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Abstract: This paper investigates the use of pulsar-based navigation for deep-space CubeSats. A
novel approach for dealing with the onboard computation of navigational solutions and timekeeping
capabilities of a spacecraft in a deep-space cruise is shown, and the related implementation and
numerical simulations are discussed. The pulsar’s signal detection, processing, and exploitation
are simulated for navigation onboard a spacecraft, thus showing the feasibility of autonomous state
estimation in deep space even for miniaturized satellites.
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1. Introduction

The vast majority of space missions have strongly relied—and still do—on Earth-based
methods for determining the spacecraft’s position and velocity in deep space. Ground-
based radiometric tracking, which is the state of the art for deep-space navigation, can reach
a positioning accuracy of a meter at distances equivalent to Jupiter’s distance from Earth [1],
yet requires dedicated ground infrastructure and the involvement of flight dynamics teams
that lead to increased overall space-mission costs. This becomes unsustainable as the
number of deep-space satellites increases. Autonomous navigation systems that do not need
the constant aid of Earth-based infrastructure are desirable. This is to enable sustainable
solar system exploration while allowing for a reduction in the space missions’ costs.

Autonomous navigation in deep space has been proposed through optical meth-
ods [2]. Celestial triangulation exploits the line-of-sight measurements to distant plan-
ets [3], which are used as navigation beacons in order to determine the observer’s posi-
tion. This can be performed since the ephemeris of the planets are accurately known
and the relative line of sight can be tracked while in deep space [4]. However, sev-
eral planets need to be visible, which is not always the case for missions in deep space
due to the presence of the Sun [5]. Other optical methods rely on close observations
of moons [6] and asteroids [7], but in these cases, the navigation solution can only be
computed when in proximity to these bodies. Therefore, optical navigation options are
well suited for when geometries are favorable [8] and the motions of the observed bodies
are well-characterized.

More recently, navigation methods exploiting the observation of celestial pulsed X-ray
sources have been proposed [9–17]. These methods rely on the pulsar’s signal time-of-
arrival acquisition to estimate a spacecraft’s position in deep space, comparing the acquired
signal profile to an expected profile at the solar system barycenter. Within this context,
the purpose of this work is to investigate the use of the X-ray pulsar-based navigation in a
deep-space CubeSat mission scenario, assessing the feasibility and the related performances
of autonomous navigation. This is performed by adopting performances and constraints of
typical deep-space CubeSat missions.

The structure of the paper is as follows. Section 2 describes the methodology of the
pulsar navigation concept and provides background regarding the physics of these stellar
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objects as well as signal modeling. Section 3 delves into the modeling of the measure-
ments, reports the implementation procedures of the method, and presents the simulation
performances in two mission scenario. Eventually, conclusions are drawn in Section 5.

2. Methodology

This section deals with the core methodology of the X-ray pulsar navigation, high-
lighting the mathematics behind the pulsar signals’ acquisition and exploitation for deep-
space navigation.

2.1. Signal Time-of-Arrival

Pulsars are rapidly rotating, highly magnetized neutron stars consisting of extremely
compressed matter. The formulated models regarding their nature predict a maximum mass
up to twice the one of the Sun, possibly increasing when the magnetic field is particularly
strong. Conversely, the radius is predicted to be around the size of a city. As they spin,
charged particles are accelerated out along magnetic field lines in the magnetosphere. This
acceleration drives the particle to emit electromagnetic radiation.

A beam of radiation is then emitted along the magnetic axis of the pulsar, which, in
general, differs from its rotational axis. This misalignment causes the beam to be seen by
an observer only once per rotation of the neutron star and leads to the “pulsed” nature
of its appearance—hence the name pulsar. The repetition period of the pulses is simply
the rotation period of the neutron star, and it is seen to be very regular and stable for
most of these celestial objects. Therefore, the pulsar source emits a wave-front of photons
in the directions of emission, hitting the observers in the solar system at precise epochs.
Let us denote n as the direction of emission of a given pulsar. The arrival times of the
pulsars’ wave-fronts at the solar system barycenter (SSB) are known by models developed
by astronomers. The photons belonging to the front wave will arrive at an observer location
with a given time that is different from the arrival at the SSB. Hence, the distance d between
the observer location and the SSB is proportional, within the first order, to the time delay td
between the two timing locations, as shown in Figure 1.

