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Introduction: Since the uptake of digitizers, quantitative spiral drawing assessment

allowed gaining insight into motor impairments related to Parkinson’s disease.

However, the reduced naturalness of the gesture and the poor user-friendliness of

the data acquisition hamper the adoption of such technologies in the clinical practice.

To overcome such limitations, we present a novel smart ink pen for spiral drawing

assessment, intending to better characterize Parkinson’s disease motor symptoms.

The device, used on paper as a normal pen, is enrichedwithmotion and force sensors.

Methods: Forty-five indicators were computed from spirals acquired from 29

Parkinsonian patients and 29 age-matched controls. We investigated between-group

di�erences and correlations with clinical scores. We applied machine learning

classificationmodels to test the indicators ability to discriminate between groups, with

a focus on model interpretability.

Results: Compared to control, patients’ drawings were characterized by reduced

fluency and lower but more variable applied force, while tremor occurrence was

reflected in kinematic spectral peaks selectively concentrated in the 4–7Hz band. The

indicators revealed aspects of the disease not captured by simple trace inspection, nor

by the clinical scales, which, indeed, correlate moderately. The classification achieved

94.38% accuracy, with indicators related to fluency and power distribution emerging

as the most important.

Conclusion: Indicators were able to significantly identify Parkinson’s disease motor

symptoms. Our findings support the introduction of the smart ink pen as a

time-e�cient tool to juxtapose the clinical assessment with quantitative information,

without changing the way the classical examination is performed.
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1. Introduction

Handwriting analysis is considered a promising biomarker for PD assessment, as
impairments in the gesture can occur before the onset of typical symptoms (1). For this reason,
handwriting tasks performed on paper have been introduced, as they are simple and fast to
perform (2). Archimedes’ spiral can be a useful task in the clinical PD evaluation, since its shape
can elicit tremor in upper limbs (2, 3). However, the evaluation concerns only the produced
traces, without focusing on the underlying movements.
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Since the uptake of digitizers able to capture the coordinates of
the pen on the screen and the exerted pressure, a huge effort had
been put into quantitative spiral analysis (4), resulting in a series of
statistical and classification studies. Statistical studies aim at finding
spiral-derived features characterizing the PD population and report
a reduced velocity and applied pressure in the advanced stage of the
disease (5), a decreased fluency during OFF state (6), and an impaired
spatiotemporal drawing execution (7). Other work quantified the
effect of medication in alleviating bradykinesia and tremor amplitude
(8). Moderate correlations were found between UPDRS III and its
sub-scores, and indicators measuring spatial irregularity (9), velocity
variability (10), and pressure (5). Classification studies, starting from
spiral-derived features, exploit machine learning (ML) algorithms
to train models aiming at distinguishing PD patients from healthy
controls (11–13). The best results, obtained from 62 PD patients and
15 controls, reached classification accuracies above 95% (14–16).

Although the examined literature highlights the potential of
quantitative spiral assessment for the objective characterization of
motor symptoms, some limitations hamper its adoption. These limits
include the undermined naturalness of writing performed on the
small and frictionless surface of a digitizer, leading to an altered
execution (17). Most studies tried to restore the natural feeling using
a sheet of paper over the device surface, but inaccuracies in pen lifts
can arise due to the different pressure required by the twomedia (18).
Moreover, the use of digitizers during clinical practice may not be
straightforward and time-efficient, often requiring technical support
of an operator.

To overcome such limits, this work aims at computing indicators
from spirals drawn using an innovative smart ink pen (19–22) to: i)
discriminate between PD patients and age-matched healthy controls
using both statistical and ML methods; ii) assess the correlation with
PD clinical scales. The pen is sensorized with an inertial measurement
unit and a force sensor, and is designed to write on paper, allowing
the quantitative assessment of handwriting tasks while preserving the
gesture naturalness. The device works like a normal pen and could be
employed in the clinical routine without requiring technical support
or increasing the time spent for the visit.

