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Abstract— Peripheral nerve injuries interrupt essential 

brain-body communications, leading to significant functional 

impairments. This study evaluates five Convolutional Neural 

Network (CNN)-based classification methods for Sciatic Nerve 

Electroneurographic (ENG) signals in rats, aiming to restore the 

lost connection. The examined networks include classic CNN, 

Convolutional Tiny Transformer (CTT), InceptionTime (IT), IT 

with Derivative (IT-D), and ENG Network (ENGNet). Light 

preprocessing ensures real-time application, essential for human 

sensory systems, with a maximum delay of 300ms. Different 

approaches of data augmentation and data balancing strategies 

are used to address dataset imbalances. These approaches prove 

to be optimal for rebalancing, particularly the overlapping 

techniques, which significantly enhance the classification of the 

previously underestimated classes. 

Keywords— ENG signal, Data Augmentation, Data 
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I. INTRODUCTION 

Peripheral nerve lesions represent a clinical problem 
whose incidence on the population is constantly increasing. 
Aging and lifestyle have contributed significantly to increase 
their frequency. When an individual suffers a peripheral nerve 
injury, the body's functionality is impaired, interrupting 
communications between the brain and various parts of the 
body. These injuries generate troubles, such as permanent 
disability or impediment to daily activities, preventing the 
affected person from living a normal lifestyle. For this reason, 
the clinical picture mentioned requires finding a practical 
solution that is able to cure this type of impairment [1,2,3].  

In the field of neuroprosthetics, a noteworthy progress 
concerns the creation of implantable devices. The devices are 
designed to bypass the damaged nerve sites, creating a neural 
bypass to recover lost function. One promising approach 
involves using a closed-loop interface that measures 
Electroneurography (ENG) signals in the distal (or proximal) 
nerve portion of the lesion, with the goal of restoring patient 
sensation (or movement) bypassing the injured site. The 
implementation of this alternative approach to traditional 
medicine would allow information to be transmitted despite 
the presence of a lesion. Treatment and restoration of lost 
activity would be guaranteed to all types of patients suffering 
from this pathology [1, 2, 4]. 

The signal would be sampled from the region of interest 
via a cuff electrode, using the implanted device. For these 
measurements to be effective, a classification procedure must 
be performed to identify which stimuli were received by the 

subject and transmit the correct information upstream into the 
nervous system once the sensory input has been decoded. The 
extracted information would be used to carry out 
neuromodulation to restore the connection [1, 4]. 

Despite the high effort put into research in recent years, 
there are still many gaps associated with ENG signal 
classification [1]. Within this work, different types of 
classifiers based on Convolutional Neural Networks (CNN) 
will be analyzed to classify the ENG signals acquired from the 
sciatic nerve of rats. The aim is to understand how to carry out 
signal classification efficiently by taking into consideration 
different types of problems exploiting different classifiers. 
The issues here addressed concern: 

- Number of epochs needed to train the classifier quickly 
and efficiently; 

- Limited amount of data available to train the classifier; 

- Class imbalance, as some signals may appear more 
frequently than others; 

- Time constraint, so that the classification have to be done 
within a confidence interval below the human perception 
time; 

- Limited memory capacity of the implanted device. 

The networks treated for the analysis are of different types, 
but they are all based on the use of kernels that, by scrolling 
within the signal, allow the information contained in the ENG 
signal to be extracted and classified. The first network used is 
a classic CNN. Using 2 sets of 1D kernels, across 6 repeated 
convolutional blocks, it is able to extract temporal and spatial 
information from the signal. The second is the Convolutional 
Tiny Transformer (CTT) based on a temporal and spatial 
attention mechanism to process the input by generating output 
based on the encoded information. The third is InceptionTime 
(IT), based on the use of inception modules for time series 
classification. The network behaves like a bank of filters that 
selects information specific to the size of the window used. 
The fourth is the IT-Derivative (IT-D), which has the same 
structure as IT, but instead of containing only 3 low-pass 
filters, it includes a fourth derivative high-pass filter. This 
allows us to consider a broader frequency spectrum. Finally, 
the ENG Network (ENGNet) is analyzed that, using a 
combination of convolutional layers and clustering, is able to 
maximize the extraction of temporal and spatial patterns, thus 
proving to be the most efficient among all the considered ones. 
More information about CNN, IT, IT-D, and ENGNet are 
given in [4]. The CTT was inspired from [5] and is explained 
in Sec. III. 