SSB

n

r

d

pulsar

Figure 1. Pulsar navigation scheme.

The equation of the distance is:

d = c(ts/c − tSSB) = n · r + H (1)

where c is the speed of light in vacuum; ts/c and tSSB are wave-front arrival epochs at the
spacecraft and SSB locations, respectively; r is the position vector of the spacecraft with
respect to the SSB; n the unit direction of the source of the photons expressed in the same
inertial reference frame as the observer position; and H represents higher-order terms of



Aerospace 2023, 10, 695 3 of 14

various natures, which will be discussed later. By using three or more different pulsar
sources, it is possible to estimate the spacecraft’s position vector in three dimensions in the
same fashion as for a classical GNSS. Reasonably, some conditions have to be respected
in order to apply this method. At first, the model for predicting the arrival times of the
wave-front must be accurately known. This translates into a requirement for the source,
which has to be stable in its pulsing so that its behavior can be safely predicted. In a second
instance, the source must emit radiation that is strong enough to be detected by a hardware
detector onboard a spacecraft. At the same time, this has to be above the background noise
in order to allow for a correct detection.

2.2. Pulsar Phase

The pulsar rotation produces a precise interval between pulses that ranges from
milliseconds to seconds for each individual star. Following this physical description,
a mathematical timing model can be written as a Taylor expansion up to the third order to
describe the signal phase evolution in time [18]

φ(t) = φ(t0) + (t− t0) f + (t− t0)
2 ḟ

2
+ (t− t0)

3 f̈
6

(2)

featuring the frequency of rotation and its derivatives as f , ḟ , f̈ with known initial phase
φ(t0) at a reference time t0. With these parameters known, the arrival time of the wave-front
can be safely predicted.

In addition, since no pair of neutron stars are formed in exactly the same manner or
have the same geometric orientation, the pulse frequency and signal shape produced are
unique, identifying signatures for each pulsar. Thus, pulsars can act as natural beacons,
or celestial lighthouses, on an intergalactic scale. In addition to that, the signal these
stars produce can be observed in the radio, visible, X-ray, and Gamma-ray bands of the
electromagnetic spectrum due to the wide energy range of the process leading to the
emission of the particles. Observing them in the different bands might have advantages
and disadvantages. Variable sources emitting signals in the radio band are certainly
a potential candidate that can be used in a navigation system. However, at the radio
frequencies that these sources emit (from 100 MHz to a few GHz), antennas with large
diameters are required to detect their signals [19]. Due to neighboring sources that emit in
radio bands and also due to the low signal intensity of radio pulsars, long integration times
are needed to obtain a signal with an acceptable signal-to-noise ratio (SNR), suitable for
use in a navigation system [20].

Similar issues exist for pulsars in the visible spectrum. In this case, less than one
hundred of isolated pulsars are cataloged, and all of them are faint [21]. Few are also
the pulsars discovered that emit in the Gamma-ray wavelengths; studies were conducted
regarding this type of pulsar featuring their so-called Gamma-ray bursts (GRBs), which
were found to have a very high signal to noise ratio, but due to their cataclysmic nature,
they are non-repeating and non-periodic, thus presenting a very difficult challenge for
navigation applications [22]. The lower amount of these specific pulsars and their issues
related to faintness and instability make them less suitable for navigation purposes.

Luckily enough, pulsars exist emitting mainly in the X-ray band that would require
relatively small-sized detectors to be mounted onboard spacecraft, therefore partially easing
the system design.

2.3. Signal Model

Due to the poor strength level of the pulsar’s signal with respect to the background,
photons arriving in a single period are generally not enough to fully characterize the
signal and to precisely detect its peaks; for this reason, the pulsar has to be observed for
several periods, time tagging all the incoming photons. Then, from the raw data obtained,
the signal can be reconstructed by manipulating the photons’ time history.
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Therefore, especially in presence of a low SNR, a fully deterministic representation of
the process is not possible, but rather, a stochastic description can be more suitable for this
kind of problem. In these conditions, one possible description of this stochastic process
is to employ the Non-Homogeneous Poisson model, as it is extensively used for signal
models and specifically for X-ray pulsars [23,24].