2. Method

2.1. Smart ink pen

The smart ink pen (19) looks like a normal ink pen (height
147mm, maximum diameter 14.65mm weight 48 g), but it is
enriched with a load cell connected to the pen tip—to record the force
exerted on the writing surface—and with tri-axial accelerometers and
gyroscopes—to detect motion and tremor. It includes a memory and
a communication unit to store and transmit data through Bluetooth
Low Energy. The sampling frequency is set to 50 Hz.

2.2. Participants

PD patients were enrolled by IRCCS Istituti Clinici Scientifici
(ICS) Maugeri (Milan, Italy). Patients’ inclusion criteria were:

• Age ≥ 18 years;
• PD diagnosis;

• Mini Mental State Examination (MMSE) ≥ 24;
• Absence of disorders impairing handwriting, other than PD.

Politecnico di Milano (Milan, Italy) recruited the age-matched
control group, whose inclusion criteria were:

• Age ≥ 18 years;
• MMSE ≥ 24;
• No musculoskeletal, neurological, or cardiovascular disorders

impairing handwriting.

Age, gender, handedness and MMSE were collected from both
groups. Patients were evaluated through the UPDRS (23) and the
Hoehn and Yahr (H&Y) scale (24). From the UPDRS, the Jankovic
(25), Schiess (26) and Kang (27) scores for PD motor symptoms
classification were derived. High scores correspond to a tremor
dominant patient, low scores to an akinetic-rigid (26, 27), or affected
by postural instability patient (25), while medium scores to a
mixed (26, 27) or indeterminate (25) one. Participants signed an
informed consent prior to participation in the study. The protocol
was approved by the Ethical Boards of ICS Maugeri (2457 CE) and
Politecnico di Milano (n. 10/2018), for the respective recruited group.

2.3. Acquisition protocol

Subjects were asked to trace a spiral with the smart ink pen,
following a template printed on a sheet of paper, possibly avoiding
lifting the pen. The operator asked the subject to perform the spiral
drawing (maximum diameter 6 cm, five loops separated by 1.2 cm)
starting from the center and following the template line. Subjects
were sitting on a standard chair, in front of a desk (height 72 cm) and
instructed to assume an ergonomic posture, the feet resting on the
floor. Patients performed the tasks under the ON medication state
and, given the asymmetry of PD symptoms especially in the early
stage, both hands were tested. Controls performed the task only with
the dominant hand. All subjects performed the test twice.

2.4. Data analysis

Data analysis was performed in Matlab
R©

R2021b for the
indicator extraction and the statistical analysis, while ML algorithms
were implemented in Python

R©
3.8.10.

2.4.1. Indicator extraction
This phase included the pre-processing of the raw signals,

followed by the extraction of 45 relevant indicators, divided
into 7 domains. The drawing product was not considered in
the analysis. Kinematic signals were band-pass filtered (2–12Hz)
with a zero-phase, 4th-order Butterworth filter. The following
subscripts will appear in the names of the indicators extracted from
kinematics, to clarify which signal was used for the computation:
“_A” for acceleration; “_G” for angular velocity; “_G_filt” for
angular velocity filtered around the spectral peak, “_T” for tremor
contribution [extracted from the acceleration through empirical
mode decomposition (28)].
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- Kinematics. Indicators in this domain reflect the spatiotemporal
behavior of the drawing gesture. The time (Execution_Time)
and the number of strokes (Strokes_Num) required to complete
the drawing were computed. The average and the variation
coefficient of the difference between consecutive extrema in
angular velocity (ConsPeakDiff_G_Avg and ConsPeakDiff_G_CV)
were extracted (29).

- Force. The force generated while drawing is a key feature
of the disease (4, 30). The average and variation coefficient
of the exerted force were extracted (F_Avg and F_CV). To
measure force variability in terms of amplitude, we considered
the overshoot (F_OVS) (12), which is the difference between
maximum and median value, and the difference in consecutive
peaks (ConsPeakDiff_F_Avg and ConsPeakDiff_F_CV) (29). We
included the number of changes in force in the time unit (NC_F),
which quantifies the oscillations in the force profile (12).

