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A B S T R A C T   

Industry 4.0 has transformed manufacturing with real-time plant data collection across operations and effective 
analysis is crucial to unlock the full potential of Internet-of-Things (IoT) sensor data, integrating IoT with 
Artificial Intelligence (AI) techniques, such as Machine Learning (ML) and Deep Learning (DL). They can provide 
powerful predictions but anticipating issues is not enough. Manufacturing companies must prioritize avoiding 
inefficiencies, thereby developing improvement strategies from an Operational Excellence perspective. Here, the 
interpretability dimension of AI-based models could support a complete understanding of the reasons behind the 
outcomes, making ML and DL models transparent, and allowing the identification of the causal linkages between 
the inputs and outputs of the system. Within this context, this study aims first to deliver a comprehensive 
overview of the existing applications of Advanced Analytics techniques leveraging IoT data in manufacturing 
environments to then analyze their interpretability implications, referring to the interpretability as the 
description of the link between the independent and dependent variables in a way that is understandable to 
humans. Different gaps in terms of lack of full data enhancement are highlighted, providing directions for future 
research.   

Introduction 

The widespread adoption of emerging technologies (e.g. IoT) in the 
manufacturing sector is what is driving the move to the concept of Cyber 
Manufacturing, which is defined as a new manufacturing strategy that 
makes use of Industry 4.0 cutting-edge technologies [1]. The Industry 
4.0 paradigm, born in 2011 at the Hannover Industrial Fair to describe 
the extensive usage of cutting-edge technologies in German industrial 
enterprises [2] includes Big Data Analytics, IoT, Cloud Manufacturing, 
Robotics, Additive Manufacturing, Augmented Reality, Modelling and 
Simulation, Cyber-Physical Systems, Cybersecurity and Block-Chain [3]. 
In fact, in recent years, enhanced manufacturing efficiency and effec
tiveness through technical agility have been attributed to this digital 
transformation. [4]. Indeed, manufacturing companies may get insights 
to optimize the efficiency of individual assets as well as the whole 
manufacturing process by applying Advanced Analytics algorithms to 

Industrial data [5]. The Industrial IoT, which is a key enabler of the 
Cyber Manufacturing concept, is used to integrate sensors, controls, and 
software platforms to enhance performance at the production unit and 
plant enabling real-time decision-making via ML techniques [6]. The 
main goal of adopting the Industrial IoT is to attain heightened pro
ductivity, improved operational efficiency, and advanced management 
of manufacturing processes and assets [7]. In this context, ML and DL 
algorithms can be the key to pursuing Operational Excellence and 
discovering hidden patterns in data collected through IoT sensors. These 
data can be used to develop different AI-based models to solve a wide 
range of tasks, from quality control-related problems to those concern
ing predictive maintenance. In fact, by extracting and analyzing the data 
from all the sensors, Industrial Internet of Things uses ML to help 
companies identify various issues and difficulties, which reduces pro
duction costs and time. It offers significant advantages for improving 
efficiency, equipment malfunction prediction, and quality control [8]. 