Given an observation time interval Tobs bounded by an initial t0 and a final t f , let
us denote ti the time corresponding to the arrival time of the i-th photon. Let us assume
that the sequence {t}N

i is random, and it is expressed in incremental order within the
observation window as

t0 ≤ t1 < t2 < ... ti ≤ t f

where the variable N represents the total number of photons received and is itself random.
The problem {Ntot, t > 0} is said to be a point-process with t0 = 0 and N0 = 0 as initial
conditions and with Ntot as the total number of photons received in the interval (0, t).
A point-process is suitable for a Non-Homogeneous Poisson representation with a time-
varying photon arrival rate λ(t).

A process is said to belong to the Non-Homogeneous Poisson class when it satisfies
the following three conditions:

(1) The probability of detecting one photon in a time interval ∆t is given by:

P(Nt+∆t − Nt = 1) = λ(t)∆t with ∆t approaching zero.

(2) The probability of detecting more than one photon in ∆t is given by:

P(Nt+∆t − Nt > 1) = 0 with ∆t approaching zero.

(3) Non-overlapping increments are independent, with Nt as the increment of the stochas-
tic process:

Nl,q = Nq − Nl with q ≥ l.

In this framework, the number of received photons k equal to Nq − Nl is a Poisson
random variable in any fixed time interval (l, q), featured by the integrated rate

∫ t
l λ(ε)dε

and with probability [23]

P(k) =

(∫ q
l λ(ε)dε

)k
exp

(
−
∫ q

l λ(ε)dε
)

k!
(3)

Equation (3) is the probability that k photons are received in a time frame from l to
q. Now, the incoming rate of photons (λ(t)) is constituted by a background source and a
signal source. Therefore, we can write

λ(t) = λb + λsh(φdet(t)) (4)

where λb and λs are the arrival rates of background and source photons, respectively,
in terms of photons per second, and h(φdet(t)) is the pulsar signal profile whose shape is
different for each neutron star. It is periodic and dependent on the detected phase φdet(t),
defined in the interval φdet ∈ (0, 1], so that h(φ + n) = h(φ), with n integer. It is also
defined as normalized and non-negative, implying that

∫ 1
0 h(φ)dφ = 1 and minφh = 0.

As an example, the normalized profile of the B0531+21 pulsar, also known as the Crab
pulsar, is reported in Figure 2.

The phase with which the profile is expressed needs to be related to time to obtain an
arrival function depending on the time. The phase will also depend on the observed pulsar
frequency, which, including Doppler effects, can be written as:

f0(t) = fs + fd(t) (5)

where fs is the pulsar base frequency and fd the contribution due to the Doppler shift.
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Figure 2. Crab pulsar normalized profile plot with data from [23].

2.4. Epoch Folding

It is necessary to develop a method for the onboard processing of the information
contained in the photons time tags to estimate signal phase at specific times, therefore
producing a useful measurement to ingest in a Kalman filter. A feasible method that can be
used directly on the onboard computer is the one generally employed by astrophysicists to
generate the light curves of celestial objects starting from raw data, i.e., the so-called Epoch
Folding. The idea is rather simple and consists of the following steps [25]:

• The photons’ time tags during the set observation window are collected.
• They are folded back into a single time interval equal to one pulse period.
• The period duration is divided into some equal-length bins.
• The number of photons in each bin is counted.
• The computed photon counts are normalized, and the empirical pulsar profile is derived.

Therefore, the estimated discrete rate function can be written as

λ̂(ti) =
1

NpTb

Nb

∑
j=1

cj(ti) (6)

where ti is the reference signal epoch, Tb is the bin size, Nb the number of bins the single
period is divided into, and finally, cj(ti) are Non-Homogeneous Poisson variables, whose
mean and variance are described by:

E
[
cj(ti)

]
= var[c(ti)] = λ(ti)Tb (7)

It must be remarked that the Epoch Folding technique relies on the knowledge of the
spacecraft velocity with respect to the pulsar position, so that the Doppler frequency shift
can be computed and taken into account in the signal reconstruction. However, the largest
part of the Doppler shift is already taken into account from the solar system motion with
respect to the pulsar, so that the relative motion of the spacecraft is negligible. This folding
process is graphically depicted in Figure 3.
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Figure 3. Epoch Folding scheme.

