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Abstract: In this paper, the problem of autonomous optimal absolute orbit keeping for a satellite
mission in Low Earth Orbit using electric propulsion is considered. The main peculiarity of the
approach is to support small satellite missions in which the platform is equipped with a single
thruster nozzle that provides acceleration on a single direction at a time. This constraint implies that
an attitude maneuver is necessary before or during each thrusting arc to direct the nozzle into the
desired direction. In this context, an attitude guidance algorithm specific for the orbit maneuver has
been developed. A Model Predictive Control scheme is proposed, where the attitude kinematics
are coupled with the orbital dynamics in order to obtain the optimal guidance profiles in terms of
satellite state, reference attitude, and thrust magnitude. The proposed control scheme is developed
exploiting formation flying techniques where the reference orbit is that of a virtual spacecraft that
the main satellite is required to rendezvous with. In addition to the controller design, the closed-
loop configuration is presented supported by numerical simulations. The efficacy of the proposed
autonomous orbit-keeping approach is shown in several application scenarios.

Keywords: spacecraft; orbit keeping; model predictive control; low thrust; relative orbital elements;
eccentricity vector; inclination vector

1. Introduction

In recent years, the adoption of electric propulsion has become more popular among
small satellite designers [1]. This trend is driven by the fact that electric propulsion
systems are generally more sustainable and more efficient in terms of propellant usage
in comparison to chemical propulsion ones. Moreover, electric thrusters could support
large maneuvers while being smaller in size and lighter in weight than their chemical
counterparts. This, in turn, can allow the allocation of more space/weight for the payload,
and in many cases permits successful integration within some launchers that would be
infeasible for the satellite if it were equipped with chemical thrusters.

One of the satellites designed to accommodate an electric propulsion system is
Triton-X-Heavy [2] (referred to as Triton-X in the discussions that follow), which is a
high-performance multi-mission microsatellite platform developed by LuxSpace for Low
Earth Orbit (LEO) operations. To permit orbit correction and orbit-transfer maneuvers,
Triton-X is equipped with one throttleable electric thruster aligned with its body frame’s
z-axis.

Thanks to the simple design of the propulsion system, which requires minimal size
and mass budgets, the satellite could be designed with a high level of flexibility, which
permits the accommodation of a wide spectrum of payloads. However, having only one
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thruster onboard comes with its own challenges. For instance, the guidance and control
schemes have to be optimized for the unidirectional thrust system, in the sense that attitude
and orbit control systems have to be coupled to ensure that the thruster is always aligned
with the desired firing direction. Moreover, this need becomes more relevant for orbit
corrections that have to be performed on a limited time frame and/or when a very low
thrust level is available.

To prepare Triton-X for its prospective missions, the AuFoSat project has been initiated
to provide a ready-to-use Guidance, Navigation, and Control (GNC) toolbox specifically
tailored for the specifications of Triton-X, which could be seamlessly used to also support for-
mation flying (FF) applications. Previous AuFoSat research concentrated on orbit design [3],
and on the relative navigation problem using the onboard sensors of Triton-X [4,5]. This
paper, as part of AuFoSat, is focusing on optimal absolute orbit keeping for LEO satellites
equipped with a single electric thruster. The problem is approached using formation flying
techniques, meaning that Triton-X is assumed to be flying in formation with a virtual chief.
Namely, when an orbit transfer maneuver is defined, the chief’s orbit is set as the target
one, and the satellite is ultimately required to rendezvous with the virtual chief. On the
one hand, opting for the exploitation of FF techniques enables the developed guidance
and control schemes to be directly used in multi-satellite scenarios. On the other hand,
the absolute orbit control problem can be efficiently tackled by linearizing the orbital dy-
namics around the reference desired trajectory. In this context, the relative orbit between
the satellite and the virtual target can be formulated using the Relative Orbital Elements
(ROEs), which render the linearized relative orbital dynamics with high levels of accuracy
for neighboring orbits.

Many contributions on autonomous absolute orbit keeping for LEO satellites have been
introduced over the last few decades [6–9]. Among the many, formation flying techniques
were used for absolute orbit control in [10], where the spacecraft had to maintain its
ground track close to a reference trajectory computed as the orbit of a virtual chief satellite.
A specific set of variables was used to parameterize the relative motion and linear and
quadratic optimal regulators were employed. In [11,12], formation reconfiguration with
realistic mission constraints was considered. The proposed control schemes on these two
articles relied on candidate Lyaponuv functions that comprised artificial potential around
the prohibited areas (in the decision variables’ space), which guided the main satellite to
follow feasible trajectories without having to solve an optimization problem. The main
drawback of this approach is that the trajectories followed by the spacecraft are neither
fuel- nor time-optimal. All the aforementioned contributions considered only satellites
with 3D thrusting capabilities, and most of them adopted impulsive thrust. One mission
that adopted a single impulsive thruster is the Autonomous Vision Approach Navigation
and Target Identification (AVANTI) experiment [13], where a specific guidance scheme was
adopted to include no-control windows that allowed the re-orientation of the available
nozzle [14,15]. Furthermore, in [16], formation flying techniques were used to develop a
control scheme that constantly corrected the orbit drifts of the satellite that comprised a
single impulsive thruster. The satellite used a passive magnetic attitude control system to
stabilize its longitudinal axis, along which the thruster was mounted, along the induction
vector of the local geomagnetic field.