Abbreviations: IoT, Internet-of-Things; AI, Artificial Intelligence; ML, Machine Learning; DL, Deep Learning; SM, Smart Manufacturing; SLR, Systematic Literature 
Review; RL, Reinforcement Learning; UL, Unsupervised Learning; SL, Supervised Learning; LSTM, Long Short Term Memory; RF, Random Forest; KNN, K-nearest 
neighbors; XGBoost, Extreme Gradient Boosting; DT, Decision Tree; SVM, Support Vector Machine; PCA, Principal Component Analysis; MLP, Multilayer Perception; 
LR, Logistic Regression; RUL, Remaining Useful Life; WoE, Weight of Evidence; SHAPE, SHapley Additive exPlanation; LIME, Local Interpretable Model-Agnostic 
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Despite the abundance of review-based research on IoT applications 
within Industry 4.0, there is a noticeable gap in the literature. This gap 
specifically concerns the integration of IoT and Advanced Analytics 
across diverse domains of manufacturing operations, such as Mainte
nance, Quality, and Production. Identifying this gap constitutes the 
inaugural, pioneering contribution of our study. Previous research 
offered an overview of the Industrial Internet of Things in intelligent 
manufacturing. However, it primarily focused on IoT applications 
without diving into specific operational domains [9]. Moreover, it did 
not provide a thorough examination of the algorithms and methodolo
gies in use, especially lacking detailed insights into ML applications. In 
contrast, our article differentiates itself. It does so by meticulously 
mapping out algorithms and connecting them directly to specific use 
cases within manufacturing operations. This approach allows for a 
deeper and more nuanced understanding of these technologies’ appli
cations, marking a significant advancement in the field. Another study 
was conducted to provide an advanced overview of the Internet of 
Things’ (IoT) analytical capabilities, exclusively focusing on the Supply 
Chain Management and Logistics sectors. [10]. Another study [11] 
provides a review of the current applications of ML and IoT in Industry 
4.0 environments but the authors consider the two technologies 
(namely, ML and IoT) separately, dividing the collected papers into 
those related only to ML and those concerning IoT, without considering 
their intersection. However, the Industry 4.0 paradigm should not be 
viewed merely as a collection of disparate technologies; rather, the po
tential interactions and synergies among them constitute a significant 
part of Industry 4.0’s value proposition [12]. In this sense, the interplay 
between the power of AI-based algorithms and the capabilities of IoT 
data-gathering can provide powerful support to pursue Operational 
Excellence in manufacturing contexts. However, much of the existing 
research on the impact of Industry 4.0 technologies on manufacturing 
operations focuses solely on individual technologies while there is a 
pressing need for more comprehensive studies that investigate the in
teractions among these technologies and their synergistic application 
[13,14]. Consequently, our study aims to contribute to the existing body 
of knowledge by being the first literature review to comprehensively 
examine the AI methods used in combination with IoT data-gathering in 
the specific domain of the manufacturing operations area. Furthermore, 
this paper sets out to accomplish several goals. Initially, it provides a 
detailed overview of the current state-of-the-art regarding integration 
between IoT and ML within manufacturing sectors. It then progresses to 
thoroughly examine the interpretability and maturity of the methodol
ogies applied. Interpretability is defined as the ability to explain the 
connection between independent and dependent variables in terms 
understandable to humans. Our investigation offers a novel perspective 
by evaluating these methodologies not only for their predictive power 
but also for their interpretability. We delve into the deployment of 
interpretable ML techniques, offering a comprehensive analysis that 
extends beyond conventional model evaluation to include the practical 
application of these techniques in the manufacturing industry. Con
cerning this area, only a very few studies considered the interpretable 
machine learning aspects in the cyber manufacturing domains: [15] 
presents a review where this topic is examined but is limited to process 
industries applications. The authors of [16] offer a valuable review 
focused on ML interpretability in the predictive maintenance field. 
However, this review is limited to this specific maintenance field. 
Similarly, [17] offers an insightful overview of explainable artificial 
intelligence in manufacturing, presenting different applications and use 
cases, but they do not focus on the analysis of articles derived from a 
Systematic Literature Review (SLR). 

Within this context, we introduce our first research question (RQ) 
and the related sub-questions: 

RQ1: What is the state-of-the-art of the joint application of IoT 
and Advanced Analytics methods in the manufacturing operations 
areas? 

RQ1.a: Which are the most used techniques? 

RQ1.b: Which are the most investigated operations areas? 
RQ1.c: Which are the most common applications in terms of 

manufacturing-related tasks? 
ML and DL algorithms can be promising tools to deal with the 

massive amount of data collected in manufacturing contexts, leading to 
useful predictions and results that can provide a tangible competitive 
advantage for companies. However, to get the most from ML and DL 
algorithms, a lot of data is needed, increasing the algorithms’ 
complexity. As their complexity rises, ML models (and DL models) 
become harder to understand and are frequently referred to as black-box 
models [18], because of these models’ lack of ability to tell users about 
the process being investigated [19]. 

The lack of interpretability of most ML and DL applications is one of 
the key barriers to their adoption in real industrial environments [20], 
leading to reduced trust in ML and DL predictions [21]. The capacity to 
comprehend the machine-learned response function’s decision-making 
rules and, ideally, describe the link between the independent (input) 
and dependent (target) variables in a way that is understandable to 
humans is known as interpretability [22]. To maximize the value of the 
data coming from IoT sensors, not only the algorithms’ predictive power 
should be considered but it is crucial to go beyond their “black box" 
nature by emphasizing their interpretability dimension. In this way, a 
whole understanding of the processes could be obtained thereby laying 
the foundation to pursue Operational Excellence initiatives. Indeed, 
Industry 4.0 has driven a quest for more efficient production methods 
and organizations are refining methods and quality tools to boost effi
ciency and productivity. This emphasis results in the development of 
Operational Excellence plans, aiming for continuous improvement in 
processes, products, and services [23]. By validating prediction models 
through expert knowledge comparison, interpretable ML offers possible 
insights into the decision-making process. For instance, it can lower 
mistakes in determining potential reasons for a machine’s shorter useful 
life [24]. To maximize the value of the data coming from IoT sensors, it 
is crucial to not consider only the algorithms’ predictive power, but also 
go beyond their "black box" nature, to emphasize their interpretability 
and dimensions. In SM scenarios, interpretability is essential to increase 
confidence and automatize continuous improvement procedures such as 
Root Cause Analysis procedures [20], which allows for not only pre
venting undesired problems but also removing their main origins, 
thereby hampering their recurrence [25]. 

For instance, the most effective ML- and DL-based anomaly detection 
methods for analyzing sensor streams tend to be black-box, lacking 
interpretability despite their high performance and expressiveness [26]. 