II. DATASET AND PREPROCESSING 

The analysis covered in this paper was conducted using a 
database available in [6]. A second dataset reported in [7] has 
been used to verify the trend of the results. Both datasets 
exhibit similar trends. In this paper, we present results only 
from the first dataset [6]. To capture ENG signals, mechanical 
stimulations were administered to the limbs of three Sprague 
Dawley rats. An Arduino-based experimental setup was used 
to standardize stimulation levels, as detailed in [6]. Three 
categories of somatosensory stimuli were implemented on the 
right hind paw of rats: nociception, proprioception (including 
dorsiflexion and plantarflexion stimuli), and tactile sensation. 

Nociception was elicited by manually pinching each rat's 
hind paw with forceps. The procedure was repeated 50 times 
on both the nail and the heel. Each stimulus has an average 
duration of 1 second followed by 3 seconds of inactivity. To 
examine proprioceptive sensations, the rats' nails were 
attached to a bar connected to a servo motor, minimizing 
tactile stimulation. The limb was held at a constant angle of 
approximately 70º, and the bar was moved to three distinct 
angles (10º, 20º, and 30º) in both directions. Each angle was 
repeated 50 times per subject. Each stimulus has an average 
duration of 3 seconds followed by 3 seconds of no activity. 
Finally, tactile stimulation was achieved using two Von Frey 
(VF) fibers with a force of 100 and 300 grams, manipulated 
by a linear motor. This procedure was also repeated 50 times. 
Each stimulus has an average duration of 3 seconds followed 
by 6 seconds of no activity. For the case of ENGNet, a fifth 
class was added using all the rest period from all the signals. 
The touch signal, instead, it is not considered in the Rest class 
due to his mix behavior during rest period with proprioception. 

ENG signals were acquired using multi-contact sleeve 
electrode placed in the distal part of the rat sciatic nerve, with 
a sampling rate of 30 kHz. The electrode was composed of 16 
channels, 4 rings with 4 contacts each, allowing to obtain 
spatial information in the same location of the nerve and the 
progression of the signal over time. Classification was 
performed on four distinct types of activity: dorsiflexion, 
plantarflexion, touch, and pain. To ensure precise 
synchronization between stimulus and measured data, sensors 
were applied that allowed the exact start of stimulation to be 
measured. The first and last 0.25 seconds of each stimulus 
were removed to eliminate any transitional effects between the 
non-stimulation period and the stimulus period. Only static 
intervals were used for classification. 

Very light preprocessing has been carried out to obtain 
results in real-time applications [4]. This is because the 
maximum non-perceptible delay for human sensory systems 
is around 300 ms [8]. Consequently, motor or sensory 
restoration, starting from sampling up to neuromodulation, 
must fall within this time frame. This would ensure a natural 
sensation to the subject without perceiving a deficit. The ENG 
signals were pre-processed first with filtering [4]. An eighth-
order Butterworth bandpass filter in the range 0.8-2.5 kHz was 
subjected to the signals to remove the low-frequency 
contribution of EMG and other types of high-frequency noise 
[9]. A downsampling was subsequently carried out. The 
signals were reduced to 5 kHz to reduce the computational 
load and preserve the main characteristics for signal 
classification. As reported in [10] this step has no significant 
effect on the classification of the signal. Due to the high 
voltage peaks present in the raw signals, generated by external 
elements, an empirical thresholding operation was performed.  

 

Figure 1. Schematic representation of multihead attention 
mechanism [12].  

 

The physiological threshold was set to 30 µV to eliminate 
measurements whose absolute value exceeded this value. This 
threshold led to the deletion of less than 0.1% of the total data. 
Finally, the signal was divided into non-overlapping windows 
of different sizes to proceed with the classification. The 
window sizes were chosen to allow real-time operations of the 
investigated classifiers: 500 ms, 200 ms, 100 ms, and 50 ms 
[11]. Each model is trained individually for each input 
window, using a matrix as input, with the window size as the 
length and the number of electrodes as the rows. 