- Smoothness. These indicators are related to the fluency in the
drawing execution, which is relevant in characterizing PD (30).
The number of extrema in kinematic signals (NC_A, NC_G) was
retained (12). The presence of high frequency movements was
investigated through the Spectral Arc Length (SPARC_G) (31); this
indicator was computed considering different thresholds (10, 20,
30, 40, 45, and 50) referring to the percentage of the peak value
considered for noise removal. The logarithmic dimensionless
squared jerk was computed for acceleration (LDLJ_A) and angular
velocity (LDLJ_G) (32).

- Tilt. The domain refers to the inclination angle of the pen and
was quantified by its average (Tilt_Avg), variance (Tilt_Var), and
coefficient of variation (Tilt_CV).

- Frequency. This domain comprises indicators that describe
the frequency content of the kinematics. We computed the
Power Spectral Density (PSD) estimates through Welch’s method
(window length = 500 samples; overlap = 50%; frequency
resolution = 0.1Hz). Given the PSD, the relative power was
computed for both acceleration and angular velocity (RPW_A and
RPW_G) in different frequency bands (0–2Hz; 2–4Hz; 4–7Hz,
and 8–12Hz). For angular velocity, the maximum relative power
in an interval around the peak was computed (RPW_G_filt_max).
The mean harmonic power (MHP_T) (33) was implemented to
measure the presence of high frequency components.

- Amplitude. These indicators measure the amplitude of kinematic
signals in time and frequency. The root mean square of
the acceleration (RMS_A) and angular velocity (RMS_G) was
computed on 10-s segments of the signals. After filtering the
angular velocity in an interval centered around the spectral
peak, the RMS was applied on 1-s windows of the resulting
signal and averaged for the extraction of the maximum value
(RMS_G_filt_max) (34). The signal-to-noise ratio (SNR_T) was
calculated as the ratio between the tremor signal filtered around
the peak frequency, and the remaining noise. To assess how
evident is the peak in the PSDs, we computed the relative
outlier level (Out_Lev_Rel_A and Out_Lev_Rel_G) as the distance
between the PSD peak and the PSD mean. The product
between the relative outlier level and the PSD peak value
produced the amplitude per outlier level (AmpXOut_Lev_A and
AmpXOut_Lev_G) (35).

- Regularity. The domain measures tremor regularity. The
occurrence of repetitive patterns in the tremor signal was
quantified through the Approximate Entropy (ApEn_T) (36).

Tremor predictability was also measured by Recurrence Rate
(RR_T) and Determinism (DET_T) (37). The Tremor Stability
Index, applied in Luft et al. (38) in postural activities, was adapted
to the spiral drawing condition (TSI_T) to measure the frequency
variability in tremor cycles. The angular velocity change rate
was computed over 1-s windows and the maximum value was
retained (G_Rate_max).

See Supplementary Table I for the summary of the indicators
computed in the study.

2.4.2. Statistical analysis
The statistical analysis was conducted with the two-fold aim

of: i) finding the most suitable indicators for distinguishing the
drawings executed with the dominant hand by patients and controls;
ii) assessing which indicators correlate with clinical scales for the
PD population. The mean of the indicators obtained in the two tests
was considered in the analysis, to capture information not based on
a single sample. For the first aim, after testing indicators normality
with the Lilliefors test, the Unpaired t-test and the Mann-Whitney
test were applied to normal and non-normal indicators, respectively.
For the second aim, following previous studies (5, 9), correlation was
assessed through Spearman’s Rank Correlation Coefficient (RHO.
|RHO| ≤ 0.3 weak; 0.3 < |RHO| < 0.7 moderate, |RHO| ≥ 0.7
strong) between the extracted indicators and a series of UPDRS-
derived scores, the H&Y scale score, and the Jankovic, Schiess and
Kang scores. The UPDRS-derived scores included the UPDRS II
tremor item (nr.16); the total UPDRS III score; the UPDRS III
resting tremor item (nr.20); the hands score, obtained as the sum of
the following UPDRS III items: action or postural tremor of hands
(nr.21), rigidity (nr.22), finger taps (nr.23), hand movements (nr.24)
and rapid alternating movements of hands (nr.25).

