
1. Introduction
Non-Fickian solute transport can manifest in the nonlinear scaling of dispersion, non-Gaussian concentration 
distributions, and early and late solute arrivals. Such behaviors have been documented in heterogeneous porous 
and fractured media from the pore to the regional scales (Adams & Gelhar, 1992; Berkowitz et al., 2006; Bijeljic 
et al., 2011; De Smedt & Wierenga, 1984; Neuman & Tartakovsky, 2009; Silliman & Simpson, 1987). The quan-
titative understanding of these behaviors plays a central role for the prediction of large-scale solute transport in 
environmental and industrial applications ranging from groundwater management and remediation (Domenico & 
Schwartz, 1998) to geological carbon dioxide storage (Niemi et al., 2017).

In the present work, we focus on the transport of solute in two-dimensional Darcy-scale porous media that are 
characterized by spatial variability in the hydraulic conductivity. On the local scale, that is, on length scales 
smaller that the characteristic length scale of heterogeneity, solute dispersion is dominated by diffusion and 
mechanical dispersion caused by velocity variations on the pore scale. At scales larger than the characteristic 
heterogeneity length scale, dispersion is dominated by the heterogeneity of the hydraulic conductivity field and 
flow velocity. Large-scale applications dealing with solute transport in geological media are concerned with 
scales on the order of 10–100 times the characteristic correlation length of the hydraulic conductivity, at which 
the advective component of the motion is the prevailing factor controlling the dispersive behavior of solutes 

Abstract We study the upscaling and prediction of ensemble dispersion in two-dimensional heterogeneous 
porous media with focus on transverse dispersion. To this end, we study the stochastic dynamics of the motion 
of advective particles that move along the streamlines of the heterogeneous flow field. While longitudinal 
dispersion may evolve super-linearly with time, transverse dispersion is characterized by ultraslow diffusion, 
that is, the transverse displacement variance grows asymptotically with the logarithm of time. This remarkable 
behavior is linked to the solenoidal character of the flow field, which needs to be accounted for in stochastic 
models for the two-dimensional particle motion. Here, we derive an upscaled model based on the statistical 
characterization of the motion of solute particles. To this end, we analyze particle velocities and orientations 
through equidistant sampling along the particle trajectories obtained from direct numerical simulations. This 
sampling strategy respects the flow structure, which is organized on a characteristic length scale. Perturbation 
theory shows that the longitudinal particle motion is determined by the variability of travel times, while the 
transverse motion is governed by the fluctuations of the space increments. The latter turns out to be strongly 
anticorrelated with a correlation structure that leads to ultraslow diffusion. Based on this analysis, we derive 
a stochastic model that combines a correlated Gaussian noise for the transverse motion with a spatial Markov 
model for the particle speeds. The model results are contrasted with detailed numerical simulations in 
two-dimensional heterogeneous porous media of different heterogeneity variances.

Plain Language Summary The hydraulic conductivity of environmental geological formation 
can exhibit strong spatial variations. This leads to the formation of complex flow fields, where the flow tends 
to by-pass low conductivity areas and focuses within preferential flow paths. This complexity controls the 
transport dynamics of dissolved chemicals. Moreover, due to the lack of knowledge about the details of the 
formation and its properties, we employ a stochastic approach to predict the fate of transported solutes. We 
propose a stochastic model for large-scale solute transport in two-dimensional heterogeneous Darcy flow in 
which we incorporate key physical transport mechanisms that occur in the direction aligned with and transverse 
to the mean direction of flow.

DELL’OCA AND DENTZ

© 2023 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

Stochastic Dynamics of Two-Dimensional Particle Motion in 
Darcy-Scale Heterogeneous Porous Media
Aronne Dell’Oca1   and Marco Dentz2 

1Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milan, Italy, 2Spanish National Research 
Council (IDAEA-CSIC), Barcelona, Spain

Key Points:
•  Flow topology determines transverse 

particle motion
•  Transverse motion follows a 

correlated Brownian motion
•  Stochastic time-domain random walk 

model captures full two-dimensional 
particle transport

Correspondence to:
M. Dentz,
marco.dentz@csic.es

Citation:
Dell’Oca, A., & Dentz, M. 
(2023). Stochastic dynamics of 
two-dimensional particle motion in 
Darcy-scale heterogeneous porous 
media. Water Resources Research, 
59, e2023WR035084. https://doi.
org/10.1029/2023WR035084

Received 11 APR 2023
Accepted 31 AUG 2023

Author Contributions:
Conceptualization: Aronne Dell’Oca, 
Marco Dentz
Data curation: Aronne Dell’Oca
Formal analysis: Aronne Dell’Oca
Funding acquisition: Aronne Dell’Oca, 
Marco Dentz
Investigation: Aronne Dell’Oca
Methodology: Aronne Dell’Oca, Marco 
Dentz
Project Administration: Aronne 
Dell’Oca, Marco Dentz
Software: Aronne Dell’Oca
Supervision: Marco Dentz
Validation: Aronne Dell’Oca, Marco 
Dentz
Visualization: Aronne Dell’Oca
Writing – original draft: Aronne 
Dell’Oca, Marco Dentz

10.1029/2023WR035084
RESEARCH ARTICLE

1 of 18

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-8096-260X
https://orcid.org/0000-0002-3940-282X
https://doi.org/10.1029/2023WR035084
https://doi.org/10.1029/2023WR035084
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023WR035084&domain=pdf&date_stamp=2023-09-25


Water Resources Research

DELL’OCA AND DENTZ

10.1029/2023WR035084

2 of 18

(Rubin, 2003). Thus, we focus on purely advective transport. We consider two-dimensional Darcy flows, which 
can represent flow in shallow aquifers, three-dimensional formations characterized by a large correlation length 
in one spatial direction (e.g., stratification) (Rubin, 2003), as well as flow in rough fractures (Hu et al., 2020; 
Kong & Chen, 2018; Kottwitz et al., 2020; Z. Wang et al., 2020; Zimmerman & Bodvarsson, 1996).

The hidden nature of the structure of geological formations, in combination with spatial variations in their 
hydraulic properties, has led to the development of stochastic models to predict the fate of dissolved substances 
(Berkowitz et al., 2006; Dell’Oca et al., 2018, 2019; Frippiat & Holeyman, 2008; Neuman & Tartakovsky, 2009; 
Rubin, 2003). In this context, major efforts have been devoted to conceptualize and formalize stochastic models 
to quantify average solute transport along the mean flow direction. These efforts include stochastic perturbation 
theory (Rubin, 2003), self-consistent time-domain random walk (TDRW) formulations (Cvetkovic et al., 2014; 
Fiori et al., 2013, 2015) through the use of fractional advection-diffusion equations (Benson et al., 2000; Y. Zhang 
et al., 2009), multirate mass transfer approaches (Haggerty & Gorelick, 1995; Harvey & Gorelick, 2000), and 
continuous time random walks (Comolli et al., 2019; Dentz et al., 2020; Edery et al., 2014).

Transverse dispersion can be measured by the displacement variance of solute particles (Dagan, 1989). Using stochas-
tic perturbation theory, it has been shown (Dagan, 1984) that transverse ensemble dispersion grows ballistically at 
short times, that is with the square of time, and eventually crosses over to an ultraslow dispersive behavior that is 
characterized by a growth with the logarithm of time. As a consequence, the transverse dispersion coefficient, which 
is defined in terms of the time-derivative of the displacement variance, decays asymptotically to zero in the absence 
of local dispersion. This is an exact result, which can be derived without recourse to perturbation theory (Attinger 
et al., 2004), and which has been observed in direct numerical simulations of flow and transport in two-dimensional 
heterogeneous porous media (Bellin et al., 1992; de Dreuzy et al., 2007; Salandin & Fiorotto, 1998). This ultraslow 
dispersion behavior is intimately linked to the meandering of the streamlines that arise because the flow field is 
divergence-free. The streamline meandering is illustrated in Figure 1, which shows a colormap of the flow speeds 
together with a set of purely advective particle trajectories. It is interesting to note that ultraslow dispersion emerges 
in a variety of systems characterized by crowded or confined environments such as dense colloids (Boettcher & 
Sibani, 2011) and colloidal hard-sphere system (Sperl, 2005), for vacancy-mediated diffusive motion (Bénichou 
& Oshanin, 2002), and diffusion in a random force landscapes (Havlin & Ben-Avraham, 2002), but also in human 
mobility (Song et al., 2010). In the context of flow in two-dimensional porous media, the confinement arises from 
the fact that the flow is divergence-free, which dictates the spatial organization of the streamlines.

The constraint imposed by the flow topology on transverse dispersion needs to be reflected in large-scale transport 
models for streamwise and transverse solute dispersion. The multi-dimensional CTRW approach of Dentz et al. (2004) 
represents transverse dispersion in heterogeneous media through uncorrelated Gaussian-distributed space increments 
combined with random transition times. W. Wang and Barkai (2020) derive a two-dimensional fractional-in-space 
advection-dispersion equation based on this approach to represent the bulk dispersion behavior in geological media. 
These models do not account for the topological constraints imposed by the divergence-free Darcy flow equation. In fact, 
this type of CTRW represents particle motion under spatially random retardation properties (Dentz & Castro, 2009).

Meerschaert et  al.  (2001) proposed a multi-dimensional fractional diffusion model to capture super-diffusive 
anisotropic transport regimes along the longitudinal and the transverse directions. Y. Zhang and Benson (2013) 

Figure 1. Left panel: Spatial distribution of the logarithm of the hydraulic conductivity Y(x) and Right panel: spatial 
organization of the module of the Darcy’ velocity (logarithmic scale, blue low, and green high) considering a strongly 
heterogeneous geological formation. Samples of particle trajectories are also drawn (black curves): note the emergence of 
preferential flow paths characterized by meandering-like structures as we proceed downstream from the injection location. 
The variance of Y(x) is 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 4 , its correlation length is 10 m.
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use a two-dimensional space-time fractional approach with space-dependent diffusion coefficients to model the 
vertically integrated tritium plumes of the MADE-2 experiment. Also, these frameworks do not account for the 
impact of topological constraints on transverse dispersion.

Meyer and Tchelepi  (2010) propose a Langevin model for the Markovian time evolution of streamwise and 
transverse particle velocities (Markovian velocity process, MVP) that uses drift and diffusion coefficients that 
are obtained by calibrating suitable continuous functions to Monte Carlo simulations of the direct flow and trans-
port problem. This formulation satisfactorily reproduces the evolution of longitudinal and transverse dispersion. 
Meyer et al. (2013) modify the framework by focusing on the Markovian character in time of the streamwise 
velocities and the solute particle orientation angle (Polar MVP, PMVP). The latter formulation results in model 
predictions of higher quality with respect to the MVP formulation.