III. DATA CLASSIFICATION 

In this work, five types of networks are used to implement 
the ENG signal classification. For four of these, i.e. CNN, IT, 
IT-D, and ENGNet more information is reported in [4], while 
CTT is here introduced by takin inspiration from [5]. CTT is 
differs from other models as it relies mainly on the attention 
mechanism [12] and not only on convolution. As depicted in 
Fig. 1, the multihead attention mechanism of the CTT is made 
by three characteristic blocks: Spatial Transforming (ST), 
Positional Embedding (PE), and Temporal Transforming 
(TT). ST utilizes a method inspired by scaled dot product 
attention to weight signal’s channels, optimizing their use by 
prioritizing significant features and using residual connections 
for gradient stability. PE uses convolution to encode positional 
information, compressing data along channels, and segment 
them in shorter slices. Finally, TT uses multi-head attention to 
capture global temporal dependencies in the slices, enhancing 
understanding of temporal dynamics. At the end, a fully 
connected layer and a Softmax layer are added to translate the 
features extracted into predictions amongst the four classes in 
the dataset. Once the windowing of the signal was carried out, 
the windows obtained were used as input for the described 
neural networks. A separate network is created for each rat and 
for each considered window length. During the training for 
optimizing the hyperparameters of the classifiers, the risk of 
overfitting on the dataset used is always present. This risk 
arises because hyperparameters are adjusted until the model 
shows optimal performance with the data used, without 
considering any intrinsic variability in the data. To mitigate 
this problem, the dataset is divided into three subsets called 
training, validation and test sets. The model is trained on the 
training set, then the best model is selected based on the 
validation set and finally evaluated on the test set. However, 
this split into three sets reduces the amount of data available 
for learning the model. This can introduce variability due to 
the random selection of training and validation sets. 
Depending on the initial selection, different results will 
therefore always be obtained. 



 

Figure 2. Scheme for correct training of classifiers. 

Therefore, to address this problem, the Cross-Validation (CV) 
technique is commonly used. The data preparation and model 
evaluation process involve the following key steps, shown in 
Fig. 2. The complete dataset is initially divided into two 
distinct subsets: the learning and the testing set, which consists 
of 80% of the data for learning and the remaining 20% for the 
testing. A variation during the k-fold training, called 
StratifiedKFold [13], is used to return a statistical significance 
to the result: each subset contains approximately the same 
percentage of samples of each target class as the full set. The 
k-fold cross-validation procedure is performed exclusively on 
the model's learning set, which is divided into training and 
validation. In k-fold cross-validation, the training set is 
divided into k smaller subsets or "folds". For each fold, the 
model is trained on k−1 folds and validated on the last 
remaining fold. This process is repeated k times, each time 
with a different fold as the validation set. The best performing 
model, determined by its accuracy on the validation set during 
the k-fold cross-validation process, is selected. The “best” 
model is then used to make predictions on the test data, which 
were completely excluded during training and validation. This 
final step provides a new and reliable estimate of the model's 
performance on unseen data. K-fold cross-validation offers a 
solution that prevents overfitting on the test set by efficiently 
using available data. It is a powerful technique, especially 
useful in small sample scenarios, as it maximizes the use of 
data. In this work k=5 was used and the final performance was 
calculated with accuracy and F1-score, both considered as 
mean ± standard deviation over 5 folds. Furthermore, to 
prevent overfitting and improve the generalization capabilities 
of a model, a technique called Early Stopping (ES) was 
implemented. By monitoring the model's performance during 
training, when it does not improve for a certain number of 
iterations, training is stopped. Once the stopping criteria are 
reached, the training stops and the best epoch results are used 
as the final results. The ES model must ensure that at least 20 
training epochs have been completed before stopping. The 
value was chosen empirically as the minimum necessary to 
obtain results above 90% accuracy for the input window 
considered. If no improvement is detected after the predefined 
number of epochs, training is considered complete and the 
final metrics are calculated and saved. In our study the ES was 
set after the eighth epoch and the interruption of training 
occurs only after 12 consecutive epochs without any 
improvement in validation accuracy. 

IV. DATA AUGMENTATION AND DATA BALANCING 

Since the datasets have limited data and strong class 
imbalance, as reported in Fig. 3, several Data Augmentation 
(DA) and Data Balancing (DB), strategies were implemented 
to identify the optimal pipeline to consider. Both DA and DB 
approach can be applied to all ENG dataset that present this 
type of problems. 

(a) 

(b) 

Figure 3. Data unbalancing, a) case 4 classes, b) case 5 classes. 