Despite ML and DL algorithms have been recognized as valuable 
strategies for managing vast data volumes in manufacturing companies 
and for uncovering causal mechanisms leading from a favorable state to 
an undesirable one [25], no previous studies have analyzed the inter
pretability implications of IoT data usage in the manufacturing opera
tions area. The extant literature in this domain is mostly limited to the 
development of ML and DL predictive models, without focusing on the 
possible extraction of relevant knowledge that could be used as a sup
port tool during decision-making processes, enabling the achievement of 
continuous improvement strategies. Engineers dedicate their careers to 
deciphering problems and challenges that arise with black-box algo
rithms in industrial processes, while the use of models leading to a 
proper system understanding could enhance problem-solving effective
ness [15]. However, no specific studies provide reviews concerning the 
state-of-the-art of interpretability implications of the existing literature 
on the IoT-ML integration in the manufacturing sector. The second part 
of this work aims to fill this gap. Indeed, in order to identify possible 
solutions and methodologies aimed to implement data enhancement 
strategies through an interpretability increase is important to first map 
the interpretability levels of the ML and DL models currently in use in 
the manufacturing sector. While limiting ML and DL models to predic
tive purposes aids in issue anticipation, it falls short of identifying the 
actual causes of inefficiencies, potentially allowing inefficiencies to 
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recur. On the contrary, links between inefficiencies and their causes 
should be investigated and interpreted, laying the foundation for 
Operational Excellence initiatives. For instance, in maintenance opera
tions, the emphasis should extend beyond predicting machine failures, 
comprehending why failures occur and proactively eliminating the 
causes of future incidents. Hence, after addressing RQ 1, this study aims 
to answer the following additional RQ: 

RQ2: What are the interpretability implications of the joint 
application of IoT and Advanced Analytics techniques in the 
manufacturing operations areas? 

The remainder of the present article is organized as follows. In Sec
tion 2 we discuss the methodology adopted in this study. Section 3 
presents and discusses the achieved results. Finally, Section 4 provides a 
summary of the findings, some conclusions, and directions for future 
studies. 

Materials and methods 

This work follows the systematic literature review methodology 
(SLR) outlined by [27], which is based on three steps consisting of 
planning the review, carrying out the review, and reporting the results. 
A SLR expands the body of knowledge by concluding a range of research 
in a repeatable, transparent, and inclusive manner [28]. 

In this paper, the review was developed by consulting the Scopus 
database. Aiming to restrain the search to the papers dealing with in
tegrated applications of IoT and Advanced Analytics in manufacturing 
operations, the employed search string is as follows: 

TITLE-ABS-KEY ( ( IoT OR "Internet of Things" OR "Internet-of- 
Things") AND ( "machine learning" OR "data science" OR analytics OR 
BDA OR "Big Data Analytics" OR "cloud computing" OR "deep learning" 
OR "Computer Vision") AND ( manufactur*) AND ( operations OR 
quality OR maintenance OR production OR inventor*)) AND PUBYEAR 
> 2010 AND ( LIMIT-TO ( SUBJAREA, "ENGI") OR LIMIT-TO ( SUB
JAREA, "DECI") OR LIMIT-TO ( SUBJAREA, "BUSI")) AND ( LIMIT-TO ( 
DOCTYPE, "ar")) AND ( LIMIT-TO ( LANGUAGE, "English")). 

Four semantic areas were defined: the first one concerning IoT, the 
second one contained words related to Advanced Analytics, the third 
one was based on the delimitation of the research on the manufacturing 
domain, and the last one contained terms related to operations man
agement areas. Since Production and Planning control activities are 
developed based also on inventory holding [29] and inventory man
agement is considered an area of production control [28], the term 
“inventory” has been inserted in the search query for completeness 
purposes. The search was restricted to the title, abstract and keywords of 
publications and the query returned 464 papers. Data was downloaded 
on 24–10-2023. Two duplicates were identified and removed and 350 
papers were removed after the title and abstract inspection. During this 
phase, only works with an informative abstract were considered. Most of 
the discarded studies were not related to any of the manufacturing op
erations areas. For instance, we eliminated works that only mentioned 
manufacturing in the title or the abstract or works dealing with other 
domains (i.e., Logistics). Then, 114 papers were kept for full-text eligi
bility. During this stage, each paper was subjected to a thorough eval
uation of the text using the following inclusion and criteria:  

• C1: Studies not specifically related to the joint applications of IoT and 
Advanced Analytics but dealing with only one of them were 
excluded.  

• C2: Studies not clear in terms of manufacturing applications were 
excluded.  

• C3: Studies not clear in terms of which data or ML/DL techniques 
were used were excluded.  

• C4: Studies whose full text was unavailable for consultation were 
excluded. 

In the end, 42 papers were included in the final review. Fig. 1 

summarizes the results of the SLR. 

Results 

Answer to RQ1: state-of-the-art of integrated IoT and ML/DL applications 
in the manufacturing operations domain 

To answer RQ1, all papers were carefully read and classified in terms 
of ML/DL techniques adopted, their operations’ domain, and the specific 
application described in the paper. 