The only research, to the authors’ knowledge, that addresses the problem of abso-
lute orbit control for unidirectional low-thrust satellites is [17]. Nonetheless, it does not
consider the coupled attitude evolution, making such approach not suitable for prompt
orbit corrections. Moreover, in [17], both the navigation and actuator errors were also
not considered.

In this paper, a Model Predictive Control (MPC) scheme is proposed that couples the
attitude and the relative translational equations, where the relative dynamics are formulated
in the ROE space. In this setting, the MPC uses an attitude control surrogate model to
emulate the functioning of Triton-X’s attitude control system as well as the ROE-based
linearized relative dynamical model to predict the satellite’s future roto-translational state.
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The output of the MPC is a tuple that contains the optimal acceleration that should be
provided by the thruster as well as the optimal desired attitude that the attitude control
system needs to steer the satellite to. The overall cost function of the MPC at each receding
horizon is a trade-off between delta-V optimality, time optimality, and attitude effort
optimality, and is specifically designed for the purpose of small orbit changes (less than
1 km) as typically encountered in absolute orbit control problems around a reference orbit.
The original contributions of the proposed approach are as follows:

• Considering the coupled attitude/relative orbit problem in the control loop;
• Proposing an MPC scheme for a satellite with a unidirectional propulsion system

where the thrust can also be provided during slew maneuvers.

The following section of this paper introduces the formulation of the relative orbital
dynamics in the ROE space as well as the adopted surrogate model for the attitude control
system. In Section 3, the MPC problem is formally established in the sense that the
employed cost function is introduced and the inherent constraints of the problem in hand
are presented. The problem of MPC parameter tuning as well as the module execution logic
of the closed control loop are discussed in the same section. The stability of the proposed
MPC scheme is then tested by means of a Monte Carlo simulation in Section 4, and the
proposed MPC is benchmarked against that introduced in [17].

2. Mathematical Models

In this section, the dynamical models used in developing the control schemes are
presented. At first, the reference frames used in the research are identified, then the relative
orbital dynamics of the deputy spacecraft with respect to the chief (virtual) satellite are
shown, and finally the attitude kinematics are introduced.

The following reference frames are used in developing the dynamic models as well as
the control scheme:

1. Earth-centered inertial frame:
The employed Earth-Centered-Inertial (ECI) reference frame, Fi, is defined by True-of-
Date coordinate system with its origin at the center of the Earth, its x-axis along the
true vernal equinox at the current epoch, its z-axis is aligned with the true rotation
axis at the current epoch, while its y-axis completes the right-handed triad. A vector
expressed in the ECI frame is signified by the (·)i superscript.

2. Satellite-body-fixed frame:
The body-fixed reference frame, Fb, is a reference frame attached to the spacecraft in
question with the origin at the satellite’s center of mass. One common choice of the
directions of the three axes is along the three principal axes of inertia of the satellite. A
vector expressed in the body-fixed frame of the satellite will have the superscript (·)b.

3. Radial–transversal–normal frame:
The radial–transversal–normal (RTN) frame, Fr, is centered on the center of mass
of the chief satellite, where the x-axis of the RTN frame is defined to be along the
position vector of the chief satellite, positive towards the Zenith direction, the z-axis is
directed along the chief’s orbital angular momentum vector, and the y-axis completes
the right-handed set. In the sequel, a vector expressed in the RTN frame is signified
by the (·)r superscript.