 

Figure 4. Data overlapping 80%. 

 

The DA strategy adopted involves the superposition of the 
samples acquired from the original signals during a period of 
activity. This approach allows us to provide many more 
samples to the classifier, improving the overall accuracy and 
F1-score of the algorithm. It was decided empirically to 
overlap 80% of the samples to maximize the information 
extracted from each useful window, as illustrated in the Fig. 
4. With these overlaps, three different classification strategies 
were used. The test set remained unchanged across all training 
set configurations and was consistently used in the same 
manner as in the non-overlapping case, as illustrated in Fig. 2. 
The subdivision of the dataset always occurred in the same 
way, eliminating the samples from the training data that 
overlapped with those selected in the test data for each of the 
CV training sets. This allowed us to ensure that the presence 
of overlap did not influence the accuracy of the classifier. The 
three strategies considered and tested were [14]: 

1. Keep all overlapping samples in the training set: This 
strategy maximizes the total amount of information 
provided to the classifier by excluding from the training 
set only samples that had any overlap with the test set. 
However, data imbalance remained a factor during 
training. 

2. Use the original samples from the class with the most data 
and add randomly selected overlapping samples only in all 



other classes: this process discards many overlapping 
samples but allows us to have a balanced dataset with the 
same amount of samples for each class. However, since 
one of the classes has no overlap between its samples, this 
may impact the training process. 

3. Add 10% of the size to the class with the most randomly 
selected data and balance all other classes: this process 
discards many overlapping samples but ensures that a 
balanced dataset is presented to the classifier. It also 
ensures that all the classes have at least 10% overlapping 
samples within the training dataset, so the lack of 
overlapping samples does not significantly impact the 
classifier's performance. 

As far as the imbalance between the different classes is 
concerned, the DB was also tested using Random 
Undersampling, Random Oversampling, and Class Weights 
techniques. These strategies allow us to artificially change the 
total number of samples present in the classes by randomly 
selecting existing samples and duplicating or excluding them, 
respectively, within the training set. Once again, the test set 
was kept unchanged throughout all tests, while these 
mechanisms were only applied to the training set, both without 
overlapping but duplicating or reducing the data. In detail, the 
three strategies include [15, 16, 17, 18]: 

1. For Random Undersampling, the minority class was kept 
unchanged while all other classes were reduced to a total 
of samples that was double the value of the smallest class 
or their total, if less than the first option. This was done to 
make the dataset more homogeneous compared to the class 
that had fewer samples, without losing further information. 

2. For Random Oversampling, two methods were tested: the 
first, to oversample all classes up to the total present in the 
largest class, except in the case where the class has less 
than half of this value. In this case, only up to half of the 
total is oversampled. In the second, all classes are 
upsampled to the same value. Since there is a large 
difference between the smallest class and the others, 
increasing the total samples too much by copying them 
could actually have a negative effect on this class, leading 
to overfitting and endangering the network's ability to 
generalize its learning. 

3. Finally, a Class Weights strategy was implemented [19]. It 
is characterized by the loss function used in the 
classification process, in order to perform a weighted 
average between the components of each class. This is 
done so that smallest classes, which would have less 
importance in the overall prediction, can have a similar 
weight in the final loss value when calculating the 
performance of the algorithm at each epoch. While it does 
not change the total samples of any class, it helps balance 
the prediction process by using larger weights for smaller 
classes and vice versa. 

V. ANALITIC RESULTS 

This section will report the numerical results obtained 
during the analysis described above. Figure 5 shows the 
results obtained for F1-score. This metric will be the one used 
as an evaluation criterion as it is the most stable in the presence 
of an unbalanced dataset, as in our case. It also allows us to 
highlight the presence of any false positives or negatives [4]. 
The five networks analyzed were compared and among these 
the ENGNet was found to be the best performing one. As can 