Notably, Meyer (2018) and Meyer et al. (2013) highlight the time independence between the streamwise velocity 
and the orientation, which greatly simplifies the formulation of the PMVP and, more generally, of two-dimensional 
stochastic transport models.

Furthermore, Dünser and Meyer (2016) applied the PMVP to the non-stationary field macrodispersion experi-
ment (MADE) obtaining a good overall agreement with reference to Monte Carlo results. In addition, considering 
low degrees of heterogeneity, Meyer (2017) simplifies the parametrization of the MVP model by leveraging on 
perturbation theory results. In a similar fashion, Meyer  (2018) considers higher degrees of heterogeneity and 
relates the PMVP parameters to perturbation theory, while accounting for the deviation from Gaussianity in the 
distribution of the streamwise velocity.

As discussed above, currently non-Fickian transport approaches such as CTRW and FADE are not able to account 
for the impact of topological constraints on transverse dispersion. The main scientific question is how to represent 
(non-Fickian) longitudinal and transverse particle motion in an effective stochastic modeling framework that 
respects topological constraints. To this end, we study particle speeds and orientations sampled equidistantly 
along trajectories from detailed numerical flow and transport simulations. Based on this analysis and using exact 
analytical expressions for the autocorrelation function of the orientation angle, we propose a stochastic approach 
for the two-dimensional particle motion that explicitly accounts for the constraint imposed on transverse particle 
motion by the flow topology. Our formulation relates to that of Meyer (2018) and Meyer et al. (2013) since equi-
distantly sampled particle speeds and orientations can be treated as independent stochastic processes, where the 
former exhibits Markovianity. On the other hand, the equidistantly sampled particle orientation is characterized 
by a persistent degree of anticorrelation, which we take into account explicitly in the definition of our stochastic 
model.

Section 2 poses the flow and transport problem in two-dimensional heterogeneous porous media, defines the 
target variables and describes the direct numerical simulations. Section 3 reports on the quantification of the 
stochastic particle motion using perturbation theory for weak heterogeneity and in terms of a stochastic TDRW 
model for strong heterogeneity of the medium. Section 4 validates the derived two-dimensional model against 
detailed numerical simulations.

2. Flow and Transport in Heterogeneous Porous Media
In this section, we provide the details about the heterogeneous spatial arrangement of the hydraulic conductivity 
field, and the Darcy scale flow and transport problem. Furthermore, we define the transport-related observables.

2.1. Darcy Flow and Hydraulic Conductivity

Flow in porous media is described on the continuum scale by the Darcy equation (Bear, 1972)

𝐪𝐪(𝐱𝐱) = −𝐾𝐾(𝐱𝐱)∇ℎ(𝐱𝐱), (1)

where x denotes the two-dimensional space coordinate vector with components x and y, q is the Darcy flux 
vector (with components qx and qy) and h(x) is the hydraulic head. We restrict the analysis to the case in which the 
hydraulic conductivity K(x) is a scalar. We do not consider sinks or sources and consider fluid and solid matrix 
as incompressible such that ∇ ⋅ q = 0.
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In order to quantify the spatial variability of the hydraulic conductivity, we model K(x) as a multi-Gaussian random 
field with a lognormal marginal distribution (Rubin, 2003) and geometric mean KG. That is, the log-hydraulic 
conductivity Y(x) = ln[K(x)/KG] is represented as a second-order stationary multi-Gaussian random field charac-
terized by zero mean and the isotropic exponential covariance function

⟨𝑌𝑌 (𝐱𝐱)𝑌𝑌
(
𝐱𝐱
′
)
⟩ = 𝜎𝜎

2

𝑌𝑌
exp

(
−|𝐱𝐱 − 𝐱𝐱

′|∕𝓁𝓁𝑌𝑌

)
, (2)

where, 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
 and ℓY are the variance and the correlation length of Y, respectively. The angular brackets denote the 

ensemble average. In the following, all lengths are non-dimensionalized with ℓY. Note that the multi-Gaussian 
assumption for representing the variability of hydraulic conductivity in geological media has been challenged 
in the literature (Gómez-Hernández & Wen, 1998; Molz et al., 2004; Painter, 1996; Riva et al., 2015). Here, we 
choose the representation of K(x) as a multi-Gaussian random field as a generic representation of spatial variabil-
ity. As transverse dispersion is dominated by the flow field topology, the general conclusions can be transferred 
also to non-multi-Gaussian random fields.

The mean hydraulic gradient is aligned with the x-direction of the coordinate system such that the mean Darcy veloc-
ity is 〈qi(x)〉 = δi1〈q〉, where 〈q〉 denotes the mean Darcy velocity. The Eulerian fluid velocity vector v(x) is obtained 
by rescaling the flux vector as v(x) = q(x)/ϕ, where ϕ is porosity. In the following, we assume that porosity is 
constant and set it equal to one, which is equivalent to rescaling time. The Eulerian mean velocity is 〈vi(x)〉 = δi1〈v〉, 
where 〈v〉 denotes the mean Eulerian velocity. The characteristic advection time is defined by τv = ℓY /〈v〉.

The magnitude v(x) = |v(x)| of the Eulerian velocity denotes the flow speed. The Eulerian flow field is character-
ized by the distribution pe(v). It is obtained by spatial sampling as

𝑝𝑝𝑒𝑒(𝑣𝑣) = lim
𝑉𝑉→∞

1

𝑉𝑉 ∫
Ω

𝑑𝑑𝐱𝐱𝛿𝛿[𝑣𝑣 − 𝑣𝑣𝑒𝑒(𝐱𝐱)], (3)

where Ω is the sampling domain and V is its volume. Due to ergodicity, spatial sampling of ve is equivalent to 
ensemble sampling, and thus, pe(v) = 〈δ[v − ve(x)]〉.

2.2. Particle Motion

We focus on purely advective transport. Thus, we adopt a Lagrangian perspective by considering solute particles 
of equal mass whose trajectories x(t) are given by

𝑑𝑑𝐱𝐱(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝐰𝐰(𝑡𝑡), (4)

where w(t) = v[x(t)] is the isochronic Lagrangian speed and t is time. The initial particle position is denoted by 
x(t = 0) = x0.

The particle speed is given by w(t) = |w(t)|. The point PDF pt(v) of w(t) sampled over all streamlines is equal to 
the PDF pe(v) of Eulerian speeds (Hakoun et al., 2019).

𝑝𝑝𝑡𝑡(𝑣𝑣) = 𝑝𝑝𝑒𝑒(𝑣𝑣). (5)

This is a result of the fact that the flow is volume conserving. In the following, we consider a uniform initial 
distribution of particle positions across the cross-section of the medium. This implies that the distribution p0(v) 
of initial speeds v0 = w0(t = 0) = v(x0) is p0(v) = pe(v) is equal to pe(v). That is, the initial speeds distribution is 
equal to the steady state distribution.

For our analysis, it is convenient to consider the advective particle motion as a function of the streamwise distance 
(Comolli et al., 2019)

𝑑𝑑�̂�𝐱(𝑠𝑠)

𝑑𝑑𝑠𝑠
=

𝐮𝐮(𝑠𝑠)

𝑢𝑢(𝑠𝑠)
,

𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
=

1

𝑢𝑢(𝑠𝑠)
, (6)

where s is the particle streamwise coordinate, 𝐴𝐴 𝐮𝐮(𝑠𝑠) = 𝐯𝐯
[
�̂�𝐱(𝑠𝑠)

]
 is the s-Lagrangian velocity and u(s) = |u(s)| is  

the s-Lagrangian speed. The point PDF ps(v) of vs(s) is equal to the flux-weighted Eulerian speed PDF (Hakoun 
et al., 2019).
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𝑝𝑝𝑠𝑠(𝑣𝑣) =
𝑣𝑣𝑝𝑝𝑒𝑒(𝑣𝑣)

⟨𝑣𝑣𝑒𝑒⟩
. (7)

The distribution of initial speeds vs(s = 0) = v0 = vt(t = 0) is pe(v). This implies that the speed statistics evolve 
toward the steady state ps(v) with distance along the streamlines. The particle displacement in time is obtained in 
terms of 𝐴𝐴 �̂�𝐱(𝑠𝑠) as 𝐴𝐴 𝐱𝐱(𝑡𝑡) = �̂�𝐱[𝑠𝑠(𝑡𝑡)] , where s(t) = max[s|t(s) ≤ t].

Our goal is to upscale the motion of solute particles that are advected in a stationary Darcy scale heterogeneous 
flow field. Thus, we consider particle displacements relative to the injection position x0, that is, x′(t) = x(t) − x0. 
As descriptors of the stochastic motion of the solute particles, we consider the evolution of the dispersion scales 
along the longitudinal and the transverse directions, that is,

𝜎𝜎𝑥𝑥(𝑡𝑡) =

√⟨[
𝑥𝑥′(𝑡𝑡) − ⟨𝑥𝑥′(𝑡𝑡)⟩

]2⟩
, 𝜎𝜎𝑦𝑦(𝑡𝑡) =

√⟨[
𝑦𝑦′(𝑡𝑡) − ⟨𝑦𝑦′(𝑡𝑡)⟩

]2⟩
. (8)

Along the transverse direction, the average particle position is zero, that is, 〈y′(t)〉 = 0, because the mean flow 
is aligned with the x-direction of the coordinate system, and y′(t) measures the transverse displacement rela-
tive to the injection position. Note that here we define the displacement moments as averages over all particles 
across all realizations, that is, as ensemble quantities. They measure the longitudinal and transverse spreading 
across medium realizations (Kitanidis, 1988). Fiori and Janković (2005) discuss under which conditions ensem-
ble moments can be used to estimate dispersion in single aquifer realizations.

The knowledge of the dispersion scales σx and σy can be insufficient to properly characterize solute transport if the 
probability distributions of x′(t) and y′(t) are not Gaussian. Thus, we consider also the probability distributions of 
the longitudinal and transverse particle positions centered to their respective mean, that is,

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥) = ⟨𝛿𝛿
(
𝑥𝑥 −

[
𝑥𝑥
′(𝑥𝑥) − ⟨𝑥𝑥′(𝑥𝑥)⟩

])
⟩𝑥 𝑝𝑝(𝑦𝑦𝑥 𝑥𝑥) = ⟨𝛿𝛿

[
𝑦𝑦 − 𝑦𝑦

′(𝑥𝑥)
]
⟩. (9)

Note that x and y denote the sample-space variables while x′(t) and y′(t) denote random variables. Finally, we 
also consider the joint probability density function for the longitudinal and transverse particle positions, that is,

𝑝𝑝(𝐱𝐱, 𝑡𝑡) = ⟨𝛿𝛿
[
𝐱𝐱 − 𝐱𝐱

′(𝑡𝑡)
]
⟩. (10)

For simplicity of notation, we omit the primes in the following, and understand that all particle positions are 
relative to their initial position x0.