Three steps made up the initial classification to answer RQ1.a. First, 
the articles were categorized based on the ML/DL algorithms that were 
adopted, which included Reinforcement Learning (RL), Supervised 
Learning (SL), and Unsupervised Learning (UL). Hybrid categories were 
considered when various algorithms were studied. Then, a second 
categorization was done according to the ML/DL task described in the 
study (i.e. classification, regression). Finally, a third clusterization was 
performed considering the 10 most adopted algorithms. Fig. 2 shows the 
papers’ distribution across the ML areas, highlighting that most of the 
articles (23 out of 42) are concerned with SL applications while a pure 
UL-based approach was adopted in only 6 works. UL is used when there 

Fig. 1. PRISMA diagram.  

Fig. 2. Distribution of the papers across the different areas of ML, considering 
SL, UL, RL methodologies and their combinations. 
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is no target variable in the dataset and just training samples are present. 
Whereas if the dataset includes training samples with the target vari
ables, SL is usually employed [30] and effectively many of the 42 
considered studies use labelled data. 

In the context of manufacturing applications, SL techniques are 
predominantly utilized because of the data-rich but knowledge-sparse 
nature of the tasks [31]. Nevertheless, certain facets of UL could prove 
advantageous in manufacturing applications: for instance, unsupervised 
methods are actively employed to detect anomalies in manufacturing 
data [31]. In RL the learning system, often called the agent, is required 
to independently determine the most effective sequence of actions to 
reach its objective by engaging with the environment [32]. Only 1 paper 
among those analyzed applied an RL technique. 

Among the considered studies, a consistent portion described mixed 
different ML areas: 10 out of the 42 papers adopted combined SL-UL 
applications and 2 of them adopted both SL and RL-based methodolo
gies. The increasing prevalence of unlabeled data in manufacturing is 
highlighting the growing significance of employing hybrid approaches 
that combine the strengths of both SL and UL techniques, aiming to 
harness the advantages of each [31]. 

Fig. 3 illustrates the article distribution across the ML tasks. As many 
of the studies consider SL applications, we can see that the most 
employed tasks are regression and classification tasks. They represent 
versatile techniques that can be applied to solving different kinds of 
problems, ranging from predictive maintenance-related tasks to quality 
control applications, as will be discussed more in detail later in this 
section. However, as seen in Fig. 2., several studies considered combined 
SL and UL algorithms, thereby dealing with combined ML/DL tasks. 
Indeed, 13 studies described mixed ML tasks. In most cases, where a 
combined UL-SL approach is proposed, a UL technique is applied to the 
dataset before the application of an SL-based algorithm. In a study [33] 
several UL-based methods (Clustering, PCA, Autoencoder) are applied to 
the dataset before using the chosen SL algorithms. Other studies adopt a 
UL-based feature extraction methods before the application of an SL 
model [34-38]. Whereas in other papers [39-41] dimensionality 
reduction techniques are employed before using an SL method. Among 
the papers proposing a mixed SL-RL approach, 1 study [39] proposes an 
RL approach after the application of an SL algorithm while another work 
[42] describes a simultaneous application of a regression task and an 
RL-based task to build a unique model. 

Fig. 4 illustrates the distribution of papers based on the top 10 
adopted algorithms considering the algorithms appearing in a minimum 
of 2 papers. Notably, among DL models, Long Short-Term Memory 
(LSTM) emerged as the most frequently employed technique. A majority 
of studies employing LSTM focused on predicting the Remaining Useful 
Life (RUL) of assets, aligning with findings by [22], who identified 
Recurrent Neural Networks (RNNs) and LSTM as the predominant DL 
methodologies for RUL predictions. 

Within the category of non-DL methodologies, the Random Forest 

(RF) algorithm stands out as the most frequently employed. Renowned 
for its versatility, RF excels in both regression and classification tasks, 
rendering it a versatile tool suitable for addressing a diverse array of 
challenges. Moreover, it effectively mitigates the tendency of Decision 
Trees (DTs) to overfit data [31]. These findings are consistent with the 
conclusions reached by [43], identifying RF and DTs as the most widely 
utilized data science techniques within the Industry 4.0 domain. They 
are both SL-based models and this outcome aligns with the findings 
presented in the study of [44], where SL methodologies are recognized 
as the most employed ML techniques within the engineering and 
manufacturing domain. 

In answering RQ1.b and RQ1.c, an additional classification was un
dertaken to cluster various operational domains and their corresponding 
applications, respectively. Assessing the paper content, articles were 
divided based on three distinct operation areas and their related appli
cations, as shown in Fig. 5: 

The Maintenance area is the most covered domain, and it includes 24 
papers (out of 42), of which 20 deal with Predictive Maintenance, 3 
cover the Condition Monitoring topic, and only 1 is related to Prog
nostics and Health Management applications. Notably, most of the 
works cover Predictive Maintenance applications. Indeed, given the 
escalating demand to reduce downtime and economic losses, Predictive 
Maintenance is considered a prominent strategy for predicting anoma
lies in manufacturing systems [35] and ML techniques have become a 
promising tool in Predictive Maintenance applications for effective 
manufacturing in Industry 4.0, attracting considerable attention from 
authors and researchers in recent years [45]. 