be seen, longer windows led to better results for all networks 
as there is a higher information contribution. By reducing the 
window the information content collapses. However for real-
time implementation it is necessary to use small windows, 
which allow us to remain within the time confidence of 300ms 
[8]. Windows of 100 ms in the case of ENGNet have reported 
F1-score values above 90%, indicating the network as optimal 
for real-time applications. However, the two ITs also reported 
good values above 84%. By implementing DA techniques 
these could increase their performance making them 
equivalent candidates to ENGNet. Furthermore, both CTT and 
CNN were not suitable for a real-time application due to their 
poor results for low window values (79% and 76% F1-score 
respectively for 100ms window). In addition to the F1-score 
parameters, it is necessary to consider two other elements for 
real-time applications, the memory limitation of the implanted 
devices and the processing time to implement neuronal 
bypass. The fewer parameters there are, the easier the 
algorithm can be loaded onto the device, also reducing the 
power required. The number of parameters used per network 
is 577 956 for CNN, 50 948 for IT, 50 948 for IT-D, 5 796 for 
ENGNet and 5 484 for CTT. Considering that an implanted 
device has a typical memory of the order of 100 KB [22], and 
that a code must be loaded in order to make the device work, 
to guarantee redundancy in the memory the network must 
have a number of parameters below 10,000 otherwise it cannot 
be implemented.  

The networks were found to be optimal in terms of number 
of parameters were CTT and ENGNet. Alternatively, in the 
case of a high number of parameters a secondary external 
device must be used to carry out a classification externally to 
the body. This allows us to eliminate the problems associated 
with the memory of the implanted part but introduces new 
ones associated with the transmission of data between the two 
devices [20]. The two IT networks could be implemented in 
this second solution. The IT-D network does not have 
additional parameters since with the derivative filter it 
performs a simple subtraction operation, slightly increasing its 
performance. As regards the time parameter, a qualitative 
study was carried out which could indicate which of these 
classifiers is the fastest. Depending on the microcontroller, the 
performance may change but the speed order will remain 
unchanged. The time required to classify 100 ms windows was 
4.33ms for ENGNet, 2.71ms for CNN, 1.24ms for IT, 1.24ms 
for IT-D, and 0.07ms for CTT. The value introduced is 
exclusively associated with the classification time. To this 
must be added all the times necessary to carry out the neuronal 
bypass. For more information see [4]. Interestingly, despite 
the low F1-score values, the CTT network is the best in terms 
of number of parameters and classification execution time. 

 

 

Figure 5. Neural Network F1 score comparison. 



A. DA and DB strategy results 

To understand how the performance of the prediction 
process changes according to the length of the input, an 
analysis was conducted on the loss value during training, as 
illustrated in Fig. 6. From the figure, it can be clearly seen that 
longer input window require more epochs for the network to 
learn all the information present there, while the smaller input 
window reach a plateau much faster than the 40 epochs 
considered, also reaching overfitting and losing generalization 
capabilities if training is maintained for too long. This 
behavior was observed in all algorithms considered. The 
figure shows the behavior exclusive to CNN. This led to the 
development of the ES algorithm described above, 
consequently eliminating the problems associated with model 
overfitting. 

Regarding the problems associated with the low amount of 
data and the unbalanced dataset, the DA and DB strategies 
were developed, compared, and reported in Fig. 7. The F1-
score values obtained per 100ms window using the CNN are 
reported. The same trend was observed for all the networks. 
The results show that overlap 1, which consisted of adding all 
possible overlapping samples to the training set, gave the best 
results. In particular, by comparing the original results with 
those obtained using overlap 1, it is possible to observe a slight 
improvement of 5% for the three classes of plantarflexion, 
dorsiflexion, and touch, compared to an increase of almost 
20% for the pain stimulus. This showed that an increase in 
data led to the improvement of classification consistently. In 
particular, the cause responsible for the improvement in 
performance was the 5-fold increase in data for the pain class. 
This indicates that in future experiments greater attention must 
be paid to signals that present difficulties during classification. 
However, as far as DB is concerned, none of the techniques 
significantly improved the overall prediction ability of the 
networks. However, the subsampling results were a surprise. 
By reducing the input size to almost half of the total samples, 
the results were still comparable to the original setup and other 
balancing strategies. This indicates that even if a smaller 
amount of data is used, with a balanced dataset, the same 
performance can be achieved without the use of overlap. This 
is important because it allows us to greatly reduce the time 
spent during the training phase of a classifier. At the same 
time, all strategies, both DA and DB, improved the prediction 
of Nociception, which is the smallest class, without 
compromising the prediction of the other classes. In cases 
where a classifier exhibits similar behavior, not classifying all 
classes evenly, overlap 1 proves to be the optimal solution. 
The results show that the classification of the other classes is 
not compromised, while the prediction of the weak class is 
enhanced. This behavior is constant for all the networks 
studied, in all animles in both dataset study. 