2.3. Numerical Simulations

We consider a two-dimensional domain of size 600ℓY × 150ℓY. Different realizations of Y(x) are generated using 
a sequential Gaussian simulator (Deutsch & Journel, 1992) on a regular Cartesian grid with element size equal to 
ℓY/10. We generate 100 Monte Carlo realizations of Y(x) for three different scenarios with 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 1, 2 and 4. Note 

that the number of Monte Carlo realizations is sufficient to obtain reliable transport statistics, given the extended 
initial condition of the transport problem described later in this section.

For the flow problem, we impose permeameter-like boundaries conditions, that is, no-flow along the bottom 
(y = 0) and top (y = 150ℓY) boundaries, a fixed value of the hydraulic head along the left (x = 0) boundary and 
qi = δix〈q〉 along the right (x = 600ℓY) boundary. Note that, the imposed boundary conditions lead to a uniform 
in the mean flow, 〈qi〉 = δix〈q〉. Thus, we identify x as the longitudinal (or mean flow) direction and y as the 
transverse direction. We use the same grid structure employed for the generation of Y(x). The flow problem is 
solved numerically using a mixed-finite element solver (Younes et al., 2010). The flow statistics are sampled over 
a subregion of 560ℓY × 110ℓY to avoid boundary effects.

The numerical solution of the transport problem is based on the discretized version of Equation 6,

�̂�𝐱𝑛𝑛+1 = �̂�𝐱𝑛𝑛 +
𝐯𝐯𝑒𝑒(�̂�𝐱𝑛𝑛)Δ𝑠𝑠

|𝐯𝐯𝑒𝑒(�̂�𝐱𝑛𝑛)|
, 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 +

Δ𝑠𝑠

|𝐯𝐯𝑒𝑒(�̂�𝐱𝑛𝑛)|
 (11)

where 𝐴𝐴 �̂�𝐱𝑛𝑛 = �̂�𝐱(𝑠𝑠𝑛𝑛) , tn = t(sn), sn = nΔs and Δs is the constant spatial increment here set to Δs = ℓY /100. We inject 
110 particles uniformly spaced over a straight line perpendicular to the mean flow direction covering 90ℓY. The 
line is placed at distance of 30ℓY downstream from the x = 0 boundary and at distances of 20ℓY from the lateral 
boundaries. We employ Pollock's semi-analytical method for particle tracking (Pollock, 1988).
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3. Stochastic Particle Motion
In this section, we study the stochastic dynamics of two-dimensional particle motion in random Darcy’ flow 
fields. In heterogeneous porous media, streamlines are tortuous as illustrated in Figure 1. Therefore, the velocity 
varies along the streamlines. The series {w(t)} of isochronously sampled Lagrangian speeds typically exhibits 
intermittent behavior, that is, long periods of low speeds alternate with short periods of intensively fluctuating 
high speeds (Hakoun et al., 2019). This intermittent behavior is due to the fact that flow velocities vary on a 
characteristic length scale, rather than a time scale. Therefore, the residence time in low velocities is higher than 
in high velocities. As a consequence, the equidistantly sampled velocity series {u(s)} is not intermittent. Thus, 
we consider here particle motion as a function of streamline distance as expressed by Equation 6, that is, in terms 
of a TDRW. In this context, we first recall results from second-order perturbation theory in the fluctuations of 
v(x) about its mean value, which is valid for low and moderate spatial heterogeneity. Then, we use a stochastic 
TDRW  approach to capture two-dimensional particle motion at higher degree of heterogeneity.

3.1. Perturbation Theory

We expand the equations of motion (Equation 6) up to first order in the fluctuations of the random flow field 
v′(x) = v(x) − 〈v〉. Thus, we obtain

𝑑𝑑 𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= 1,

𝑑𝑑 𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
=

𝑣𝑣𝑑𝑑

[
𝑑𝐱𝐱0(𝑠𝑠)

]

⟨𝑣𝑣⟩ ,
𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
=

1

⟨𝑣𝑣 ⟩ −
𝑣𝑣
′
𝑑𝑑

[
𝑑𝐱𝐱0(𝑠𝑠)

]

⟨𝑣𝑣2⟩ , (12)

where 𝐴𝐴 �̂�𝐱0(𝑠𝑠) = (𝑠𝑠𝑠 0)
⊤ . The superscript ⊤ denotes the transpose. Note that 𝐴𝐴 𝐴𝐴

′
𝑦𝑦(𝐱𝐱) = 𝐴𝐴𝑦𝑦(𝐱𝐱) . We consistently omit 

terms of quadratic order in the velocity fluctuations. From Equation 12, we obtain for 𝐴𝐴 �̂�𝐱(𝑠𝑠)

�̂�𝑥(𝑠𝑠) = 𝑠𝑠𝑠 �̂�𝑠(𝑠𝑠) =

𝑠𝑠

∫
0

𝑑𝑑𝑠𝑠
′
𝑣𝑣𝑠𝑠

[
�̂�𝐱0(𝑠𝑠)

]
 (13)

The particle displacement x(t) in time is given by 𝐴𝐴 𝐱𝐱(𝑡𝑡) = �̂�𝐱[𝑠𝑠(𝑡𝑡)] . With s(t) = max[s|t(s) ≤  t], the longitudinal 
displacement can be written as

�(�) = max[�||
|

�(�) ≤ �] = ⟨�⟩� +

�

∫
0

��′�′�
[

�0
(

�′
)]

, (14)

where x0(t) = (〈v〉t,0) ⊤. This formulation shows that the longitudinal particle motion is determined by the varia-
bility of travel time t(s). The transverse displacement is given by

𝑦𝑦(𝑡𝑡) =

⟨𝑣𝑣⟩𝑡𝑡

∫
0

𝑑𝑑𝑑𝑑
′
𝑣𝑣𝑦𝑦[𝐱𝐱0(𝑑𝑑)] = �̂�𝑦(⟨𝑣𝑣⟩𝑡𝑡). (15)

It is determined by the variability of the spatial increment rather than the travel time.

3.1.1. Transverse Dispersion

We consider now the transverse increment process

𝜈𝜈(𝑠𝑠) = sin[𝛼𝛼(𝑠𝑠)] =
𝑣𝑣𝑦𝑦

[
�̂�𝐱0(𝑠𝑠)

]

⟨𝑣𝑣⟩ , (16)

where α(s) is the angle between the tangent of the streamline at distance s and the x-direction. In first-order 
perturbation theory, α(s) = ν(s). That is, the statistic of ν(s) and α(s) are identical in this approximation. In order 
to determine their statistics, we first determine the statistics of vy(x). First-order perturbation theory in Y(x) 
renders vy(x) as a linear functional of Y(x) (Dagan, 1984),

𝑣𝑣𝑦𝑦(𝐱𝐱) = ⟨𝑣𝑣⟩
∞

∫
−∞

𝑑𝑑𝐱𝐱
′
𝜅𝜅𝑦𝑦

(
𝐱𝐱 − 𝐱𝐱

′
)
𝑌𝑌
(
𝐱𝐱
′
)
. (17)
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The kernel κy(x) can be written as

𝜅𝜅𝑦𝑦(𝐱𝐱) =
𝜕𝜕
2
𝐺𝐺(𝐱𝐱)

𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦
, 𝐺𝐺(𝐱𝐱) = −

1

2𝜋𝜋
ln(|𝐱𝐱|). (18)

As Y(x) is a Gaussian distributed random field, the linearity of relation (Equation 17) implies that vy(x) is also 
Gaussian distributed. Since vy(x) is a Gaussian random field, also ν(s) is Gaussian. Thus, they can be fully char-
acterized by the mean, variance 𝐴𝐴 𝐴𝐴

2

𝜈𝜈 and correlation function 𝐴𝐴 𝐴𝐴𝜈𝜈(𝑠𝑠) = ⟨𝜈𝜈(𝑠𝑠′ + 𝑠𝑠)𝜈𝜈(𝑠𝑠′)⟩∕𝜎𝜎2
𝜈𝜈 . Its mean is 〈ν(s)〉 = 0, its 

variance is 𝐴𝐴 𝐴𝐴
2
𝜈𝜈 = 𝐴𝐴

2

𝑌𝑌
∕8 and its correlation function is ρν(s) = f(s/ℓY) where (Hsu, 1999)

𝑓𝑓 (𝑠𝑠) =
72

𝑠𝑠4
−

4

𝑠𝑠2
− 8

(
1

𝑠𝑠
+

4

𝑠𝑠2
+

9

𝑠𝑠3
+

9

𝑠𝑠4

)
exp(−𝑠𝑠). (19)

The increment process ν(s) is a stationary multi-Gaussian process. In other words, it is a correlated Gaussian 
noise. Thus, transverse particle motion describes the correlated random walk.