An alternative to these methods, which requires the knowledge of the rate function
obtained out of the Epoch Folding, is the Maximum Likelihood Estimation (MLE) based on
the probability density function of the photon time of arrivals [26]. As a reference, in [27],
the performances of the MLE are studied with respect to the Cramer Rao Lower Bound,
which measures the efficiency of the estimators based on their variance.

2.5. Phase Delay Estimation

The core of the navigation system is the measurement obtained through estimation
of the time delay between two received signals. Therefore, a spacecraft in deep space is
acquiring the pulsar signal, which is processed via epoch folding, and then the empirical
rate function λ̂(ti) is obtained, and it will be used in the problem of phase estimation.

One possible approach for the estimation of the initial phase is the solution of a Non-
linear Least Squares (NLS) optimization problem, constituted by the fit of the empirical rate
function λ̂(ti) to the true known rate function λ(ti). The cost function can then be explicitly
written as:

Jφ =
Nb

∑
j=1

(
λ̂(ti)− λ(ti, φ)

)2
(8)

for which the true known rate function is expressed in the unknown variable φ

λ(t, φ) = λb + λsh(φ + (t− t0) f0)) (9)

A solution is then sought by minimizing (8)

φ̂ = argmin
φ∈(0,1)

Jφ (10)

It can be shown [23,25] that such an estimator is asymptotically unbiased, with a
specified asymptotic variance.

3. Measurement Modeling

Accurately timing pulsar signals at the spacecraft’s location is crucial to enable their
evaluation with respect to the SSB reference. As an example, to provide an accurate position
information on the order of 300 m or lower, the system must accurately time pulses to
at least 1µs. Therefore, it is then mandatory to properly model the measurement model,
which was previously introduced as the right-hand side of Equation (1).

3.1. Photon Path

The higher-order terms featured in Equation (1) come from the field of general rela-
tivity, which deals with how the signal travels when subjected to gravity fields. The path
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of a photon will follow the curvature of space-time when passing near a star; therefore,
the photon will not necessarily travel in a straight line as (1) describes.

Several works described this process [28,29] and, by assuming a constant pulsar
direction throughout the Solar System and not varying in time, a more complete expression
than (1) can be found [28]:

ts/c − tssb =
1
c

{
n · r− r2

2D0
+

(n · r)2

2D0
− (b · r)

D0
+

(n · b)(n · r)
D0

}
+

+
2GMsun

c3 ln
∣∣∣∣n · rsun + rsun

n · b + b
+ 1
∣∣∣∣

(11)

for which D0 represents the pulsar distance with respect to the Solar System, r is the
spacecraft position vector, b is the position vector of the Sun with respect to the SSB, and
rsun is the spacecraft position vector with respect the Sun.

3.2. Timing Model

For a correct measure, the time when the pulse is detected at the spacecraft’s location
must be translated into the TCB frame, decoupling its flow from gravity and velocity
feature. Additionally, this time is read from an on-board reference, which in general is not
absolute, introducing one more issue in the navigation solution estimation.

Clocks measure time with respect to an oscillating phenomenon; specifically, atomic
clocks observe the microwave signal emitted by electrons when they change energy levels
for increased accuracy. If the frequency of the phenomenon is known, by observing its
evolution the elapsed time can be inferred. In the ideal case, the time kept should be
infinitely accurate, but both the physical phenomenon and the hardware built to observe it
introduce several uncertainties which are usually collected under the definition of clock
stability. The accuracy specification of a clock describes how much deviation there can
be between the specified clock frequency and the actual one. The stability specification
gives a measure of how much the frequency varies over time, introducing uncertainties in
reading it.

