

A mission concept for in-orbit particle collection around asteroids

Mirko Trisolini¹, Camilla Colombo¹, Yuichi Tsuda²

¹ Department of Aerospace Science and Technology, Politecnico di Milano ² Institute of Space and Astronautical Science (ISAS) / Japan Aerospace Exploration Agency (JAXA).

2nd International Stardust Conference, 7-11 November 2022, ESA, ESTEC

Background

- Increasing interest in asteroid exploration and sample collection missions
- Recent missions
 - JAXA's Hayabusa2
 - Created an artificial crater on Ryugu via a small carry-on impactor
 - Collected samples via touch and go mechanism with sampler horn
 - NASA's OSIRIS-REx
 - Sample collection on Bennu via touch and go using the TAGSAM arm
 - NASA's DART and ESA's Hera
 - Asteroid deflection technology demonstration

Background

- Starting from the heritage of Hayabusa2, we propose a new concept for in-orbit sample collection
- Why an alternative approach?
 - Complementary to already existing methodologies
 - Potential implementation in challenging environmental conditions preventing landing or touch down
 - Hazardous terrain features
 - Fast rotating asteroid

Preliminary mission concept

Main building blocks

Assessment of mission feasibility and principal mission drivers

Possible collection strategies

- Collection strategies may exploit hovering of the spacecraft in specific locations
- Also orbiting solutions may be investigated

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid

- Sample the ejecta distribution
- Propagate the samples and the representative fragments
- We store the propagation at specific snapshots in time

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid

$$\rho(r, \alpha, \delta) = \frac{\sum_{i} n_{f_{i}}(r, \alpha, \delta)}{\Delta V(r, \alpha, \delta)} = \frac{Number of fragments}{Sperical bin volume}$$
$$\boldsymbol{v}(r, \alpha, \delta) = \frac{\sum_{i} n_{f_{i}}(r, \alpha, \delta) \cdot \boldsymbol{v}_{i}}{\sum_{i} n_{f_{i}}(r, \alpha, \delta)}$$

- Discretise the space around the asteroid with a spherical grid
- Estimate the fragments density and speed inside each spherical bin

8

POLITECNICO MILANO 1863

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid

$$\rho(r, \alpha, \delta) = \frac{\sum_{i} n_{f_{i}}(r, \alpha, \delta)}{\Delta V(r, \alpha, \delta)} = \frac{Number of fragments}{Sperical bin volume}$$
$$\boldsymbol{v}(r, \alpha, \delta) = \frac{\sum_{i} n_{f_{i}}(r, \alpha, \delta) \cdot \boldsymbol{v}_{i}}{\sum_{i} n_{f_{i}}(r, \alpha, \delta)}$$

- Discretise the space around the asteroid with a spherical grid
- Estimate the fragments density and speed inside each spherical bin

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid
- We can then estimate the flux of particles on a given surface (impact rate)
 - The surface can represent the collection area of the instrument, A

 v_{rel}

Estimating the amount of collectable samples

- Use of a methodology borrowed from the space debris field
- Consists of computing distribution of the particles density and speed around the asteroid
- We can then estimate the flux of particles on a given surface (impact rate)
 - The surface can represent the collection area of the instrument, A
- We repeat the procedure for each of the bins crossed by the spacecraft
 - Estimate the total impacts

$$N_{imp} \cong \sum_{t=1}^{N_T} \dot{\eta}_{sc}^t(r_t, \alpha_t, \delta_t) \cdot \Delta T_t$$

Time interval between consecutive spacecraft positions

Estimating the amount of collectable samples

Example

Target

- Asteroid Ryugu
- Sand-like material \rightarrow negligible strength
- Impact location (synodic frame)
 - α = 200°
 - δ = 10°
- Impactor
 - U = 2 km/s
 - *m* = 2 kg
 - Normal impact
- Particle distribution
 - $\hfill\blacksquare$ Size range between 10 μm and 1 cm
 - Speed range: up to the escape speed of the asteroid

12

2nd International Stardust Conference, 7-11 November 2022, ESA, ESTEC

Estimating the amount of collectable samples

- Assume now we want estimate the impact rate on a hovering spacecraft
- The S/C occupies a fixed position in the synodic frame
- The S/C is approximated with a sphere of 1 m² cross-section