𝑑𝑑 𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= 𝜈𝜈(𝑠𝑠). (20)

The mean transverse displacement is 𝐴𝐴 ⟨�̂�𝑦(𝑠𝑠)⟩ = 0 , and its variance 𝐴𝐴 𝐴𝐴𝐴
2

𝑦𝑦 (𝑠𝑠) is

�̂�𝜎
2
𝑦𝑦 (𝑠𝑠) = 2𝜎𝜎2

𝜈𝜈

𝑠𝑠

∫
0

𝑑𝑑𝑠𝑠
′

𝑠𝑠
′

∫
0

𝑑𝑑𝑠𝑠
′′
𝜌𝜌𝜈𝜈

(
𝑠𝑠
′′
)
. (21)

The double integral can be evaluated explicitly by inserting expression (Equation 19), which gives (Dagan, 1988)

�̂�𝜎
2
𝑦𝑦 (𝑠𝑠) = 𝜎𝜎

2

𝑌𝑌
𝓁𝓁
2

𝑌𝑌

[
ln(𝑠𝑠∕𝓁𝓁𝑌𝑌 ) −

3

2
+ 𝛾𝛾 + 𝐸𝐸1(𝑠𝑠∕𝓁𝓁𝑌𝑌 ) +

𝓁𝓁
2

𝑌𝑌

𝑠𝑠2
−

3𝓁𝓁2

𝑌𝑌
exp(−𝑠𝑠∕𝓁𝓁𝑌𝑌 )(1 + 𝑠𝑠∕𝓁𝓁𝑌𝑌 )

𝑠𝑠2

]
. (22)

where γ is the Euler-Mascheroni constant and E1(t) the exponential integral (Abramowitz & Stegun, 1972). The 
displacement variance 𝐴𝐴 𝐴𝐴

2

𝑦𝑦 (𝑡𝑡) is obtained according to Equation 15 by setting s = 〈v〉t in Equation 22. In the limit 
s ≪ 1, Equation 22 is quadratic in s,

�̂�𝜎
2

𝑦𝑦 (𝑠𝑠) = 𝜎𝜎
2

𝜈𝜈 𝑠𝑠
2
. (23)

For distances s ≫ ℓY, it evolves as

�̂�𝜎
2
𝑦𝑦 (𝑠𝑠) = 𝜎𝜎

2

𝑌𝑌
𝓁𝓁
2

𝑌𝑌
ln(𝑠𝑠∕𝓁𝓁𝑌𝑌 ). (24)

It grows with the logarithm of time, that is, it shows ultraslow diffusion, which is due to the transverse confinement 
of the streamlines of the flow field. Figure 2 shows the evolution of σy(t) given by Equation 22 for s = 〈v〉t. The 

Figure 2. Time behavior of (a) the transverse σy (insert in logarithmic scale) and (b) longitudinal dispersive scale σx (insert 
in linear scale) considering results grounded on the direct numerical simulation (direct numerical simulation [DNS]—
symbols) and the perturbation theory solution of Dagan, Equations 22 and 30 (Dagan—solid curves), for a mildly degree of 
heterogeneity, that is, 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 1 .
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perturbation theory expression is compared to direct numerical simulations for 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 1 . While the perturbation 

theory provides a good description of the overall evolution of σy(t), it underestimates σy(t) for times larger than τv. 
Nevertheless, the data confirms the predicted asymptotic ln(t) scaling of 𝐴𝐴 𝐴𝐴

2

𝑦𝑦 (𝑡𝑡) .

3.1.2. Streamwise Dispersion

For completeness, we provide here also the perturbation theory results for streamwise dispersion. The streamwise 
velocity vx(x) is given in perturbation theory by (Dagan, 1984)

𝑣𝑣
′
𝑥𝑥(𝐱𝐱) = ⟨𝑣𝑣⟩

∞

∫
−∞

𝑑𝑑𝐱𝐱
′
𝜅𝜅𝑥𝑥

(
𝐱𝐱 − 𝐱𝐱

′
)
𝑌𝑌
(
𝐱𝐱
′
)
, (25)

where the kernel κx(x) is defined by

𝜅𝜅𝑥𝑥(𝐱𝐱) = 𝛿𝛿(𝐱𝐱) −
𝜕𝜕
2
𝐺𝐺(𝐱𝐱)

𝜕𝜕𝑥𝑥2
. (26)

Thus, vx(x) is a correlated Gaussian random field. As a consequence, the Lagrangian velocity fluctuation 
𝐴𝐴 𝐴𝐴

′
𝑥𝑥(𝑡𝑡) ≡ 𝑣𝑣𝑥𝑥[𝐱𝐱0(𝑡𝑡)] is a correlated Gaussian process and x(t) satisfies the correlated random walk

𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= ⟨𝑣𝑣⟩ +𝑤𝑤

′
𝑑𝑑(𝑡𝑡). (27)

The mean of 𝐴𝐴 𝐴𝐴
′
𝑥𝑥(𝑡𝑡) is zero and its variance is given by 𝐴𝐴 𝐴𝐴

2
𝑤𝑤𝑥𝑥

= 3⟨𝑣𝑣2⟩𝐴𝐴2

𝑌𝑌
∕8 . Its correlation function is 𝐴𝐴 𝐴𝐴𝑤𝑤𝑥𝑥

(𝑡𝑡) = 𝑔𝑔(𝑡𝑡∕𝜏𝜏𝑣𝑣) 
with (Hsu, 1999)

𝑔𝑔(𝑡𝑡) =

{
20

3

1

𝑡𝑡2

[
1 − (1 + 𝑡𝑡)exp(−𝑡𝑡)

]
−

12

3

[
6

𝑡𝑡4
−

(
6

𝑡𝑡4
+

6

𝑡𝑡3
+

3

𝑡𝑡2
+

1

𝑡𝑡

)
exp(−𝑡𝑡)

]}
. (28)

The streamwise displacement variance is given by

𝜎𝜎
2
𝑥𝑥(𝑡𝑡) = 2𝜎𝜎2

𝑤𝑤𝑥𝑥

𝑡𝑡

∫
0

𝑑𝑑𝑡𝑡
′

𝑡𝑡
′

∫
0

𝑑𝑑𝑡𝑡
′′
𝜌𝜌𝑤𝑤𝑥𝑥

(
𝑡𝑡
′′
)
. (29)

Explicit evaluation of the double integral using expression (Equation 28) gives (Dagan, 1988)

𝜎𝜎
2
𝑥𝑥(𝑡𝑡) = 𝜎𝜎

2

𝑌𝑌
⟨𝑣𝑣⟩𝓁𝓁𝑌𝑌

[
2𝑡𝑡∕𝜏𝜏𝑣𝑣 − 3 ln(𝑡𝑡∕𝜏𝜏𝑣𝑣) +

3

2
− 3𝛾𝛾 − 𝐸𝐸1(𝑡𝑡∕𝜏𝜏𝑣𝑣) +

𝜏𝜏
2
𝑣𝑣 exp(−𝑡𝑡∕𝜏𝜏𝑣𝑣)(1 + 𝑡𝑡∕𝜏𝜏𝑣𝑣) − 1

𝑡𝑡2

]
. (30)

Figure 2 shows the evolution of σx(t) from Equation 30. Also here, the perturbation theory expression is a good 
quantitative descriptor for overall evolution of 𝐴𝐴 𝐴𝐴

2

𝑥𝑥 , but underestimates the numerical data at asymptotic times. In 
the following, we discuss a stochastic TDRW model to describe solute dispersion for strong spatial heterogeneity.

3.2. Stochastic Time-Domain Random Walk

We use a stochastic time-domain random approach to quantify particle motion at large spatial heterogeneity. The 
TDRW approach models particle motion at equidistant displacements along streamlines based on Equation 6. 
This approach has been used to quantify streamwise particle transport, that is, arrival time distributions, stream-
wise concentration profiles, and displacement moments in porous and fractured media (Comolli et  al., 2019; 
Hyman et al., 2019; Kang et al., 2011; Painter et al., 2008). In the following, we briefly recapitulate the modeling 
of streamwise particle motion using the approach of Comolli et al. (2019), before we analyze the dynamics of 
transverse motion.

3.2.1. Streamwise Motion

The streamwise motion of solute particles is described by the following set of equations (Comolli et al., 2019; 
Dentz et al., 2016),

𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= 𝜒𝜒

−1
,

𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
=

1

𝑣𝑣𝑠𝑠(𝑠𝑠)
, (31)
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where χ denotes the advective tortuosity (Koponen et al., 1996), which is defined as

𝜒𝜒 =
⟨𝑣𝑣𝑒𝑒⟩
⟨𝑣𝑣⟩ =

1

⟨cos[𝛼𝛼(𝑠𝑠)]⟩ , (32)

The analysis of Hakoun et al. (2019) for two-dimensional Darcy-scale heterogeneous porous media showed that 
the series of equidistant particle speeds {vs(s)} can be modeled in terms of an Ornstein-Uhlenbeck process for the 
normal scores transform ω(s) of vs(s). The normal score transform is defined  as

𝜔𝜔(𝑠𝑠) = Φ−1{𝑃𝑃𝑠𝑠[𝑣𝑣(𝑠𝑠)]}, (33)

where Φ(w) is the cumulative unit Gaussian distribution, and Φ −1(s) its inverse, Ps(v) is the cumulative distribu-
tion of vs(s). The normal score transform ω(s) satisfies

𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= −

𝑑𝑑(𝑠𝑠)

𝓁𝓁𝑐𝑐

+

√
2

𝓁𝓁𝑐𝑐

𝜂𝜂(𝑠𝑠), (34)

where ℓc denotes the correlation length, and η(s) is a Gaussian white with zero mean and covariance 〈η(s)
η(s′)〉 = δ(s − s′). Using Monte Carlo simulations for the same numerical setup as used in this paper, Hakoun 
et al. (2019) found the following empirical relationship between ℓc and the statistics of the underlying hydraulic 
conductivity field (see also Table 1),

𝓁𝓁𝑐𝑐 = 𝓁𝓁𝑌𝑌

(
0.181𝜎𝜎

2

𝑌𝑌
+ 2.221

)
. (35)

This regression is consistent with the prediction ℓc = 8ℓY/3 of perturbation theory (Cvetkovic et al., 1996).

3.2.2. Transverse Motion

Here, we analyze transverse particle motion in order to understand and quantify its stochastic dynamics. The 
equation of motion of solute particles in direction transverse to the mean flow can be written as

𝑑𝑑 𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= sin[𝛼𝛼(𝑠𝑠)]. (36)

In order to probe the transverse motion, we analyze the distribution of α(s) sampled along and across trajectories

𝑝𝑝𝛼𝛼(𝑎𝑎) =
1

𝑉𝑉0 ∫
Ω0

𝑑𝑑𝐱𝐱0
1

𝐿𝐿

𝐿𝐿

∫
0

𝑑𝑑𝑑𝑑
′
𝛿𝛿
[
𝑎𝑎 − 𝛼𝛼

(
𝑑𝑑
′
, 𝐱𝐱0

)]
, (37)

where α(s, x0) denotes the angle along the trajectory that starts at x0, Ω0 the 
set of initial points and V0 its volume. We assume that the distribution is 
stationary, that is, it does not depend on s. We also consider sampling of the 
angle α(x) in space,

𝑝𝑝
′
𝛼𝛼(𝑎𝑎) =

1

𝑉𝑉 ∫
Ω

𝑑𝑑𝐱𝐱𝛿𝛿[𝑎𝑎 − 𝛼𝛼(𝐱𝐱)]. (38)

Figure  3 shows that the two sampling methods give approximately the 
same distribution, which indicates that the angle α is independent from 
the velocity. This observation is consistent with the findings of Meyer 
et al. (2013).