3.3. Time Conversion

As stressed, the time conversion dynamics has to be considered to align the local time
system of the spacecraft with respect to the proper one. The state space model consisting of
the spacecraft’s three-dimensional position and velocity needs to be augmented with the
time conversion equation, adding this new variable as a state. The time conversion follows
the Lorentz transformation:

dτ =

[
1−

Nss

∑
i=1

GMi
|ri|

1
c2 −

(vssb
c

)2
]

dt (12)

for which t represents the onboard coordinate time and τ the proper one, G is the gravita-
tional constant, Mi the mass of the i-th body, and ri its relative distance from the spacecraft.
Additionally, Nss is the number of planetary bodies considered, and finally, vssb is the
velocity with respect to an inertial SSB-centred frame. According to [29], (12) is accurate up
to 10−12 s. Therefore, (12) can be rewritten in differential form

δτ̇ =
dt− dτ

dt
=
(vssb

c

)2
+

Nss

∑
i=1

GMi
|ri|

1
c2 (13)

where δτ̇TDB is the time flow drift between the two time systems. Therefore, the state is
then augmented as:

x(t) = [r, v, δτ]T (14)
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Now, the measurement model of Equation (11) can be rewritten as

h(x(t), t) =
1
c

{
n · r− r2

2D0
+

(n · r)2

2D0
− (b · r)

D0
+

(n · b)(n · r)
D0

}
+

+
2GMsun

c3 ln
∣∣∣∣n · rsun + rsun

n · b + b
+ 1
∣∣∣∣+ δτ

(15)

3.4. Atomic Clocks

The non-ideal timekeeping of the on-board clocks can be taken into account, where a
stochastic description can be used for this problem [30]. The clock errors can be modelled
by stochastic differential Equations (SDE). A two-state clock model can be written by
introducing two new states, the clock bias xb and the clock drift xd, which are related as:{

ẋb = xd + σbdWb

ẋd = ad + σddWd
(16)

for which dWb and dWd are the Wiener processes associated with the drift and the bias,
while σb and σd are their associated diffusion coefficients. Finally, ad is the frequency
aging component. Apart from the Wiener processes which make the equations stochastic,
the other features can be assumed constant and set according to the specific hardware
considered. Now, the state (14) can be augmented once again as:

x(t) = [r, v, δτ, xb, xd]
T (17)

and the measurement model updated accordingly:

h(x(t), t) =
1
c

{
n · r− r2

2D0
+

(n · r)2

2D0
− (b · r)

D0
+

(n · b)(n · r)
D0

}
+

+
2GMsun

c3 ln
∣∣∣∣n · rsun + rsun

n · b + b
+ 1
∣∣∣∣+ δτTDB + xb

(18)

Equation (18) is the distance of the spacecraft with respect to the SSB along the pulsar
direction n, already accounting for relativistic effects and clock errors. This equation
constitutes the measurement model that will be used in the navigation filter in Section 4.
Including these aspects in the State Estimation becomes especially critical when CubeSat
systems are considered as usually COTS components with predefined performances are
selected for implementation. This augmented model provides the capability of simulating
the impact of the clock selection on the final navigation results.

3.5. Signal-to-Noise Ratio

Additionally, this work includes the effect of the signal-to-noise ratio on the measure-
ment accuracy. As shown in [22], the SNR measure of a pulsar signal is:

SNR =
Fx Adet p f tobs√[

Bx + Fx

(
1− p f

)](
Adettobs

W
P

)
+ Fx Adet p f tobs

(19)

where FX is the X-ray photon flux, Adet is the instrument collecting area, p f is the pulsed
fraction of the source flux, tobs is the observation time, Bx is the background photons flux,
W is the pulse width, and P is the pulse period [18]. A direct first-order expression for the
uncertainty of the pulsar measurements time-of-arrival, σTOA, can be obtained in relation
to (19), it being [22]:

σTOA =
1
2

W
SNR

(20)
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which can be converted into a range uncertainty

σrange = c σTOA (21)

The signal-to-noise modelling will be used in the two devised application scenarios,
highlighting its impact on different spacecraft characteristics.

