the expenses of the PH of each prediction. Moreover, it is necessary to compare the
mean average prediction errors (when a tool reaches its end of life) for the three algorithms: PF+MLP scored on average 185 s on
all the tests, PF+P3 16 s, while the MLP 815 s; when averaging only on unacceptable predictions (PH below 20%), PF+MLP scored
05 s, PF+P3 12 s, MLP 1129 s. These outcomes highlight the better performances of the proposed hybrid schemes.

When comparing the two proposed hybrid schemes, the PF+P3 algorithm correctly predicted more cases than the PF+MLP (from
he PH perspective): 92% against 80%, respectively. Moreover, the average error on prediction is less for PF+P3 than for PF+MLP.
his is mainly due to cases I and N, where the PF+MLP was not able to follow the new degradation rate. Nevertheless, on average
he PHs of PF+MLP are significantly higher than those of the PF+P3 scheme (40% against 26%). Furthermore, 5 tests of the PF+P3
ere considered as critical from the application point of view. Indeed, despite the lower number of cases with 𝑃𝐻 < 20%, though

still acceptable, the PF+MLP scheme provides greater flexibility in tool replacement, with a significant time lead ratio of 1.5. This
also increases how much the operator can trust the predictions over the tool lifespan. At last, with a correct choice of the training
RTF cutting parameters, i.e., high cutting speed, low feed rate, the PF+MLP was capable of correctly predicting all the cases (with
a mean PH of 51% and a minimum PH of 32%). To summarise all the obtained results, a qualitative table (Table 7) comparing the
19

algorithms qualities was shown.
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4. Conclusions

The conceived approach allowed developing a Prognostics and Health Management framework for tool wear monitoring and
rognosis. A hybrid solution was conceived as a combination of the statistical world and the data-driven world. From this perspective,
he resulting methodology provided advantages with respect to the original separated components. Particle filter led to two
enefits with respect to a standard data-driven implementation: the capability to predict the remaining useful life in a statistical
ashion, providing its probability density function estimation; the adaptability of the data-driven model to the ongoing flank wear
egradation, in opposition to its typical static implementation [4]. On the other hand, the data-driven models increased the flexibility
f particle filter for remaining useful life prediction. In fact, in order to implement particle filter for online prognosis, a dynamical
egradation model must be known for the particular application. A combined implementation of particle filter and a data-driven
odel does not require any dynamical formulation of the degradation process.

The main results obtained through the implementation of the proposed approach regard:

• a reduced experimental effort for the training dataset. The conceived approach was trained on a single run-to-failure experiment
in order to test its adaptability. The algorithm was capable to follow online new degradation rates of cutting tools. In an
industrial application scenario, the performances of the algorithm can be improved by adding new initialisations to the initial
particles vectors, as long as cutting tools are worn out.

• generalisation with respect to different cutting conditions. The adaptability feature of the conceived approach allowed
performing prognosis with fairly well performances on all the run-to-failures carried out with cutting parameter combinations
not previously tested, limiting the needed training set dimension.

• estimation of the remaining useful life probability density function: specification required by international standards [6], but
rarely satisfied in practical applications. This allowed computing more robust prognosis metrics (prognostics horizon, [50]),
as well as to support maintenance decision making, since remaining useful life prediction bounds were available, too [4].

• good adaptability to other cutting parameters. One combination of train-validation set led the hybrid particle filter and multi-
layer perceptron to excellent performances on cases not previously tested (100% predictions with PH above 20% of the tool
life). The best scenario, from particle filter and multi-layer perceptron hybridisation, allowed reaching a minimum prognostics
horizon of 32% (on average 51% and a maximum value of 99%). Three combinations led to optimal results (80% of cases
with a prognostic horizon over 20%). It is reasonable to expect the algorithm to perform well within the cutting parameters
suggested by the tool manufacturer. Thus, the algorithm is expected to work properly when no abrupt wear phenomena occur
(i.e., when the tool is used within the suggested technological region of applicability). In this case, particular attention should
be given in the choice of the training run-to-failure process parameters. High cutting speed and low feed rates should be
chosen.

• particle filter with cubic polynomials provided the most reliable results from a metrics perspective, regardless of the training
conditions. 92% of the cases led to a prognostic horizon over 20%. Nevertheless, 5 of these cases resulted in null remaining
useful life predictions during a wide region of tool life, resulting critical from a practical perspective. Thus, only 72% of the
cases were correctly predicted. Furthermore, the hybrid solution with particle filter and multi-layer perceptron was instead
capable of making correct predictions with greater advance (mean prognostics horizon of 40% of tool life) with respect to
the polynomial counterpart (mean prognostics horizon of 26% of tool life). Thus, the hybrid solution with particle filter and
multi-layer perceptron offered a significant practical advantage.

Regarding future works, an interesting challenge would involve the integration of an adaptive real-time in-process indirect
stimation algorithm with a pit-stop direct measurement technique such that Prognostics and Health Management could be
esponsive and more robust. The inclusion of process parameter data in the multi-layer perceptron architecture could increase the
eliability of the predictions, as well.

Furthermore, the authors believe that the field of prognosis metrics should be considered an area of research not fully explored,
et. Therefore, researchers should put efforts to develop new off-line and on-line metrics for prognostics.
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