The distribution pα(a) has zero mean and is symmetric around zero. In fact, 
as shown in Section 3.1, perturbation theory indicates that for low degree of 
heterogeneity α(s) is Gaussian distributed with variance 𝐴𝐴 𝐴𝐴

2
𝛼𝛼 = 𝐴𝐴

2

𝑌𝑌
∕8 . Figure 4a 

suggests that for increasing disorder, pα(a) follows a Gaussian distribution 
that is wrapped around the unit circle, that is, a wrapped Gaussian distribu-
tion (Fisher, 1993). In Figure 4, data for the angle distribution is compared 

Figure 3. Probability distribution of the angle α obtained from (circles) 
spatial sampling and (solid lines) equidistant sampling along streamlines 
for 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= (1, 2, 4) .
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with the wrapped Gaussian distribution. While perturbation theory provides 
a good estimate for the shape of pα(x), it overestimates the width of pα(a) for 
increasing 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 . Thus, we adjust 𝐴𝐴 𝐴𝐴

2

𝛼𝛼 on the base of the Eulerian statistics of the 
angle α, see previous discussion of Figure 3.

Furthermore, we consider the Lagrangian correlation function of α(s), which 
is defined by

𝜌𝜌𝛼𝛼(𝑠𝑠) =
1

𝜎𝜎
2
𝛼𝛼𝑉𝑉0

∫
Ω0

𝑑𝑑𝐱𝐱0
1

𝐿𝐿

𝐿𝐿

∫
0

𝑑𝑑𝑠𝑠
′
𝛼𝛼
(
𝑠𝑠 + 𝑠𝑠

′
, 𝐱𝐱0

)
𝛼𝛼
(
𝑠𝑠
′
, 𝐱𝐱0

)
. (39)

Again, we assume that the statistics are stationary. As shown in Section 3.1, 
perturbation theory indicates that ρα(s) is indeed stationary and given by 
ρα(s) = f(s/ℓY), where f(s) is given by Equation 19. Figure 4b shows ρα(s) for 
different 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 . The correlation decays sharply at short distances and becomes 

negative for distances larger than ℓY, that is, at larger distances, angles are 
persistently anticorrelated. Note that, expression (Equation  19) embeds 
these features while there is a quantitative mismatch with the numerical 
data. Thus, for increasing 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 , we represent the correlation function by Equa-

tion 19 as

𝜌𝜌𝛼𝛼(𝑠𝑠) = 𝑓𝑓 (𝑠𝑠∕𝓁𝓁𝑎𝑎), (40)

where the correlation length ℓa is adjusted from the tail of the empirical 
Lagrangian correlation function to capture the long-range anticorrelation. 
Based on these observations, in the following, we first pose a Markov 
model for the evolution of the angle, and then a long-range correlated 
model.

3.2.3. Ornstein-Uhlenbeck Process

Based on the observation that the correlation function ρα(s) decays rapidly 
to zero with lag-distance s, and that its distribution is Gaussian, we pose an 
Ornstein-Uhlenbeck process for α(s) that has both these properties. Thus, the 
angle follows the Langevin equation

𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= −

𝑑𝑑(𝑠𝑠)

𝓁𝓁𝑑𝑑

+

√

2
𝜎𝜎
2
𝑑𝑑

𝓁𝓁𝑑𝑑

𝜂𝜂(𝑠𝑠), (41)

where ℓα denotes a characteristic fluctuation scale of α(s). In this approach, the correlation function ρα(s) is 
exponential (Gardiner, 1986),

𝜌𝜌𝛼𝛼(𝑠𝑠) = exp(−|𝑠𝑠|∕𝓁𝓁𝛼𝛼). (42)

In order to assess, the validity of this approach, we compare it to the perturbation theory results for the displace-
ment variance 𝐴𝐴 𝐴𝐴𝐴

2

𝑦𝑦 (𝑠𝑠) for s  ≫  ℓ. Equation  24 indicates that 𝐴𝐴 𝐴𝐴𝐴
2
𝑦𝑦 (𝑠𝑠) ∼ ln(𝑠𝑠∕𝓁𝓁𝑌𝑌 ) increases with the logarithm of 

distance s. For weak heterogeneity, that is, 𝐴𝐴 𝐴𝐴
2

𝛼𝛼 ≪ 1 , the transverse displacement can be approximated by

𝑑𝑑 𝑑𝑑𝑑(𝑠𝑠)

𝑑𝑑𝑠𝑠
= 𝛼𝛼(𝑠𝑠), (43)

and the correlation length is ℓα = ℓY. Using expression (Equation 42) in Equation 21 gives for s ≫ ℓY

�̂�𝜎
2

𝑦𝑦 (𝑠𝑠) = 2𝜎𝜎
2

𝛼𝛼𝓁𝓁𝑌𝑌 𝑠𝑠𝑠 (44)

It increases linearly with distance. Thus, the asymptotic behavior of the Markov model (Equation  41) is not 
compatible with the true behavior for purely advective transport at large distances. While the behavior predicted 
by Equation  44 may be compatible with transverse dispersivities observed under realistic aquifer conditions 

Figure 4. (a) Probability distribution of α(s) grounded on (circles) the 
direct numerical simulation (DNS), wrapped Gaussian distributions with 𝐴𝐴 𝐴𝐴

2

𝛼𝛼 
parameterized by (dashed lines) perturbation theory and (solid lines) by the 
Eulerian statistics of α, for 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= (1, 2, 4) . (b) Correlation function of α(s) 

from (circles) DNS (black dashed line), perturbation theory, and (solid lines) 
perturbation theory with adjusted correlation length ℓa, for 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= (1, 4) (results 

for 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 2 are in between).
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and finite Pe, it does not reproduce the transverse dispersion behavior predicted for purely advective transport 
(Attinger et al., 2004; Dagan, 1989).

3.2.4. Stationary Correlated Gaussian Process

Careful inspection of ρα(s) in Figure 4b reveals that after the sharp initial decrease of the correlation function, 
a persistent degree of anticorrelation emerges. The latter is a fundamental aspect of transverse motion, and is a 
consequence of the solenoidal character of the flow field, that is, ∇ ⋅ q = 0. This property leads to the meandering 
of the streamlines as shown in Figure 1.

It is important to note that the negative values of ρα(s) are small. That is, while particles tend to persistently 
change the transverse direction, the magnitudes of the transverse excursions are only weakly correlated. In other 
words, the asymmetry of ρα(s) in terms of streamwise persistence and intensity of the anticorrelation are the 
key elements underpinning the limitation of particle motion in the transverse direction that manifests ultraslow 
transverse dispersion as expressed by Equation 24. As shown in Section 3.1, perturbation theory indicates that 
the angle process α(s) can be described as a stationary correlated Gaussian noise. In full analogy, for large 
disorder variance, we also model α(s) as a correlated Gaussian process characterized by the correlation function 
(Equation 40).

To generate trajectories of α(s), it is convenient to introduce the covariance function of α, which is defined by 
𝐴𝐴 𝐴𝐴𝛼𝛼(𝑠𝑠) = 𝜎𝜎

2

𝛼𝛼𝜌𝜌𝛼𝛼(𝑠𝑠) . The covariance function can be expanded as

𝐶𝐶𝛼𝛼(𝑠𝑠) =

∞∑

𝑛𝑛=1

𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛(𝑠𝑠), (45)

where the ϕn(s) are the eigenfunctions and the λn the respective eigenvalues of Cα(s) (Dell’Oca & Porta, 2020; 
D. Zhang & Lu, 2004). Thus, the stochastic process α(s) can be represented by the Karhunen-Loève expansion

𝛼𝛼(𝑠𝑠) =

∞∑

𝑛𝑛=1

√
𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛(𝑠𝑠)𝜉𝜉𝑛𝑛, (46)

where the ξn are independent identically distributed Gaussian random variables of zero mean and unit variance. 
The numerical implementation is detailed in Appendix A.

4. Transport Behaviors
In this section, we compare the predictions of the stochastic TDRW model with data from direct numerical simu-
lations for the longitudinal and transverse dispersive scales, streamwise and transverse particle distribution, as 
well as the full two-dimensional particle distributions. The direct flow and transport simulations are described in 
Section 2.3. We consider media characterized by 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= (1, 2, 4) .

The model parameters χ and 𝐴𝐴 𝐴𝐴
2

𝛼𝛼 of the stochastic TDRW model are fully constrained by the Eulerian flow prop-
erties. The correlation legnth ℓc is given by the regression in Equation 35. The correlation length ℓα is adjusted 
from the Lagrangian correlation function as outlined in Section 3.2.2. Table 1 lists the values of ℓc, χ, 𝐴𝐴 𝐴𝐴

2

𝛼𝛼 and ℓα 
for the different values of 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 .

4.1. Spatial Variance

Figure 5 shows the time behavior of the streamwise and transverse disper-
sion scales σx and σy from the direct numerical simulations and the stochastic 
TDRW model. In agreement with Comolli et al. (2019), the stochastic TDRW 
describes the full temporal evolution of σx including the ballistic regimes for 
t < τv, in which σx(t) ∼ t, and the cross-over from ballistic to the asymptotic 
behaviors 𝐴𝐴 𝐴𝐴𝑥𝑥 ∼

√
𝑡𝑡 at times t ≫ τv.

The stochastic TDRW model captures also the full time evolution of σy(t) 
including the early time ballistic regime and the transition to ultraslow diffu-
sion at times t ≫ τv. The strong increase of σy at intermediate times reflects 

𝐴𝐴 𝐴𝐴
2

𝑌𝑌
 χ 𝐴𝐴 𝐴𝐴

2

𝛼𝛼 ℓc ℓα

1 1.06 0.11 2.4 1.28

2 1.1 0.21 2.58 1.4

4 1.2 0.38 2.95 1.8

Table 1 
Values of Model Parameters in the Two-Dimensional Stochastic 
Time-Domain Random Walk Approach
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the focusing of solute particles from their initial positions into flow channels as illustrated in Figure 5c. For later 
times, the transverse displacement is determined by the meandering of these flow channels, see Figures 1 and 5c. 
This meandering confines transverse motion at large-scale, which is here qualitatively and quantitatively repro-
duced by the stochastic TDRW model.

4.2. Particle Distributions

In addition to the dispersion scales, we consider now the longitudinal and transverse particle distributions. 
Figure 6 depicts snapshots of p(x, t) and p(y, t) at different times. For p(y, t), only the positive branch of the 
symmetric distribution is shown.

Figures 6a, 6c, and 6e show satisfactory agreement between the numerical data for p(x, t) and the stochastic 
TDRW model, which is able to reproduce the full transition from initially skewed to asymptotic Gaussian behav-
ior for moderately to strongly heterogeneous media.