The sample size was chosen according to (5), where significant
correlations between indicators and clinical scales ranged from 0.356
to 0.650. We considered the mean value of these 2 correlation
results (0.503), leading to a sample size of 29 (confidence level: 95%,
power: 80%).

2.4.3. Machine learning
As we were interested in identifying the most relevant indicators

in the between-group discrimination, ML methods were employed.
Classification models were trained to differentiate between patients
and controls and model explainability techniques applied, to gain
insight about the model reasoning.

Different models were tested. The logistic regression, acting
as a reference, and three models based on decision trees:
random forest, LightGBM (39) and Catboost (40). For each
model, two subsets of indicators were evaluated: subset 1-all
45 indicators; subset 2-statistically different indicators in the
between-group comparison. Given the reduced dimensionality
of the available dataset, all trials were conducted employing
the Leave-One-Out Cross Validation approach. The classifier
performance was evaluated through Accuracy, f1 score, Recall and
Precision. To gain a better understanding about the indicators
importance and trend in the classification task, the Shapley
Additive Explanation (SHAP) technique (41, 42) was applied on the
model achieving the best performance. This allowed revealing the
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TABLE 1 Statistically significant results of the between-group comparison.

Domain Indicator PD Control p-value

Kinematics Strokes_Num [#] 1.5 (1.75) 3 (2.63) 0.005∗

Force ConsPeakDiff_F_Avg [arbitrary] 8.07 (5.17) 11.28 (6.56) 0.014∗

NC_F [#/s] 3.74± 0.68 3.09± 0.63 0.0004∗∗∗

Smoothness NC_A [#/s] 5.82 (0.51) 5.76 (0.32) 0.029∗∗

SPARC_G_10 [a.u.] −42.75 (41.99) −23.65 (18.49) 0.0009∗∗∗

SPARC_G_20 [a.u.] −25.64 (44.72) −12.62 (18.54) 0.005∗∗

SPARC_G_30 [a.u.] −15.79 (33.39) −7.31 (7.70) 0.006∗∗

SPARC_G_40 [a.u.] −6.83 (18.82) −3.85 (5.31) 0.011∗

SPARC_G_45 [a.u.] −5.35 (13.96) −3.84 (4.70) 0.019∗

SPARC_G_50 [a.u.] −3.71 (11.85) −3.00 (3.62) 0.005∗∗

LDLJ_A [a.u.] −6.69± 0.99 −5.31± 1.15 <10E-05∗∗∗

LDLJ_G [a.u.] −12.32± 2.37 −9.26± 2.40 <10E-05∗∗∗

Frequency RPW_A_0-2 [a.u.] 0.52± 0.13 0.68± 0.14 <10E-04∗∗∗

RPW_A_2-4 [a.u.] 0.16± 0.05 0.13± 0.04 0.013∗

RPW_A_4-7 [a.u.] 0.16± 0.05 0.10± 0.05 <10E-04∗∗∗

RPW_A_8-12 [a.u.] 0.15± 0.04 0.10± 0.05 <10E-04∗∗∗

RPW_G_2-4 [a.u.] 0.18 (0.09) 0.38 (0.38) <10E-05∗∗∗

RPW_G_4-7 [a.u.] 0.51± 0.16 0.36± 0.10 <10E-04∗∗∗

RPW_G_8-12 [a.u.] 0.21 (0.16) 0.17 (0.13) 0.045∗

Amplitude Out_Lev_Rel_G [a.u.] 4.03 (1.42) 3.02 (0.74) 0.002∗∗

AmpXOut_Lev_A [a.u.] 0.0063 (0.0081) 0.0013 (0.0032) 0.0006∗∗∗

AmpXOut_Lev_G [a.u.] 0.056 (0.094) 0.015 (0.014) 0.0002∗∗∗

Regularity RR_T [a.u.] 0.28 (0.37) 0.69 (0.45) 0.0002∗∗∗

DET_T [a.u.] 0.64 (0.32) 0.94 (0.27) 0.0004∗∗∗

TSI_T [Hz] 4.84± 1.37 6.00± 1.76 0.007∗∗

Indicators (measurement unit in square brackets, a.u. stands for dimensionless) trend in the 2 groups is reported: mean ± standard deviation for normal distribution, median (interquartile range)

for nonnormal distribution. The p-value (∗< 0.05, ∗∗< 0.01, and ∗∗∗
< 0.001) is reported in last column.