Since the overlapping 1 technique was very satisfactory, 
the results associated with the DA technique are shown in the 
Fig. 8. It is interesting to observe how for 100 ms windows 
networks such as ENGNet and the two ITs obtain values 
higher than 95 % of F1-score. This indicates that, in particular 
for the two ITs, a larger dataset is needed to correctly train the 
classifiers. In addition, it is interesting to point out that overlap 
case IT-D is the network presenting the lowest standard 
deviation value during the CV5 process. CNN and CTT, on 
the other hand, did not present a sufficient increase in 
performance. In particular, CTT was the network that saw the 
smallest increase in performance compared to all the other 
networks. This indicates that CTT needs an extremely larger 

database than other networks in order to learn correctly. 
Furthermore, among the various networks, it was the one that 
presented the greatest overfitting problem. For this reason, by 
implementing Overlap 1 techniques, the ENGNet network and 
the two ITs were found to be the most suitable for classifying 
the ENG signal. 

B. Focus on ENGNet & Leaterature comparison 

Since ENGNet demonstrated superior performance among 
the analyzed networks, we conducted a further investigation. 
Instead  of  considering  4 classes,  we considered 5, adding  
the "rest" class. The results are summarized in Fig. 9. This 
revealed that the classifier is able to recognize not only 
different activities, but also when no sensory activity is 
present. This allows us to further improve the quality 
associated with the ENGNet network. 

Others study have been done to explore DB DA approach. 
An interesting one was made using ENG signal take from 56-
contact cuff electrode was implanted in nine rats is reported in 
[21]. They evaluated four different classifiers on a non-
overlapped dataset, achieving their best result with the Multi-
Scale Convolution Block (MSCB) classifier, yielding an F1- 

 

 

Figure 6. CNN loss value during training process. 

 

Figure 7. CNN F1-score value obtained during DA & DB 
evaluation using 100ms of input window. 

 

Figure 8. Neural Network F1-score value obtained using 
Overlap 1with 100ms of input window. 



 

Figure 9. ENGNet F1-score obtained using 5 class. 

 

score of 84.6% ± 16% on a 50 ms window (1500 samples). In 
comparison, ENGNet demonstrated superior performance 
with an F1-score of 92.1% ± 6.6 across three rats, using shorter 
window sizes (100 ms, 500 samples). Additionally, [21] 
explored three data augmentation strategies, with their best 
approach increasing the class type with the most samples to 
approximately 50,000 samples per subject. This strategy 
resulted in an F1-score of 91.7% ± 10.3%. In contrast, 
ENGNet achieved an F1-score of 94.5% ± 5.4%. These 
findings indicate that ENGNet not only outperformed the 
classifiers used in paper [21] but also did so with smaller 
window sizes. 

 

VI. CONCLUSIONS 

In this article we address the existing gaps in ENG signal 
classification by taking in consideration different 
convolutional network. The ENGNet network, along with IT-
type networks, shows promittense for managing future 
biomedical signal applications, especially for ENG data. 
Using windows equal to 100 ms were found to be the most 
optimal for real-time applications, reaching values up to 95% 
for both networks. DA strategies are able significantly to 
improve the results, improving F1 scores by up to 10%. In the 
same time subsampling stands out among DB strategies, 
reducing dataset size with minimal impact on performance. 
Overlap technique was able to improve the classification of 
underestimated group without compromising the prediction of 
the other classes. To evaluate the effectiveness in recognizing 
the presence or absence of a stimulus, a fifth class called "rest" 
was added. This class proved to be distinct and easily 
recognizable compared to all the others. Its inclusion provides 
useful information to determine whether or not activity occurs 
during the ENG recording. 

Future research could explore IT networks using ablation 
studies to reduce their parameters while keeping performance 
unchanged or improving it. Furthermore, the use of a fifth 
class, capable of identifying the presence of nervous activity 
or not, is interesting in real-time application. Other classifiers 
such as Spiking Neural Networks (SNN) could be studied in 
the future to evaluate performance [10]. A low number of 
parameters, with high levels of performance and 
computational speed will have to be imposed to ensure that 
these devices can be used in implanted devices in the future. 
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