Figures 6b, 6d, and 6f highlight the satisfactory agreement between the numerical data for p(y, t) and the stochastic 
TDRW model from early to late times, and for all degrees of heterogeneity under consideration. We observe a rapid 
expansion of p(y, t) at the early times (e.g., t = (1, 5, 10)τv), that is, as the solute particles tend to be focused toward 
the nearest flow channels such that larger absolute values of y become more likely. As time passes (t = (20, 50, 100, 
200)τv), solute particles travel within flow channels characterized by a meandering structure which underpins the 
decreasing rate of expansion of p(y, t), consistent with the behavior of σy(t) shown in Figure 5. Note that, p(y, t) tends 
toward Gaussianity at late times (e.g., t = (100, 200)τv). Gotovac et al. (2009) considered the transverse particle distri-
bution after fixed travel distances and found that it approaches Gaussianity already after relatively short distances of 
about 5ℓY. Our results for the distribution of 𝐴𝐴 𝐴𝐴𝐴(𝑠𝑠) after fixed travel distances s (not shown) confirm these findings.

Finally, we consider the joint distribution p(x, t) of streamwise and transverse particle positions at different times. 
Figure 7 depicts p(x, t) from the numerical data in the upper half of each panel, and the stochastic TDRW model 

Figure 5. Time behavior of (a) the longitudinal σx and (b) the transverse σy (inset bilinear scale) dispersion scales for 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= (1, 2, 4) . (c) Samples of particle trajectories 

(black curves) released in a Darcy’ flow field (v, logarithmic scale, blue low and green high) for 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 4 : focusing of the trajectories in the nearest set of preferential 

flow paths underpins the intense growth of σy(t) at middle times 𝐴𝐴 ((𝑡𝑡) ∼ (1 − 10)𝜏𝜏𝑣𝑣) , while the meandering of the trajectories sustains the logarithmic growth of σy(t) at 
the large-scale 𝐴𝐴 ((𝑡𝑡) ∼ 100𝜏𝜏𝑣𝑣) .
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in the lower half, at times t = (5, 20, 50)τv for 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 1, 2, 4 . We find an overall satisfactory agreement between the 

numerical data and the stochastic TDRW model, which corroborates the assumption of treating the streamwise 
longitudinal and transverse transport as two independent stochastic processes (Meyer & Tchelepi, 2010; Meyer 
et al., 2013).

5. Conclusions
The current study is motivated by the scientific challenge of defining a stochastic model that quantifies 
(non-Fickian) ensemble solute dispersion both along the direction parallel and transverse to the mean flow.

With this objective in mind, we analyze the stochastic dynamics of two-dimensional particle motion in Darcy-scale 
heterogeneous porous media. The spatial variability of the hydraulic conductivity is represented using a stochas-
tic modeling approach such the K(x) is a realization of a lognormally distributed multi-Gaussian spatial random 
field. The Lagrangian particle dynamics are analyzed through numerical particle tracking simulations as well as 
perturbation theory by using an equidistant sampling strategy, which acknowledges the spatial organization of the 

Figure 6. Probability distribution of particle position along the longitudinal, that is, p(x, t), and transverse, that is, p(y, t) (only the positive branch of the symmetric 
distribution is depicted), directions at diverse times considering (a, d) 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 1 , (b, e) 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 2 and (c, f) 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 4 . Results based on the (symbols) direct numerical 

simulations and (solid lines) time-domain random walk (TDRW) are depicted.
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Eulerian and Lagrangian flow velocities on a characteristic length scale. The perturbation theory analysis reveals 
that longitudinal particle motion is determined by the variability of travel times along streamlines, while trans-
verse motion is determined by the fluctuation structure of transverse displacements. The former can be captured 
by a Markov model for the equidistantly sampled flow speeds, that is, flow speeds are only weakly correlated. 
The latter, however, turns out to be persistently anticorrelated as a consequence of the solenoidal character of the 
flow field. This strong anticorrelation leads to an ultraslow growth of the transverse displacement variance with 
distance and time. The transverse displacements are characterized by the series of angles between the stream-
lines and the mean flow direction. Perturbation theory shows that the angle distribution can be represented by a 
wrapped Gaussian distribution, which is valid also for increasing heterogeneity strength. Unlike the speed series, 
the angle series cannot be represented as a Markov process. The angular increments are modeled as a correlated 
Gaussian noise, which renders the angle process as a correlated Brownian motion. The Gaussian increment 
process is generated here using a Karhunen-Loeve expansion. For low medium heterogeneity, the model can be 
fully constrained by medium and flow properties using perturbation theory. For increasing heterogeneity, the 
model can be constrained by Eulerian flow statistics and the characteristic length scale of the fluctuations of the 
Lagrangian angular series.

The proposed stochastic TDRW model combines a Markov model for the particle speeds with a correlated Gauss-
ian noise for transverse particle displacements. Comparison with detailed numerical simulations for the longi-
tudinal and transverse dispersion scales and the full particle distributions shows that the model captures the 
dynamics of advective particle motion both qualitatively and quantitatively. This underpins the critical impor-
tance of correctly representing the topological constraints of the underlying Eulerian flow field in the large-scale 
particle dynamics in two-dimensional steady-state Darcy's flows (Lester et  al., 2021, 2022). These behaviors 
cannot be accounted for by two-dimensional TDRW or CTRW schemes that model transverse displacements 
as Markov processes. The proposed stochastic TDRW model is able to quantify large-scale longitudinal and 

Figure 7. Joint probability distribution of particles locations p(x, t) at times t = (20, 50) and for diverse degree of formation heterogeneity (a, b) 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 1 , (c, d) 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 2 

and (e, f) 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 4 . The colormap shows the TDRW data (blue low, yellow high). For each pannel, iso-probability contours are drawn considering the TDRW (dashed 

curves) and the direct numerical simulation (DNS) (continuous curves) results.
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transverse advective particle motion in two-dimensional divergence-free Darcy flows, which occur, for example, 
in shallow aquifers and rough fractures. The correct representation of transverse ensemble dispersion facili-
tates the assessment of the overlap of solute plumes that originate from adjacent point sources, and thus for the 
assessment of the concentration content of a mixture (Dentz et al., 2022). Furthermore, for a small initial plume, 
transverse motion determines the area swept by the plume as it migrates through the medium, and the uncertainty 
of the plume position.

The results of the proposed stochastic TDRW are strictly valid for two-dimensional formations and therefore 
of relevance for flow and transport in (quasi) two-dimensional heterogeneous media such as rough frac-
tures and shallow aquifers. At the same time, it is not straightforward to transfer the results to dispersion in 
three-dimensional porous media because, in general, the streamlines in three-dimensional formations can 
braid sustaining the linear scaling of the variance of purely advective particles at the large-scale in contrast 
with the ultraslow regime found in two-dimensional systems (Fiori & Jankovic, 2012; Lester et al., 2022). On 
the other hand, the proposed framework can be applied to flow and transport in three dimensions, that is, the 
nature of the correlation of solute velocities and orientations for three-dimensional porous formations could 
inform the stochastic model for particle motion in the two transverse directions as proposed in the current 
work.

Appendix A: Generation of Long-Range Correlated Stochastic Angle Series
The eigenvalues λn and eigenfunctions ϕn(s) of the covariance function Cα(s) are obtained from the following 
Fredholm equation

∫
∞

0

𝐶𝐶𝛼𝛼

(
𝑠𝑠 − 𝑠𝑠

′
)
𝜙𝜙𝑛𝑛

(
𝑠𝑠
′
)
𝑑𝑑𝑠𝑠

′ = 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛(𝑠𝑠). (A1)

For general Cα(s), Equation A1 can be solved numerically as outlined in the following. First, we discretize s into 
N intervals of length Δs such that si = iΔs. Then, we define the symmetric N × N covariance matrix Cij as

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝛼𝛼(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖)Δ𝑠𝑠𝑠 (A2)

The eigenfunctions are discretized as 𝐴𝐴 𝐴𝐴
(𝑛𝑛)

𝑖𝑖
= 𝐴𝐴𝑛𝑛(𝑠𝑠𝑖𝑖) and are represented by the eigenvectors ϕ (n). The angle process 

is discretized as αi = α(si) and represented by the vector α.

The discrete version of Equation A1 is

𝐂𝐂𝝓𝝓(𝑛𝑛)
= 𝜆𝜆𝑛𝑛𝝓𝝓

(𝑛𝑛)
. (A3)

The eigenvalues of C are obtained from

det(𝐂𝐂 − 𝜆𝜆𝕀𝕀) = 0, (A4)

where 𝐴𝐴 𝕀𝕀  is the identity matrix. The eigenvector ϕ (n) corresponding to the nth eigenvalue λn is obtained by solv-
ing Equation A3. Thus realizations of the correlated Gaussian process α are generated according to the discrete 
version of Equation 46 as

𝜶𝜶 =

𝑁𝑁𝜆𝜆∑

𝑛𝑛=1

√
𝜆𝜆𝑛𝑛𝝓𝝓

(𝑛𝑛)
𝜉𝜉𝑛𝑛. (A5)

Here, we set Nλ = 1,000 < N modes. Furthermore, we set Δs = lY/10 and N = 5,000. The computation of the 
eigenvalues and eigenvectors is carried out with standard commands in MATLAB (MathWorks, 2015).

Data Availability Statement
The computational data and codes for data analysis supporting this work are available upon request and at the 
open-access repository (Dell’Oca & Dentz, 2023). We thank Olaf Cirpka, Aldo Fiori, and an anonymous reviewer 
for valuable comments and suggestions.

 19447973, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035084 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

DELL’OCA AND DENTZ

10.1029/2023WR035084

16 of 18

References
Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions. Dover Publications.
Adams, E. E., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resources 

Research, 28(12), 3293–3307. https://doi.org/10.1029/92wr01757
Attinger, S., Dentz, M., & Kinzelbach, W. (2004). Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. 