Quality is the second-most covered manufacturing operations area, 
including 11 papers of which 8 deal with Quality Control and 3 with 
Quality Assurance. Particularly, research focused on applying ML 
techniques to Quality Control has been a prominent subject of investi
gation in recent years [46]. At the same time, IoT is considered pivotal 
for Quality Control, utilizing sensors for real-time defect detection and 
prompt issue rectification to prevent defective products from entering 
the market. The sensors monitor products throughout manufacturing, 
identifying defects and ensuring adherence to quality standards [47]. 

Finally, Production is the most under-explored manufacturing op
erations area with only 6 papers, of which 4 deal with Planning and 
Control, 1 with Idle time reduction, and 1 with Process parameter 
optimization. These last results align with the findings of the study 
proposed by [46], where a review concerning ML applied in production 
planning and control is presented. Here, the authors highlight that 75% 
of the potential research domains within the ML and Production Plan
ning and Control intersection are either minimally explored or not 
addressed entirely. The authors stress that this lack of research should be 
attributed to the complexity involved in utilizing IoT technologies for 
data collection and the challenge of updating the ML model to align with 
changes in the manufacturing system. 

Table 1 summarizes the findings described in this section. 

Fig. 3. Distribution of papers per ML task.  
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Answer to RQ2: interpretability implications of the existing literature 

To answer RQ2, a first classification of the selected papers was made 
by adopting the taxonomy proposed by [79], illustrated in Fig. 5. 

Interpretable ML methods used before model training are known as 
ante-hoc techniques, whereas those applied after training are catego
rized as post-hoc techniques [16]. Ante-hoc techniques refer to the usage 
of algorithms known as intrinsically interpretable models. Common 
examples within this category include models such as linear/logistic 
regression or decision rules [80]. Intrinsically interpretable models refer 
to algorithms that humans can directly comprehend. For instance, by 
examining the structure of a DT, it is possible to visually deduce the most 
crucial input features affecting the final prediction [81]. Conversely, 
post-hoc methods comprise those ML and DL algorithms employed on 
black-box models after training. These methods interpret and elucidate 
the importance of particular input features on the output, generating 
interpretations by scrutinizing the relationship between input features 
and predictions [79]. 

Regarding the interpretability scope, the term global interpretability 
refers to understanding how a model works from an overall point of 
view, while local interpretability aims to provide specific explanations 
concerning each individual prediction, considering one single given 
output. 

Finally, model-specific methods are limited to that model or a spe
cific class of models. In contrast, model-agnostic methods can be utilized 
for any model, as long as the features and model outputs align with the 
chosen explanation approach [16]. 

Given the above definitions, the 42 selected papers were reviewed 
and classified according to the application stages of interpretable ML 
techniques (i.e., differentiating between ante-hoc and post-hoc ap
proaches), then identifying their interpretability scope (i.e., global or 
local), and the model dependency implications (i.e., model-specific or 

model-agnostic methods). It was observed that only 7 out of the 42 
papers adopted at least one intrinsically (ante-hoc) interpretable model. 
More specifically the adopted approaches were the DT, Linear Regres
sion, Logistic Regression and KNN. Concerning the usage of post-hoc 
techniques, the most preferred approach was the feature importance 
analysis, distinguishing it between model-agnostic and model-specific 
methods. Regarding model-agnostic methods, in the study proposed 
by [76], the concept of interpretability using feature importance is 
highly stressed, through the proposal of a new interpretable ML 
approach called "Balanced K-Star" for Predictive Maintenance. This 
method is built upon the K-Star classification algorithm. Here, the 
chi-square method was employed on the predictive maintenance dataset 
to identify the key factors influencing the occurrence of machine fail
ures. Indeed, in this work a logical failure tree is employed by looking at 
the variables leading to specific failure types, enhancing the trans
parency of the ML prediction process and highlighting the impacting 
features for each type of machine failure. In the work by [50], the 
feature importance in the proposed RF and XGboost models is performed 
through the Weight of evidence (WoE) approach, a probabilistic method 
for variable importance analysis. In the work proposed by [37], the 
interpretability of the developed RF model was measured according to 
the feature permutation importance, as in the study proposed by [38] 
and the one by [40], which represents a model-specific variable 
importance based on an RF algorithm. Fig. 6. 

As already mentioned, over the past ten years, significant advance
ments have been achieved by ML and DL algorithms in various tasks but 
due to a lack of a comprehensive grasp of their internal mechanism, they 
are frequently treated as enigmatic "black boxes" [82]. Out of the 
examined papers focusing on those utilizing DL-based models, only 2 try 
to make clear the internal structure of the proposed model and the 
reasons behind the obtained predictions. One such effort is found in the 
study by [52], where the authors employ visual presentations and 
comparisons among different configuration alternatives to identify 
crucial features. They characterize this process as an attempt to 
demystify the black-box nature of the proposed neural network model. 
They emphasize that through this approach, the internal structure of the 
neural network becomes explicitly interpretable, empowering users to 
pinpoint the origin of misclassifications. However, the study lacks 
specificity regarding the adopted methodology and does not place sub
stantial focus on this step. The second attempt in this sense is found in 
the work by [48], where a Deep Belief Learning based DL (DBL-DL 
model) is used to explain the relationship between the sensor signals and 
the defect types. 