most sensitive indicators in the classification, thus increasing the
model interpretability.

3. Results

3.1. Participants

Thirty participants per group were recruited. However, one
patient and one control subject were excluded from the analysis
as their traces were characterized by an excessive number of pen
lifts (>20). Therefore, the analysis regarded the spirals drawn
by 29 PD patients (gender: 14M; handedness: 29 R; age: 72.52
± 7.37 yo; MMSE: 27.77 ± 1.64; UPDRS III: 19.17 ± 7.67;
years since onset: 7.34 ± 4.94) and 29 controls (gender: 11M;
handedness: 29 R; age: 72.28 ± 8.30 yo; MMSE: 28.21 ± 1.57).
The statistical analysis did not reveal between-group differences in
either age (p = 0.91) or MMSE score (p= 0.31). The demographic
and clinical characteristics for all participants are reported in
Supplementary Table II.

3.2. Statistical analysis

Table 1 summarizes the statistically significant results of the
between-group comparison. The complete results are available in
Supplementary Table III.

In the Smoothness domain, the reduced SPARC and LDLJ

indicators for the PD group, together with an increased NC_A,

reflected a less fluent drawing execution. This finding is in agreement
with the dysgraphia manifestation associated to the disease (4, 30). As
for Frequency, the occurrence of tremor in PD spirals was highlighted
by a different power distribution in the PSD for both acceleration
and angular velocity signals: patients were characterized by a higher
relative power in the band associated with PD tremor (4–7Hz),
while lower proportions were observed in the lowest frequency bands
(0–2H z for acceleration, 2–4Hz for angular velocity) (43, 44).
In line with (35), indicators related to spectral peak deviation in
the PSD (Out_Lev_Rel_G, AmpXOut_Lev_A and AmpXOut_Lev_G)
revealed significantly more evident peaks in the 2–12Hz band for the
PD group.

The importance of such domains is further explained by the
examples in Figure 1. Patient A’s spiral trace is affected by tremor and
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FIGURE 1

Spiral traces, angular velocity PSD, relevant indicators, and clinical scores for three patients (A–C) and two control subjects (A, B).

the occurrence of the symptom is well captured by the quantitative
analysis. Indeed, the PSD of angular velocity is heavily concentrated
around the peak, a fact that is represented by high values of
RPW_G_4-7 and AmpXOut_Lev_G. The reduced fluency during the
execution is well captured by the SPARC indicators. Despite looking
quite different with respect to Patient A spiral, Patient B spiral shows
a similar behavior in terms of PSD and indicators. The less visible
tremor in the trace generates lower values for RPW_G_4-7 and
AmpXOut_Lev_G, which are however above the central tendency of
the PD group. Patient C presents the best-executed spiral among the
three. However, LDLJ_A and LDLJ_G highlight a lack of smoothness
in the drawing also in this case. Tremor is not evident from the trace,
but its occurrence is detected by the analysis: the broader spectrum in
the angular velocity with respect to patients A and B is translated into
a lower RPW_G_4-7, yet approximately half of the total power.