Stochastic Environmental Research and Risk Assessment, 18(1), 9–15. https://doi.org/10.1007/s00477-003-0160-6
Bear, J. (1972). Dynamics of fluids in porous media. American Elsevier.
Bellin, A., Salandin, P., & Rinaldo, A. (1992). Simulation of dispersion in heterogeneous porous formations: Statistics, first-order theories, 

convergence of computations. Water Resources Research, 28(9), 2211–2227. https://doi.org/10.1029/92wr00578
Bénichou, O., & Oshanin, G. (2002). Ultraslow vacancy-mediated tracer diffusion in two dimensions: The Einstein relation verified. Phys-

ical Review E—Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66(3), 031101. https://doi.org/10.1103/
physreve.66.031101

Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a fractional advection-dispersion equation. Water Resources 
Research, 36(6), 1403–1412. https://doi.org/10.1029/2000wr900031

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random 
walk. Reviews of Geophysics, 44(2). https://doi.org/10.1029/2005rg000178

Bijeljic, B., Mostaghimi, P., & Blunt, M. J. (2011). Signature of non-Fickian solute transport in complex heterogeneous porous media. Physical 
Review Letters, 107(20), 204502. https://doi.org/10.1103/physrevlett.107.204502

Boettcher, S., & Sibani, P. (2011). Ageing in dense colloids as diffusion in the logarithm of time. Journal of Physics: Condensed Matter, 23(6), 
065103. https://doi.org/10.1088/0953-8984/23/6/065103

Comolli, A., Hakoun, V., & Dentz, M. (2019). Mechanisms, upscaling, and prediction of anomalous dispersion in heterogeneous porous media. 
Water Resources Research, 55(10), 8197–8222. https://doi.org/10.1029/2019wr024919

Cvetkovic, V., Cheng, H., & Wen, X. H. (1996). Analysis of nonlinear effects on tracer migration in heterogeneous aquifers using Lagrangian 
travel time statistics. Water Resources Research, 32(6), 1671–1680. https://doi.org/10.1029/96wr00278

Cvetkovic, V., Fiori, A., & Dagan, G. (2014). Solute transport in aquifers of arbitrary variability: A time-domain random walk formulation. Water 
Resources Research, 50(7), 5759–5773. https://doi.org/10.1002/2014wr015449

Dagan, G. (1984). Solute transport in heterogeneous porous formations. Journal of Fluid Mechanics, 145(1), 151–177. https://doi.org/10.1017/
S0022112084002858

Dagan, G. (1988). Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resources Research, 24(9), 
1491–1500. https://doi.org/10.1029/WR024i009p01491

Dagan, G. (1989). Flow and transport in porous formations. Springer.
de Dreuzy, J.-R., Beaudoin, A., & Erhel, J. (2007). Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical 

simulations. Water Resources Research, 43(10). https://doi.org/10.1029/2006wr005394
Dell’Oca, A., & Dentz, M. (2023). Dataset for stochastic dynamics of two-dimensional particle motion in Darcy-scale heterogeneous porous 

media [Dataset]. Authorea. https://doi.org/10.17632/2bkc7gp2sd
Dell’Oca, A., & Porta, G. M. (2020). Characterization of flow through random media via Karhunen–Loève expansion: An information theory 

perspective. GEM-International Journal on Geomathematics, 11(1), 1–18. https://doi.org/10.1007/s13137-020-00155-x
Dell’Oca, A., Riva, M., Ackerer, P., & Guadagnini, A. (2019). Solute transport in random composite media with uncertain dispersivities. Advances 

in Water Resources, 128, 48–58. https://doi.org/10.1016/j.advwatres.2019.04.005
Dell’Oca, A., Riva, M., Carrera, J., & Guadagnini, A. (2018). Solute dispersion for stable density-driven flow in randomly heterogeneous porous 

media. Advances in Water Resources, 111, 329–345. https://doi.org/10.1016/j.advwatres.2017.10.040
Dentz, M., & Castro, A. (2009). Effective transport dynamics in porous media with heterogeneous retardation properties. Geophysical Research 

Letters, 36(3), L03403. https://doi.org/10.1029/2008gl036846
Dentz, M., Comolli, A., Hakoun, V., & Hidalgo, J. J. (2020). Transport upscaling in highly heterogeneous aquifers and the prediction of tracer 

dispersion at the made site. Geophysical Research Letters, 47(22), e2020GL088292. https://doi.org/10.1029/2020gl088292
Dentz, M., Cortis, A., Scher, H., & Berkowitz, B. (2004). Time behavior of solute transport in heterogeneous media: Transition from anomalous 

to normal transport. Advances in Water Resources, 27(2), 155–173. https://doi.org/10.1016/j.advwatres.2003.11.002
Dentz, M., Hidalgo, J. J., & Lester, D. (2022). Mixing in porous media: Concepts and approaches across scales (pp. 1–49). Transport in Porous 

Media.
Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T., & Lester, D. R. (2016). Continuous time random walks for the evolution of Lagrangian 

velocities. Physical Review Fluids, 1(7), 074004. https://doi.org/10.1103/physrevfluids.1.074004
De Smedt, F., & Wierenga, P. J. (1984). Solute transfer through columns of glass beads. Water Resources Research, 20(2), 225–232. https://doi.

org/10.1029/wr020i002p00225
Deutsch, C. V., & Journel, A. G. (1992). GSLIB: Geostatistical software library and user’s guide. Oxford University Press.
Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506). Wiley.
Dünser, S., & Meyer, D. W. (2016). Predicting field-scale dispersion under realistic conditions with the polar Markovian velocity process model. 

Advances in Water Resources, 92, 271–283. https://doi.org/10.1016/j.advwatres.2016.04.012
Edery, Y., Guadagnini, A., Scher, H., & Berkowitz, B. (2014). Origins of anomalous transport in heterogeneous media: Structural and dynamic 

controls. Water Resources Research, 50(2), 1490–1505. https://doi.org/10.1002/2013wr015111
Fiori, A., Dagan, G., Jankovic, I., & Zarlenga, A. (2013). The plume spreading in the made transport experiment: Could it be predicted by stochas-

tic models? Water Resources Research, 49(5), 2497–2507. https://doi.org/10.1002/wrcr.20128
Fiori, A., & Janković, I. (2005). Can we determine the transverse macrodispersivity by using the method of moments? Advances in Water 

Resources, 28(6), 589–599. https://doi.org/10.1016/j.advwatres.2004.09.009
Fiori, A., & Jankovic, I. (2012). On preferential flow, channeling and connectivity in heterogeneous porous formations. Mathematical Geosciences, 

44(2), 133–145. https://doi.org/10.1007/s11004-011-9365-2
Fiori, A., Zarlenga, A., Gotovac, H., Jankovic, I., Volpi, E., Cvetkovic, V., & Dagan, G. (2015). Advective transport in heterogeneous aquifers: 

Are proxy models predictive? Water Resources Research, 51(12), 9577–9594. https://doi.org/10.1002/2015wr017118
Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge University Press. Retrieved from https://www.cambridge.org/core/books/

statistical-analysis-of-circular-data/324A46F3941A5CD641ED0B0910B2C33F
Frippiat, C. C., & Holeyman, A. E. (2008). A comparative review of upscaling methods for solute transport in heterogeneous porous media. 

Journal of Hydrology, 362(1–2), 150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015

Acknowledgments
We acknowledge funding from the 
European Union's Horizon 2020 research 
and innovation programme under 
the H2020-MSCA-IF-2019 scheme 
with the grant agreement No. 895152 
(MixUQ). M.D. acknowledges the 
support of the Spanish Research Agency 
(10.13039/501100011033), Spanish 
Ministry of Science and Innovation 
through grants CEX2018-000794-S and 
HydroPore PID2019-106887GB-C31. 
A.D. gratefully acknowledges P. Ackerer 
for sharing the numerical code for the 
flow problem.

 19447973, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035084 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/92wr01757
https://doi.org/10.1007/s00477-003-0160-6
https://doi.org/10.1029/92wr00578
https://doi.org/10.1103/physreve.66.031101
https://doi.org/10.1103/physreve.66.031101
https://doi.org/10.1029/2000wr900031
https://doi.org/10.1029/2005rg000178
https://doi.org/10.1103/physrevlett.107.204502
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1029/2019wr024919
https://doi.org/10.1029/96wr00278
https://doi.org/10.1002/2014wr015449
https://doi.org/10.1017/S0022112084002858
https://doi.org/10.1017/S0022112084002858
https://doi.org/10.1029/WR024i009p01491
https://doi.org/10.1029/2006wr005394
https://doi.org/10.17632/2bkc7gp2sd
https://doi.org/10.1007/s13137-020-00155-x
https://doi.org/10.1016/j.advwatres.2019.04.005
https://doi.org/10.1016/j.advwatres.2017.10.040
https://doi.org/10.1029/2008gl036846
https://doi.org/10.1029/2020gl088292
https://doi.org/10.1016/j.advwatres.2003.11.002
https://doi.org/10.1103/physrevfluids.1.074004
https://doi.org/10.1029/wr020i002p00225
https://doi.org/10.1029/wr020i002p00225
https://doi.org/10.1016/j.advwatres.2016.04.012
https://doi.org/10.1002/2013wr015111
https://doi.org/10.1002/wrcr.20128
https://doi.org/10.1016/j.advwatres.2004.09.009
https://doi.org/10.1007/s11004-011-9365-2
https://doi.org/10.1002/2015wr017118
https://www.cambridge.org/core/books/statistical-analysis-of-circular-data/324A46F3941A5CD641ED0B0910B2C33F
https://www.cambridge.org/core/books/statistical-analysis-of-circular-data/324A46F3941A5CD641ED0B0910B2C33F
https://doi.org/10.1016/j.jhydrol.2008.08.015


Water Resources Research

DELL’OCA AND DENTZ

10.1029/2023WR035084

17 of 18

Gardiner, C. W. (1986). Handbook of stochastic methods for physics, chemistry and the natural sciences. Applied Optics, 25, 3145.
Gómez-Hernández, J. J., & Wen, X.-H. (1998). To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Advances in Water 

Resources, 21(1), 47–61. https://doi.org/10.1016/s0309-1708(96)00031-0
Gotovac, H., Cvetkovic, V., & Andricevic, R. (2009). Flow and travel time statistics in highly heterogeneous porous media. Water Resources 

Research, 45(7). https://doi.org/10.1029/2008wr007168
Haggerty, R., & Gorelick, S. M. (1995). Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heter-

ogeneity. Water Resources Research, 31(10), 2383–2400. https://doi.org/10.1029/95wr10583
Hakoun, V., Comolli, A., & Dentz, M. (2019). Upscaling and prediction of Lagrangian velocity dynamics in heterogeneous porous media. Water 

Resources Research, 55(5), 3976–3996. https://doi.org/10.1029/2018wr023810
Harvey, C., & Gorelick, S. M. (2000). Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the macrodispersion 

experiment (made) site? Water Resources Research, 36(3), 637–650. https://doi.org/10.1029/1999WR900247
Havlin, S., & Ben-Avraham, D. (2002). Diffusion in disordered media. Advances in Physics, 51(1), 187–292. https://doi.

org/10.1080/00018730110116353
Hsu, K.-C. (1999). A general method for obtaining analytical expressions for the first-order velocity covariance in heterogeneous porous media. 

Water Resources Research, 35(7), 2273–2277. https://doi.org/10.1029/1999WR900117
Hu, Y., Xu, W., Zhan, L., Ye, Z., & Chen, Y. (2020). Non-Fickian solute transport in rough-walled fractures: The effect of contact area. Water, 

12(7), 2049. https://doi.org/10.3390/w12072049
Hyman, J. D., Dentz, M., Hagberg, A., & Kang, P. K. (2019). Linking structural and transport properties in three-dimensional fracture networks. 