Table 2 provides a summary of the findings from this section, 
revealing that only a few studies explicitly address potential implica
tions for interpretability, indicating a notable research gap. The methods 
primarily employed for enhancing interpretability are ante-hoc tech
niques, as evidenced by the studies that offer the greatest potential for 
interpretability insights. Within the realm of post-hoc techniques, 

Fig. 4. Distribution of the papers per adopted algorithm considering the top 10 most used ML algorithms.  

Fig. 5. Classification of the identified manufacturing operations areas.  
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feature importance stands out as the most commonly used traditional 
method. Additionally, it is observed that the remaining studies, deemed 
relevant for deriving interpretability insights, rely on unconventional 
methods. For example, visualization-based approaches suggest a non- 
standard strategy towards tackling interpretability issues. 

In line with previous findings, if the literature concerning the 
interpretability of ML algorithms is limited, even scarcer is the 

Table 1 
Summary of the findings related to RQ1.  

References Operations area ML 
area 

ML task Application 

[48] Quality SL Classification Quality 
Control 

[49] Maintenance SL Classification Predictive 
Maintenance 

[50] Quality SL Classification Quality 
Control 

[51] Maintenance UL Anomaly 
detection 

Predictive 
Maintenance 

[52] Maintenance SL Regression Predictive 
Maintenance 

[41] Production Both 
SL 
and 
UL 

Mix of tasks Production 
planning and 
control 

[53] Production Both 
SL 
and 
UL 

Mix of tasks Production 
planning and 
control 

[54] Maintenance UL Dimensionality 
Reduction and 
Clustering 

Predictive 
Maintenance 

[34] Production Both 
SL 
and 
UL 

Mix of tasks Production 
planning and 
control 

[55] Maintenance SL Classification Predictive 
Maintenance 

[56] Maintenance SL Classification Predictive 
Maintenance 

[38] Maintenance Both 
SL 
and 
UL 

Mix of tasks Condition 
monitoring 

[57] Quality SL Classification Quality 
Assurance 

[58] Maintenance UL Feature 
selection 

Predictive 
Maintenance 

[59] Maintenance SL Regression Condition 
monitoring 

[60] Maintenance SL Classification Condition 
monitoring 

[40] Maintenance Both 
SL 
and 
UL 

Mix of tasks Predictive 
Maintenance 

[61] Maintenance SL Classification 
and regression 

Predictive 
maintenance 

[62] Maintenance SL Regression Prognostics 
and Health 
Management 

[35] Maintenance Both 
SL 
and 
UL 

Mix of tasks Predictive 
Maintenance 

[33] Maintenance Both 
SL 
and 
UL 

Mix of tasks Predictive 
maintenance 

[63] Quality SL Classification Quality 
Control 

[64] Maintenance Both 
SL 
and 
RL 

Mix of tasks Predictive 
Maintenance 

[65] Production SL Regression Process 
parameter 
optimization 

[66] Quality+Maintenance SL Regression Quality 
Management 
+ Predictive 
Maintenance 

[67] Maintenance SL Regression Predictive 
Maintenance  

Table 1 (continued ) 