08/11/2022

Examples of hovering points

Estimating the amount of collectable samples

- Assume now we want estimate the impact rate on a hovering spacecraft
- The S/C occupies a fixed position in the synodic frame
- The S/C is approximated with a sphere of 1 m² cross-section

14

08/11/2022

2nd International Stardust Conference, 7-11 November 2022, ESA, ESTEC

08/11/2022

2nd International Stardust Conference, 7-11 November 2022, ESA, ESTEC

POLITECNICO MILANO 1863

Preliminary collection trajectory design

- The particle fluxes around the asteroid can be exploited to design a collection trajectory
- We can create trajectory waypoints the spacecraft should pass to improve the collection
 - The waypoints can be selected as the location of maximum cumulative flux in a given time span

Preliminary collection trajectory design

- The particle fluxes around the asteroid can be exploited to design a collection trajectory
- We can create trajectory waypoints the spacecraft should pass to improve the collection
 - The waypoints can be selected as the location of maximum cumulative flux in a given time span
- Example trajectory for an impact on Ryugu
 - Total manoeuvre time of 24 hours
 - Minimum distance from the asteroid surface of 300 m
 → avoids crashing on the asteroid
 - Maximum distance from the centre of the asteroid of 6 km
 - Minimum time between snapshots of 1 hour

Waypoints selection example. The black line is a spline interpolation to represent a possible trajectory.

Trajectory control

- Once generated the waypoints, we need to control the spacecraft motion across them
- We utilise a higher-order sliding mode control¹ between the waypoints
- Control problem definition
 - Hayabusa2-like spacecraft
 - Mass of 600 kg
 - Cross-section of 25 m²
 - Maximum thrust of 20 N
 - Attitude motion not considered

Top: 3D trajectory of the spacecraft following a sliding-mode control

18

Left: Position of the spacecraft as function of time

1 Furfaro, 2015, *Hovering in Asteroid Dynamical Environments Using Higher-Order Sliding Control*, JGCD.

2nd International Stardust Conference, 7-11 November 2022, ESA, ESTEC

Impact rate estimate

- Once generated the waypoints, we need to control the spacecraft motion across them
- We utilise a higher-order sliding mode control between the waypoints
- Control problem definition
 - Hayabusa2-like spacecraft
 - Mass of 600 kg
 - Cross-section of 25 m²
 - Maximum thrust of 20 N
 - Attitude motion not considered
- We can finally compute the number of collectable particles by the spacecraft along this trajectory (1 m² cross-section)

Impact rate (blue) and **cumulative number of impacts** (orange) in time, along the specified trajectory. Notice the oscillations of the impact rate as a result of the change of particle flux due to the change in velocity of the spacecraft during the manoeuvres.

Conclusions and future work

Possible collection strategies have been explored for in-orbit sample collection

- Collection in the anti-solar direction for particles mainly affected by SRP
- Collection exploiting the location of re-impacting particles
- Future efforts will also consider particles orbiting for a longer period
- A methodology has been presented to estimate the **collectability of samples in orbit**
 - The methodology is statistical in nature
 - Further analyses to study its sensitivity will be performed
 - The understanding of the sensitivity to impact uncertainties is under analysis
 - E.g.: impact angle, target properties
- This methodology is integrated with the design and control of a collection trajectory to maximise the collection
 - Introduction of operational constraints (e.g., eclipse periods, communication windows, etc.) is under consideration

POLITECNICO MILANO 1863

> This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 896404 - CRADLE

A mission concept for in-orbit particle collection around asteroids

Mirko Trisolini, Camilla Colombo, Yuichi Tsuda

- mirko.trisolini@polimi.it
- www.linkedin.com/in/mirkotrisolini/
- **RG** <u>www.researchgate.net/profile/Mirko-Trisolini</u>

Visit the project website www.cradle.polimi.it

Assessing the risk for the spacecraft

- Preliminary analysis of risk from ejected particles
- Compute the critical diameter using Ballistic Limit Equations (BLEs)
 - Assuming normal impact on a 1 mm single-wall structure in Aluminium alloy

$$d_{c} = \left[\frac{\frac{1}{K_{3S}} \cdot t_{w}^{0.5} \cdot \left(\frac{\sigma_{y}}{40}\right)^{0.5}}{0.6 \cdot (\cos \theta)^{\delta} \rho_{p}^{0.5} u_{p}^{2/3}}\right]^{18/19}$$