Journal of Geophysical Research: Solid Earth, 124(2), 1185–1204. https://doi.org/10.1029/2018jb016553
Kang, P. K., Dentz, M., Le Borgne, T., & Juanes, R. (2011). Spatial Markov model of anomalous transport through random lattice networks. 

Physical Review Letters, 107(18), 180602. https://doi.org/10.1103/physrevlett.107.180602
Kitanidis, P.  K. (1988). Prediction by the method of moments of transport in a heterogeneous formation. Journal of Hydrology, 102(1–4), 

453–473. https://doi.org/10.1016/0022-1694(88)90111-4
Kong, B., & Chen, S. (2018). Numerical simulation of fluid flow and sensitivity analysis in rough-wall fractures. Journal of Petroleum Science 

and Engineering, 168, 546–561. https://doi.org/10.1016/j.petrol.2018.04.070
Koponen, A., Kataja, M., & Timonen, J. (1996). Tortuous flow in porous media. Physical Review E, 54(1), 406–410. https://doi.org/10.1103/

physreve.54.406
Kottwitz, M. O., Popov, A. A., Baumann, T. S., & Kaus, B. J. (2020). The hydraulic efficiency of single fractures: Correcting the cubic law 

parameterization for self-affine surface roughness and fracture closure. Solid Earth, 11(3), 947–957. https://doi.org/10.5194/se-11-947-2020
Lester, D. R., Dentz, M., Bandopadhyay, A., & Le Borgne, T. (2021). The Lagrangian kinematics of three-dimensional Darcy flow. Journal of 

Fluid Mechanics, 918.
Lester, D. R., Dentz, M., Bandopadhyay, A., & Le Borgne, T. (2022). Fluid deformation in isotropic Darcy flow. Journal of Fluid Mechanics, 

945, A18. https://doi.org/10.1017/jfm.2022.556
MathWorks. (2015). Matlab version: 8.6.0 (r2015b). The MathWorks Inc. Retrieved from https://www.mathworks.com
Meerschaert, M. M., Benson, D. A., & Baeumer, B. (2001). Operator Lévy motion and multiscaling anomalous diffusion. Physical Review E—

Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 63(2), 021112. https://doi.org/10.1103/physreve.63.021112
Meyer, D. W. (2017). Relating recent random walk models with classical perturbation theory for dispersion predictions in the heterogeneous 

porous subsurface. Advances in Water Resources, 105, 227–232. https://doi.org/10.1016/j.advwatres.2017.04.017
Meyer, D. W. (2018). A simple velocity random-walk model for macrodispersion in mildly to highly heterogeneous subsurface formations. 

Advances in Water Resources, 121, 57–67. https://doi.org/10.1016/j.advwatres.2018.07.015
Meyer, D. W., & Tchelepi, H. A. (2010). Particle-based transport model with Markovian velocity processes for tracer dispersion in highly heter-

ogeneous porous media. Water Resources Research, 46(11). https://doi.org/10.1029/2009wr008925
Meyer, D. W., Tchelepi, H. A., & Jenny, P. (2013). A fast simulation method for uncertainty quantification of subsurface flow and transport. Water 

Resources Research, 49(5), 2359–2379. https://doi.org/10.1002/wrcr.20240
Molz, F. J., Rajaram, H., & Lu, S. (2004). Stochastic fractal-based models of heterogeneity in subsurface hydrology: Origins, applications, limi-

tations, and future research questions. Reviews of Geophysics, 42(1). https://doi.org/10.1029/2003rg000126
Neuman, S. P., & Tartakovsky, D. M. (2009). Perspective on theories of non-Fickian transport in heterogeneous media. Advances in Water 

Resources, 32(5), 670–680. https://doi.org/10.1016/j.advwatres.2008.08.005
Niemi, A., Bear, J., & Bensabat, J. (2017). Geological storage of CO2 in deep saline formations (Vol. 29). Springer.
Painter, S. L. (1996). Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resources Research, 32(5), 

1183–1195. https://doi.org/10.1029/96wr00286
Painter, S. L., Cvetkovic, V., & Pensado, O. (2008). Time-domain random-walk algorithms for simulating radionuclide transport in fractured 

porous rock. Nuclear Technology, 163(1), 129–136. https://doi.org/10.13182/nt08-a3976
Pollock, D. (1988). Semianalytical computation of path lines for finite-difference models. Ground Water, 26(6), 743–750. https://doi.

org/10.1111/j.1745-6584.1988.tb00425.x
Riva, M., Neuman, S. P., & Guadagnini, A. (2015). New scaling model for variables and increments with heavy-tailed distributions. Water 

Resources Research, 51(6), 4623–4634. https://doi.org/10.1002/2015wr016998
Rubin, Y. (2003). Applied stochastic hydrogeology. Oxford University Press.
Salandin, P., & Fiorotto, V. (1998). Solute transport in highly heterogeneous aquifers. Water Resources Research, 34(5), 949–961. https://doi.

org/10.1029/98WR00219
Silliman, S. E., & Simpson, E. S. (1987). Laboratory evidence of the scale effect in dispersion of solutes in porous media. Water Resources 

Research, 23(8), 1667–1673. https://doi.org/10.1029/wr023i008p01667
Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010). Modelling the scaling properties of human mobility. Nature Physics, 6(10), 818–823. 

https://doi.org/10.1038/nphys1760
Sperl, M. (2005). Nearly logarithmic decay in the colloidal hard-sphere system. Physical Review E—Statistical Physics, Plasmas, Fluids, and 

Related Interdisciplinary Topics, 71(6), 060401. https://doi.org/10.1103/physreve.71.060401
Wang, W., & Barkai, E. (2020). Fractional advection-diffusion-asymmetry equation. Physical Review Letters, 125(24), 240606. https://doi.

org/10.1103/PhysRevLett.125.240606
Wang, Z., Xu, C., Dowd, P., Xiong, F., & Wang, H. (2020). A nonlinear version of the Reynolds equation for flow in rock fractures with complex 

void geometries. Water Resources Research, 56(2), e2019WR026149. https://doi.org/10.1029/2019wr026149
Younes, A., Ackerer, P., & Delay, F. (2010). Mixed finite elements for solving 2-D diffusion-type equations. Reviews of Geophysics, 48(1). https://

doi.org/10.1029/2008rg000277

 19447973, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035084 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/s0309-1708(96)00031-0
https://doi.org/10.1029/2008wr007168
https://doi.org/10.1029/95wr10583
https://doi.org/10.1029/2018wr023810
https://doi.org/10.1029/1999WR900247
https://doi.org/10.1080/00018730110116353
https://doi.org/10.1080/00018730110116353
https://doi.org/10.1029/1999WR900117
https://doi.org/10.3390/w12072049
https://doi.org/10.1029/2018jb016553
https://doi.org/10.1103/physrevlett.107.180602
https://doi.org/10.1016/0022-1694(88)90111-4
https://doi.org/10.1016/j.petrol.2018.04.070
https://doi.org/10.1103/physreve.54.406
https://doi.org/10.1103/physreve.54.406
https://doi.org/10.5194/se-11-947-2020
https://doi.org/10.1017/jfm.2022.556
https://www.mathworks.com
https://doi.org/10.1103/physreve.63.021112
https://doi.org/10.1016/j.advwatres.2017.04.017
https://doi.org/10.1016/j.advwatres.2018.07.015
https://doi.org/10.1029/2009wr008925
https://doi.org/10.1002/wrcr.20240
https://doi.org/10.1029/2003rg000126
https://doi.org/10.1016/j.advwatres.2008.08.005
https://doi.org/10.1029/96wr00286
https://doi.org/10.13182/nt08-a3976
https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
https://doi.org/10.1002/2015wr016998
https://doi.org/10.1029/98WR00219
https://doi.org/10.1029/98WR00219
https://doi.org/10.1029/wr023i008p01667
https://doi.org/10.1038/nphys1760
https://doi.org/10.1103/physreve.71.060401
https://doi.org/10.1103/PhysRevLett.125.240606
https://doi.org/10.1103/PhysRevLett.125.240606
https://doi.org/10.1029/2019wr026149
https://doi.org/10.1029/2008rg000277
https://doi.org/10.1029/2008rg000277


Water Resources Research

DELL’OCA AND DENTZ

10.1029/2023WR035084

18 of 18

Zhang, D., & Lu, Z. (2004). An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial 
expansions. Journal of Computational Physics, 194(2), 773–794. https://doi.org/10.1016/j.jcp.2003.09.015

Zhang, Y., & Benson, D. A. (2013). Lagrangian simulation of multidimensional anomalous transport at the made site. Geophysical Research 
Letters, 35(7). https://doi.org/10.1029/2008gl033222

Zhang, Y., Benson, D. A., & Reeves, D. M. (2009). Time and space nonlocalities underlying fractional-derivative models: Distinction and litera-
ture review of field applications. Advances in Water Resources, 32(4), 561–581. https://doi.org/10.1016/j.advwatres.2009.01.008

Zimmerman, R. W., & Bodvarsson, G. S. (1996). Hydraulic conductivity of rock fractures. Transport in Porous Media, 23(1), 1–30. https://doi.
org/10.1007/bf00145263

 19447973, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035084 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jcp.2003.09.015
https://doi.org/10.1029/2008gl033222
https://doi.org/10.1016/j.advwatres.2009.01.008
https://doi.org/10.1007/bf00145263
https://doi.org/10.1007/bf00145263

	Stochastic Dynamics of Two-Dimensional Particle Motion in Darcy-Scale Heterogeneous Porous Media
	Abstract
	Plain Language Summary
	1. Introduction
	2. Flow and Transport in Heterogeneous Porous Media
	2.1. Darcy Flow and Hydraulic Conductivity
	2.2. Particle Motion
	2.3. Numerical Simulations

	3. Stochastic Particle Motion
	3.1. Perturbation Theory
	3.1.1. Transverse Dispersion
	3.1.2. Streamwise Dispersion

	3.2. Stochastic Time-Domain Random Walk
	3.2.1. Streamwise Motion
	3.2.2. Transverse Motion
	3.2.3. 
            Ornstein-Uhlenbeck Process
	3.2.4. Stationary Correlated Gaussian Process


	4. Transport Behaviors
	4.1. Spatial Variance
	4.2. Particle Distributions

	5. Conclusions
	Appendix A: Generation of Long-Range Correlated Stochastic Angle Series
	Data Availability Statement
	References