Table 2 reports the correlations that resulted statistically
significant. High values in Jankovic, Schiess and Kang scores, and in
UPDRS III resting tremor score were associated with an increased
RPW_G_4-7 and NC_A. A reduced fluency in the drawing gesture
was correlated with the overall impact of the disease: lower SPARC
corresponded to high scores in H&Y (dominant hand) and UPDRS
III (non-dominant hand).

Although the significant correlation results, the correspondence
between clinical scales and indicators was not always respected. For
instance, considering Figure 1, patient B clinical scores are in line
with indicators: the high UPDRS scores of tremor and resting tremor
are reflected into increased RPW_G_4-7 and AmpXOut_Lev_G. On
the other hand, Patient A is reported with mild tremor andmild hand
impairment, and Jankvoic-Schiess-Kang scores assign the patient to
the postural instability/akinetic-rigid category. However, both trace
and indicators show the occurrence of tremor (RPW_G_4-7 and
AmpXOut_Lev_G) and lack of smoothness in the drawing (SPARC).

3.3. Machine learning

Concerning ML classification with subset 1 (all indicators),
the following performances were obtained: i) Logistic Regression,
accuracy 84.48%, f1 score 84.21%, recall 82.76%, precision 85.71%;
ii) Random Forest, accuracy 77.59%, f1 score 78.69%, recall 82.76%,
precision 75.00%; iii) LightGBM, accuracy 89.65%, f1 score 90.00%,
recall 93.10%, precision 87.10%; iv) Catboost, accuracy 87.93%,
f1 score 87.72%, recall 86.21%, precision 89.28%. As for subset 2
(statistically significant indicators): i) Logistic Regression, accuracy
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TABLE 2 Correlation analysis results.

Dominant Non-dominant

Clinical score Indicator RHO p-value Indicator RHO p-value

H&Y SPARC_20 [a.u.] −0.40 0.033 RPW_A_2-4 [a.u.] 0.41 0.030

SPARC_30 [a.u.] −0.37 0.049

Jankovic NC_A [#/s] 0.56 0.002 RPW_G_4-7 [a.u.] 0.45 0.017

RPW_G_4-7 [a.u.] 0.40 0.034

ConsPeakDiff_G_Avg [deg/s] 0.43 0.018

Schiess NC_A [#/s] 0.47 0.010 RPW_G_4-7 [a.u.] 0.43 0.024

RPW_G_4-7[a.u.] 0.39 0.037

Kang NC_A [#/s] 0.49 0.008 RPW_G_4-7 [a.u.] 0.44 0.020

RPW_G_4-7 [a.u.] 0.37 0.045

ConsPeakDiff_G_Avg [deg/s] 0.41 0.029

UPDRS II tremor RPW_G_4-7 [a.u.] 0.40 0.029 RPW_G_4-7 [a.u.] 0.42 0.026

UPDRS III RPW_A_2-4 [a.u.] 0.37 0.049 SPARC_30 [a.u.] −0.39 0.043

SPARC_40 [a.u.] −0.44 0.018

SPARC_45 [a.u.] −0.45 0.015

SPARC_50 [a.u.] −0.41 0.031

RPW_A_2-4 [a.u.] 0.50 0.006

UPDRS III–resting tremor NC_A [#/s] 0.43 0.020 RPW_G_4-7 [a.u.] 0.50 0.007

RPW_G_4-7[a.u.] 0.43 0.019 AmpXOut_Lev_G [a.u.] 0.38 0.048

RPW_G_8-12 [a.u.] −0.37 0.048

ConsPeakDiff_G_Avg [deg/s] 0.37 0.046

UPDRS III–hands F_CV [a.u.] 0.41 0.027 SPARC_40 [a.u.] −0.43 0.022

SPARC_45 [a.u.] −0.45 0.015

SPARC_50 [a.u.] −0.42 0.028

MHP_T [Log((mm/s2)2/Hz)] 0.40 0.033

For each clinical score, significantly correlated indicators are reported for the 2 hands with measurement unit, Spearman’s RHO and p-value.