4. Simulation

The state of the spacecraft, during its deep-space travel, is known with some uncer-
tainty and, if not updated or corrected continuously, tends to diverge from the reality.
In the case of X-ray pulsars navigation, both the acquisition and processing of the data
are affected by errors and uncertainties which introduce issues in the state estimation and
possibly leading to performance degradation. This works considers the application of the
unscented Kalman filter (UKF) [31] to retain all the non-linear features of the developed
models. This is accomplished by representing the set of states by their mean and covariance,
and these features are then propagated through the actual, non-linear model [31]. The
devised methodology is applied to two different mission scenarios, one being the New
Horizons mission case, and the second being the LUMIO mission case. The two missions
differ mainly in their orbits and in the available platform budget characteristics, which in
turn have an impact on the achievable SNR of the pulsar signals.

4.1. New Horizons Mission Case

The navigation model just built is first applied to the New Horizon mission as it
represents one of the most iconic and successful deep space missions [32]. The orbit
considered can be described as a very stretched arc of hyperbola since the spacecraft
is moving at a velocity higher than the escape velocity of the Solar System. In partic-
ular, the trajectory leg just before the approach of Pluto is considered. In order to ac-
complish this, data were collected from the Jet Propulsion Laboratory’s (JPL) Horizon
database (https://naif.jpl.nasa.gov/pub/naif/pds/data/nh-j_p_ss-spice-6-v1.0/nhsp_
1000/data/spk/ (accessed on 12 January 2022)).

The kernel nh_recon_pluto_od122_v01 containing the data required for the simula-
tion was then retrieved, and the initial state is the one at midday of 7 December 2014. This
has been also reported in Table 1.

Table 1. New Horizon initial state in J2000, Sun centered.

x0 1,092,587,085.357 km vx,0 5.560 km/s
y0 −4,206,812,531.514 km vy,0 −12.623 km/s
z0 −1,655,791,253.618 km vz,0 −4.892 km/s

The simulation parameters are reported in Table 2.

Table 2. Simulation parameters.

Parameter Value Unit Parameter Value Unit

Tobs 3600 s σpos 102 km
Tmap 0.5 d σvel 10−4 km/s
Bx 0.005 ph/cm2/s σTDB 10−6 km
Npsr 4 σbias 10−9 s
Adet 1 m2 σbias 10−16 1/s
∆teul 10 s ad 10−14 s/s

In this scenario, four pulsars (see Table 3) are tracked sequentially, with measures ac-
quired every Tmap, which is half a day, with an observation window Tobs. The measurements
fed to the UKF are generated by corrupting the true measure of (18) with Equation (21).

https://naif.jpl.nasa.gov/pub/naif/pds/data/nh-j_p_ss-spice-6-v1.0/nhsp_1000/data/spk/
https://naif.jpl.nasa.gov/pub/naif/pds/data/nh-j_p_ss-spice-6-v1.0/nhsp_1000/data/spk/
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The initial state of the filter is given by a distribution represented by the σ in Table 2. The
true initial state regarding position and velocity is the one in Table 1, the time conversion
and clock dynamics are initialized as a vector of zeros.

Table 3. Selected pulsars’ parameters. Data are taken from [33] and updated where applicable with
more recent data.

Pulsar Fx Galactic Latitude Galactic Longitude Period

J1751−305 0.180000 ph/cm2/s −0.0330 deg 6.27 deg 2.30 ms
B0531+21 1.540000 ph/cm2/s −0.1000 deg 3.22 deg 33.4 ms
B1937+21 0.000050 ph/cm2/s −0.0051 deg 1.00 deg 1.60 ms
B1821−24 0.000193 ph/cm2/s −0.0970 deg 0.14 deg 3.10 ms

With these settings, the UKF formulation can be run and the navigation accuracy can
be evaluated with respect to the true states. The accuracy for the first six states, which
are the position and velocity components, are presented in Figure 4, both for the residual
and the 1σ knowledge. As it can be seen, by tracking a different pulsar each half day, the
estimation accuracy increases, and the filter manages to produce a suitable navigation
solution even if starting with a high dispersion. The values of the position and velocity
accuracy at the final time are reported in Table 4.
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Figure 4. New Horizon navigation accuracy in position and velocity components.

Table 4. New Horizon final time navigation results.