References Operations area ML 
area 

ML task Application 

[42] Production Both 
SL 
and 
RL 

Mix of tasks Production 
planning and 
control 

[68] Maintenance SL Classification Predictive 
Maintenance 

[69] Maintenance UL Anomaly 
detection  

[70] Quality UL Anomaly 
detection 

Quality 
Control 

[37] Maintenance Both 
SL 
and 
UL 

Mix of tasks Predictive 
Maintenance 

[39] Quality Both 
SL 
and 
UL 

Mix of tasks Quality 
Control 

[71] Maintenance SL Regression Predictive 
Maintenance 

[72] Quality UL Association 
Rule 

Quality 
Assurance 

[73] Quality SL Classification Quality 
Control 

[74] Production SL Classification Idle time 
reduction 

[36] Maintenance Both 
SL 
and 
UL 

Mix of tasks Predictive 
Maintenance 

[75] Quality SL Regression Quality 
Control 

[76] Maintenance SL Classification Predictive 
Maintenance 

[77] Quality RL Knowledge 
Graph 
Reasoning 

Quality 
Control 

[78] Maintenance SL Regression Predictive 
Maintenance 

[21] Quality SL Regression Quality 
Assurance  

Fig. 6. Adopted interpretability taxonomy.  
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analogous literature in the context of DL algorithms. As observed, there 
is a lack of research in making the DL-based model transparent and 
clearly interpretable. The lack of transparency in AI solutions, particu
larly in the black-box algorithms of DL methods, can limit the trans
ferability of approaches to changes in domains, diminishing the fairness 
of decision-making and in the manufacturing domain, transferability is a 
very relevant concept [83]. Indeed, within the manufacturing sector, it 
is essential to ensure the effective application or reproduction of 
knowledge in various scenarios or situations. This entails successfully 
adapting and implementing best practices and techniques from one 
context to another. However, different powerful models could be 
adopted to open black-box models, providing more accurate explana
tions of the outputs, such as SHAP (SHapley Additive exPlanations) and 
LIME (Local Interpretable Model-agnostic Explanations) which stand 
out as widely utilized approaches in interpreting ML models in a 
post-hoc way. Besides SHAP and LIME, other methods which can spe
cifically support interpreting DL algorithms have been presented in the 
comprehensive overview offered by [84]. These additional methods are 
decompositions of DL models into decision trees (e.g., the DeepRED and 
ANN-DT methods) and methods based on the salience map approach (e. 
g. DeepLIFT). 

The primary objective of these methods is to offer clarity on the 
decision-making mechanisms of a model, enhancing the interpretability 
of its predictions for human comprehension. These methods have been 
widely applied in different industries but, from the results of this review, 
they have been under-explored in the manufacturing sector although 
they are considered powerful methods capable of handling data to assist 
practitioners in the decision-making process through an enhancement of 
the comprehension of AI models’ output [85]. 

Table 2 
Summary of the findings related to RQ2.  

References ML 
area 

Potential 
Interpretability 
Insights 

Approach Application 

[48] SL ✓ DBL-DL model Quality Control 
[49] SL ✓ Logistic 

Regression 
Predictive 
Maintenance 

[50] SL ✓ Feature 
importance 

Quality Control 

[51] UL   Predictive 
Maintenance 

[52] SL ✓ Visualization Predictive 
Maintenance 

[41] Both 
SL 
and 
UL   

Production 
planning and 
control 

[53] Both 
SL 
and 
UL   

Production 
planning and 
control 

[54] UL   Predictive 
Maintenance 

[34] Both 
SL 
and 
UL   

Production 
planning and 
control 

[55] SL ✓ Decision Tree, 
KNN 

Predictive 
Maintenance 

[56] SL   Predictive 
Maintenance 

[38] Both 
SL 
and 
UL 

✓ Feature 
importance 

Condition 
monitoring 

[57] SL ✓ KNN Quality 
Assurance 

[58] UL   Predictive 
Maintenance 

[59] SL   Condition 
monitoring 

[60] SL   Condition 
monitoring 

[40] Both 
SL 
and 
UL 

✓ Feature 
importance 

Predictive 
Maintenance 

[61] SL   Predictive 
maintenance 

[62] SL   Prognostics and 
Health 
Management 

[35] Both 
SL 
and 
UL   

Predictive 
Maintenance 

[33] Both 
SL 
and 
UL   

Predictive 
maintenance 

[63] SL ✓ Logistic 
Regression, 
Decision Tree 

Quality Control 

[64] Both 
SL 
and 
RL   

Predictive 
Maintenance 

[65] SL   Process 
parameter 
optimization 

[66] SL ✓ Linear 
Regression 

Quality 
Management 
+ Predictive 
Maintenance 

[67] SL   Predictive 
Maintenance  

Table 2 (continued ) 

References ML 
area 

Potential 
Interpretability 
Insights 

Approach Application 

[42] Both 
SL 
and 
RL   

Production 
planning and 
control 

[68] SL   Predictive 
Maintenance 

[69] UL    
[70] UL   Quality Control 
[37] Both 

SL 
and 
UL 

✓ Feature 
importance 

Predictive 
Maintenance 

[39] Both 
SL 
and 
UL   

Quality Control 

[71] SL   Predictive 
Maintenance 

[72] UL   Quality 
Assurance 

[73] SL   Quality Control 
[74] SL   Idle time 

reduction 
[36] Both 

SL 
and 
UL   

Predictive 
Maintenance 

[75] SL ✓ Decision Tree Quality Control 
[76] SL ✓ Balanced K- 

Star 
Predictive 
Maintenance 

[77] RL   Quality Control 
[78] SL   Predictive 

Maintenance 
[21] SL   Quality 

Assurance  
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Conclusions 

This state-of-the-art analysis studied 42 research articles selected 
through the process of an SLR. The articles included in the final review 
were carefully examined focusing on mapping the predominant ML and 
DL techniques adopted, their main applications, and the key areas of 
manufacturing operations in which they were applied. Then this work 
aimed to provide an analysis concerning the interpretability implica
tions of the proposed ML and DL algorithms. Integrating IoT data- 
gathering capabilities with ML and DL algorithms can represent a 
powerful synergy in improving manufacturing operations, thus enabling 
Operational Excellence The review results show that ML and DL algo
rithms are widely applied in these areas. As seen in the preceding sec
tions, there are different contributions to the existing literature looking 
at the function of integrated IoT and ML-DL solutions and their uses in 
the examined manufacturing operations areas. 