77.59%, f1 score 79.97%, recall 79.31%, precision 76.67%; ii)
Random Forest, accuracy 79.31%, f1 score 79.99%, recall 82.76%,
precision 77.42%; iii) LightGBM, accuracy 86.21%, f1 score 86.21%,
recall 86.21%, precision 86.21%; iv) Catboost, accuracy 94.83%,
f1 score 95.08%, recall 100%, precision 90.63%. The classification
performances are summarized in Supplementary Table IV. Overall,
the best performances were obtained by the Catboost model
on subset 2, which allowed correctly classifying all PD patients,
with only 3 misclassified controls (Figure 2A). The results of the
SHAP analysis, performed on the Catboost model trained with
subset 2, provided further insight about the way the different
indicators impacted subjects’ classification (Figure 2B). The plot
presents the first ten indicators (according to SHAP results),
in decreasing order of importance for the classifier decision.
For each indicator, each point represents a subject and conveys
two pieces of information: the SHAP value and the indicator
value. The SHAP value is encoded by the horizontal position
of the point: the more positive the SHAP value, the more the
indicator pushes the classification of the subject toward the PD
group, while negative values push it in the direction of the

control group. The color represents the indicator value (red high,
blue low).

This reveals, for example, that AmpXOut_Lev_G steered the
most the classification of a subject toward the PD group (strongly
positive SHAP values). Additionally, high (red) AmpXOut_Lev_G

values are found only for positive SHAP values; this suggests that
a clearly detectable peak in the angular velocity PSD leads the
classification toward the PD group. A less variable tremor frequency
(low TSI_T) pushed the prediction toward the PD group, as blue
points are all located in the right portion of the graph. The power
distribution represented another critical aspect for the differentiation:
low RPW_G_2-4 and high RPW_G_4-7 pushed the classification
toward the PD group, as they were associated with positive SHAP
values. Low SPARC_G_50, LDLJ_A, LDLJ_G and SPARC_G_10,
indicating the lack of fluency, were associated with a classification in
the patient group (blue points only for positive SHAP value). High
NC_F pushed the prediction toward the PD group, since red points
are mainly concentrated in the right part of the plot.

The SHAP analysis allowed the investigation of the model
reasoning, including gaining insight into the misclassifications. In
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FIGURE 2

(A) Confusion matrix of the Catboost classifier trained with subset 2; (B) resulting SHAP plot.

Figure 1, Control A was one of the misclassified subjects (false
positive) by the best model, while Control B was correctly assigned
to the healthy group (true negative). Looking at Patient C (true
positive) and Control A (false positive) traces and spectra, they
both look similar. This similarity may explain why Control A was
misclassified as PD. Indeed, looking at the Frequency indicators of
Control A, RPW_G_2-4 and RPW_A_8_12 values are almost the
same of Patient C, while RPW_G_4-7 is even higher in Control
A. Similarities are found in jerk-based indicators, highlighting a
similar fluency. The AmpXOut_Lev_G value, although lower than
in Patient C, highlights the presence of a more evident spectral
peak with respect to the control group central tendency of 0.015.
The TSI_T indicator reflects a stable tremor frequency, comparable
to the one of the PD population. Altogether, these trends may be
responsible for pushing the classification of Control A toward the
PD group. Considering Control B, who was correctly assigned to
the Control group, the trace is characterized by a good accuracy.
The greater dispersion of its PSD over the entire frequency band,
indicating the absence of relevant tremor components, is translated
into comparable values of RPW_G_2-4 and RPW_G_4-7, as well as
in a reduced AmpXOut_Lev_G value. The highly variable tremor
frequency (TSI_T), and the increased fluency of the acceleration
signal (LDLJ_A) also underlie the correct classification.

4. Discussion

This work aimed at analyzing the spiral drawing execution of
29 PD patients and 29 age-matched controls, acquired with an
innovative smart ink pen, to find the most suitable indicators in
identifying and characterizing some disease motor symptoms.