σx 4.532 km σvx 0.8548 mm/s
σy 0.751 km σvy 0.1561 mm/s
σz 2.022 km σvz 0.4056 mm/s

The accuracies of the time conversion and clock states are displayed in Figures 5 and 6,
respectively. As it can be seen, the filter manages to keep the clock instability within bounds,
in around 0.1 microseconds, showing that combined navigation and time keeping features
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can be obtained. The time conversion knowledge is also kept at acceptable levels with
a distance-equivalent knowledge below 1 m; in this case, the good performances are the
results of the combination of the applied filtering on the δτ̇ state and the fact that, it being
highly correlated with the first orbital states, once they reach convergence, it tends not to
diverge. The filter manages to reduce the knowledge to less than 10 km in 2–3 update steps.
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Figure 5. New Horizons time conversion filtering results.
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Figure 6. New Horizons atomic clock filtering results.

The navigation results in Table 4 show that performances for position estimation with
accuracy in the order of kilometers can be obtained with the setup of Table 2 which, taking
into account the scale of the problem (more than 30 astronomical units), can be considered
a very good result in view of similar mission scenario implementations for the future.

4.2. LUMIO Mission Case

The second case considered is the operative orbit of the LUMIO mission, which is
a deep-space CubeSat under development by the European Space Agency (ESA) [34,35].
The scientific objectives of the LUMIO mission are to observe, quantify, and characterize
meteoroid impacts on the lunar far-side by detecting their impact flashes, complementing
Earth-based observations on the Lunar nearside, to provide global information on the
Lunar Meteoroid Environment and contribute to Lunar Situational Awareness. LUMIO
flies on a Halo orbit at the Earth–Moon L2 point. A window of 60 days is considered for
this simulation, starting from the first kernel entry. The initial state is reported in Table 5.

Table 5. LUMIO initial state vector in EME2000.

Start Date 29 August 2020

x0 211,878.048 km vx,0 1.187 km/s
y0 −345,283.782 km vy,0 0.691 km/s
z0 −136,298.530 km vz,0 0.221 km/s

The simulation settings are shown in Table 6. In this case, a single pulsar tracking
will be adopted, with the Crab pulsar as the chosen option. Additionally, both the clock
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dynamics and the time conversion of the photon time tags are assumed to be perfectly
known. Doppler effects are then included both in the photon generation and in their
relative signal detection. Epoch Folding was performed with 2048 bins, which corresponds
to a resolution of roughly 16 microseconds, a resolution that is compatible with a wide
range of CMOS detectors. The collecting area is assumed to be 0.01 square meters in order
to make it suitable for a CubeSat application (e.g., 12U application, with placement on one
of the 4U faces, offering up to 0.04 square meters).

Table 6. LUMIO simulation setup.

Parameter Value Unit Parameter Value Unit

Tobs 300 s σpos 102 km
Tmap 1 d σvel 10−4 km/s
λback 0.005 ph/cm2/s Nbin 2048
Npsr 1 Adet 0.01 m2

The accuracy of the X-ray pulsar navigation applied to the LUMIO mission scenario
is shown in Figure 7. The covariance still achieves a good accuracy, and Table 7 reports
the final values in terms of 1σ knowledge for position and velocity components. The total
uncertainty for positioning is in the order of kilometres, while the accuracy for the velocity
is in the order of the millimetres per second. Both values are very promising considering
deep-space satellite applications, where these uncertainties are completely acceptable with
respect to the large distances travelled in deep space. Note that the convergence time is
higher with respect to the New Horizon mission case; this is due to the smaller sensor and
lower performances arising from the adoption of miniaturized components.
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Figure 7. LUMIO navigation results.

Table 7. LUMIO final time navigation results.

σx 2.595 km σv,x 1.484 × 10−2 m/s
σy 0.804 km σv,y 6.955 × 10−3 m/s
σz 1.753 km σv,z 4.196 × 10−3 m/s
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5. Conclusions

This work has investigated the application of pulsar-based navigation in two mission
scenarios, highlighting its suitability for nanosatellite applications. A novel approach
for dealing with the on-board timing features has been addressed, in conjunction with
the pulsar signal modelling and onboard filtering implementations. All in all, reachable
navigation accuracies are compliant with typical requirements of deep-space missions,
making X-ray pulsar-based navigation promising for future onboard applications.
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