In terms of prevailing ML and DL algorithms, most of the scrutinized 
studies opt for SL methods, with UL approaches following closely 
behind. Conversely, only a small proportion of works make use of RL 
algorithms. When considering the most frequently applied models, a 
specific variant of RNNs, namely LSTM, and the RF algorithms are 
identified as the most used techniques. Regarding the most extensively 
explored applications, the results suggest a pronounced focus within the 
scientific literature on addressing tasks related to Maintenance. Pre
dictive maintenance stands out as the most thoroughly investigated 
manufacturing operations domain while only a few studies are related to 
the Production area, suggesting further research in this domain. 

Findings related to the implications of interpretability indicate that 
the existing literature in this field has given little attention to this topic. 
Specifically, the majority of examined papers do not explicitly incor
porate the concept of interpretability in their research. Among the 42 
selected studies, 7 are categorized as interpretable and they primarily 
rely on intrinsically (ante-hoc) interpretable models. Notably, even 
though many works utilize DL algorithms, they often lack post-hoc ex
planations for their models. Consequently, the results of this second 
investigation suggest some challenges opening further research in this 
area. First, as observed, most of the papers do not deal with the inter
pretability concept within their studies. Indeed, most of the works are 
highly focused on the predictive power of the developed models, 
without considering the reasons leading to the obtained output. AI 
methodologies are often regarded as black boxes, with little or no effort 
made to clarify the outcomes. As a result, there is skepticism sur
rounding AI results in the manufacturing sector since is crucial to pro
vide an explanation of why the solution works and interpret the results 
for widespread adoption in manufacturing [86]. Based on this, further 
research should focus on incorporating this concept in their research, to 
derive further implications, for instance concerning explanations 
regarding the reasons for a failure and making more informed decisions. 
As mentioned in the previous section, the LSTM model is the most used 
algorithm in the field of RUL prediction. However, none of the studies 
employed any specific post-hoc technique, which could be essential to 
fully understand the reasons behind machine degradation. Accordingly, 
the use of intrinsically interpretable models and, particularly, of 
post-hoc techniques should be solicited as possible approaches to make 
the existing ML models leveraging Industrial IoT data more interpret
able, consequently transforming them into suitable tools for imple
menting continuous improvement strategies. Consequently, filling this 
gap and further investigating the use of interpretable ML in the 
manufacturing sector would be beneficial to enhance transparency, 
contributing to improved decision-making and the achievement of 
Operational Excellence. Indeed, if operators and engineers can interpret 
ML and DL model outputs, these models can provide valuable insights 
for refining and optimizing parameters regarding the main operations 
areas, through a continuous improvement process. For instance, con
cerning the Quality domain, interpretable models could help in the 
assessment of the main factors influencing product quality to then 

implement targeted improvements. At the same time, interpretable 
models can help maintenance teams understand the factors that mostly 
contribute to equipment failures. They could be supported in making 
informed decisions about when and how to schedule maintenance ac
tivities, to avoid unplanned repairs and consequently reduce costs. In 
particular, the integration of post-hoc methodologies opens the possi
bility of extensively utilizing in an interpretable way more advanced 
models, such as those based on DL algorithms that often yield more 
accurate predictions. Indeed, the application of post-hoc techniques to 
these models enables the opportunity to extract valuable information 
about the outcomes they produce. At the same time, further research in 
this domain would be important also from a theoretical perspective 
since the models described in the existing literature could be opened 
through the exploitation of methodologies that have not been exploited 
yet in this domain, expanding the existing body of knowledge. New 
theoretical implications could be derived by opening and interpreting 
the models employed in previous works. For instance, the trade-off be
tween model interpretability and accuracy could be explored, leading to 
the development of models achieving an optimal balance between 
transparency and predictive power. Consequently, this could also set the 
foundation for the definition of interpretability metrics in the 
manufacturing sector, allowing the reproducibility and transferability of 
the results in different scenarios. 

Then, a lack of use of local interpretability methods has been 
observed since none of the analyzed studies employed any local post-hoc 
techniques after the model development. Utilizing local interpretability 
methods could yield more precise explanations, highlighting the factors 
contributing to particular events. This approach could assist in high
lighting anomalies in specific instances of manufacturing processes, 
enabling operators to comprehend how certain factors influence the 
occurrence of specific events. For example, in the area of Maintenance, 
distinct parameters might lead to the failure of one machine while not 
affecting another, prompting further investigation into the underlying 
differences. At the same time, examining individual product quality 
could benefit from a focus on local interpretability. 

Finally, integrating domain knowledge into interpretable models is 
key for developing suitable models that operations managers can 
effectively use, potentially leading to the design of tools dedicated to 
pursuing Operational Excellence. This need is also stressed in the work 
proposed by [16]. It can be done through for example the inclusion of 
text mining and Natural Language Processing (NLP) algorithms in the 
models’ development, to integrate external information coming from 
text-based data or recordings. 
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