A total of 45 indicators, divided into 7 domains, were extracted
from the signals recorded by the pen inertial and force sensors,
without information related to the spiral coordinates. Nevertheless,
the outcome of the performed analysis was extremely good.

Significant between-group differences emerged in 25 indicators,
with Frequency and Smoothness being the most relevant domains in
the characterization of the disease. This is coherent with the spiral

task, which is typically employed in pen-and-paper settings to elicit
upper limb tremor and abnormal movement in neurological patients
(2). Also the Force domain revealed trends in line with the literature,
with patients applying a reduced and more variable force on the
writing surface (45). The correlation analysis demonstrated that
Frequency and Smoothness indicators are related with the patients’
clinical scores. Great angular velocity power concentration in the 4–
7Hz tremor band and increased number of inversions in acceleration
were correctly associated with high clinical scores assessing the
occurrence of tremor (UPDRS II tremor, UPDRS III resting tremor,
Jankovic, Schiess and Kang scores). The execution fluency decreased
with increasing disease severity according to UPDRS III and H&Y
scores. The correlation results were comparable with previous studies
(5, 9) and, although significant, ranged from weak to moderate.
We believe this does not indicate the indicators inaccuracy in
quantifying the patients’ symptoms, but rather reflects the well-
known limitations of the clinical scales, including the low granularity
of the assigned scores and the lack of separate scores for left and
right side. Our hypothesis is supported by the identification of cases
of mismatch between the clinical scores and the pen indicators,
which were able to detect relevant alterations not visible from the
spiral trace, nor from the clinical score. For instance, in Patient
A, tremor and lack of fluency were detected in traces where their
occurrence was not evident by visual inspection. These findings show
how the use of the smart ink pen to perform clinical writing tests
could be beneficial to complement the picture that emerges from
the clinical examination with additional information related to the
patient’s conditions.

Considering classification, the performances of the Catboost
model trained on subset 2 (only statistically significant indicators
from the between-group analysis) were comparable to the best results
found in the literature (14–16). But our focus was mostly on model
explainability, a critical aspect in the path to the adoption of ML
in healthcare: the understanding of the model decision-making is
fundamental for clinicians (46). Yet, this aspect is poorly explored
in the literature (14, 15), or provides results that are difficult to
interpret (16). In our work, the SHAP analysis allowed identifying
the most relevant indicators for the classification and gaining insight
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into the model misclassifications. Indeed, highly ranked indicators
in the SHAP analysis exhibiting values similar to the PD group were
responsible for the false positive cases.

Some limitations of the study can be pointed out. The sample
size should be increased to further confirm the current results.
In the recruitment, patients were clinically assessed by a single
experienced rater; future work should study test-retest reliability of
pen indicators compared to inter-rater agreement during clinical
assessment. In future research, it would be interesting to study
the differences between dominant and nondominant hands in
both populations, as the between-group difference considered the
dominant hand only. The conducted analysis should also be evaluated
in patients at early stages of the disease—when patients’ complaints
cannot be clinically confirmed—or in preclinical stages, e.g., in PD
genetic forms.

This work showed that the indicators extracted from the smart
ink pen provide relevant information for the identification of
PD motor symptoms. Such results support the use of the smart
ink pen for PD spiral analysis in the clinical practice. Since the
device looks like a normal ink pen and is used on simple paper,
its introduction in the clinical examination would not change
the way the spiral test is already performed, neither extend the
duration of the visit. This point is crucial for adoption: given the
increasingly limited time and resources in the healthcare systems,
the smart ink pen represents a simple and time-efficient technology
that transparently adapts to the clinical practice, supporting the
graphomotor-based assessment with the identification of subtle but
relevant patterns. Simplicity and transparent monitoring are two key
requirements also for the remote health context. For this reason,
the proposed device reveals important potential applications also
in the remote patient assessment, with adequate frequency outside
the clinical setting. The use of the device in both scenarios would
allow improving and optimizing the treatment choice and result in
improved patient’s outcomes.
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