Here, and in the discussions to follow, superscripts refer solely to frame labels.
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2.1. Relative Orbital Dynamics

The orbital motion of a satellite under the gravitational influence of a major body (e.g.,
the Earth) can be parameterized in a planet-centered inertial frame using the following set
of orbital elements:

ααα :=



a
θ
ex
ey
i

Ω

, (1)

where a is the semi-major axis, θ = M + ω is the argument of latitude with M being the
mean anomaly and ω being the argument of periapsis, eee :=

[
ex ey

]ᵀ
=
[
e cos ω e sin ω

]ᵀ
is the eccentricity vector with e being the orbital eccentricity, i is the orbital inclination, and
Ω is the Right Ascension of the Ascending Node (RAAN). If a Cartesian state vector is
used, then the motion of the satellite in the planet-centered inertial frame is parameterized
by xxxi :=

[
rrriᵀ vvviᵀ

]ᵀ
, where rrri and vvvi are the absolute position and velocity vectors. These

latter are related to the orbital elements through a set of nonlinear equations. Spacecraft
position and velocity transform into osculating orbital elements, which in the remainder of
this work will be denoted by α̃αα. Mean orbital elements, denoted by ααα, are to be intended as
one-orbit averaged elements, where the short- and long-term oscillations generated by the
J2 harmonic of the Earth’s gravitational potential are removed. Mean/osculating elements’
conversions are performed through the transformations developed in [18]. To this end,
the reader is warned not to confuse i, which refers to the orbital inclination, with vectors
expressed in the ECI frame, e.g., xxxi.

The relative motion between a deputy and a chief spacecraft can be described by
the dimensionless quasi-nonsingular Relative Orbital Element (ROE) vector, which is a
nonlinear transformation of the orbital elements vector introduced in (1),

δααα :=



δa
δλ
δex
δey
δix
δiy

 =



∆a/ac
∆θ + ∆Ω cos ic

∆ex
∆ey
∆i

∆Ω sin ic

, (2)

where δa is the relative semi-major axis, δλ is the relative mean longitude, δeee :=
[
δex δey

]ᵀ
is the relative eccentricity vector, and δiii :=

[
δix δiy

]ᵀ is the relative inclination vector.
It is important to note that here, and in the sequel, the subscript (·)d denotes a quantity
related to the deputy satellite, while the subscript (·)c is used for chief-related quantities.
Moreover, δ(·) signifies a relative quantity between the deputy and the chief that is not
necessarily the arithmetic difference between that of the deputy and that of the chief, while
∆(·) signifies the arithmetic difference between (·)d and (·)c, i.e., ∆(·) := (·)d − (·)c. As for
absolute elements, osculating ROEs are denoted by δα̃αα, whereas mean ROEs are expressed
as δααα. Both sets are computed from the corresponding osculating/mean orbital elements’
set by means of (2).

One of the advantages of the adopted ROEs is that they provide a direct insight on
the shape of the relative orbit, unlike the relative position and velocity vectors, which need
to be integrated over time in order to obtain a intuition of the relative orbit. Given the set
of ROEs in (2), the shape of the relative orbit can be constructed as an ellipse, in both the
transversal–radial and normal–radial planes (see Figure 1).
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Figure 1. Snapshot of the shape of the relative orbit (i.e., orbit drift is neglected).

In this work, the adopted relative dynamics are the same as in [19], where the dynamics
of the ROEs are linearized to the first order and the secular effect due to the J2 zonal
harmonic is included in the relative motion. The following assumptions apply:

• Neighboring orbits of the deputy and the chief,
• Near circular chief’s orbit.

The solution to the linear system under the influence of a constant input acceleration
is given in the following form:

δααα(tk+1) = Φ(tk, tk+1)δααα(tk) + Ψ(tk, tk+1)uuur(tk, tk+1), (3)

where Φ(tk, tk+1) ∈ R6×6 is the State Transition Matrix (STM) between the two time
instants, tk and tk+1, Ψ(tk, tk+1) ∈ R6×3 is the convolution matrix between the same two
time instants, and uuur(tk, tk+1) ∈ R3 is the acceleration vector in Fr, which is constant over
the period [tk, tk+1). The reader is referred to [19] for detailed expressions of Φ(tk, tk+1)
and Ψ(tk, tk+1).

In the sequel, and in order to simplify the representation of equations, the follow-
ing notations are used: Φk|k+1 ≡ Φ(tk, tk+1), Ψk|k+1 ≡ Ψ(tk, tk+1), δαααk ≡ δααα(tk), and
uuur

k|k+1 ≡ uuur(tk, tk+1)

2.2. Attitude Kinematics

Given that the adopted satellite is equipped with only one thruster, continuous attitude
maneuvers are necessary in order to direct the thruster to the desired direction during
time-extended orbit maneuvers, which are likely to occur with the available low-thrust
level. In this work, it is assumed that the attitude control system of Triton-X is capable
of tracking a desired attitude profile. The specifications of the attitude control system are
obtained from the publicly available Triton-X brochure (The brochure can be found through:
https://luxspace.lu/resources/ (accessed on 1 August 2023) ). A surrogate model for the
Attitude Determination and Control System (ADCS) is presented here, but first the attitude
kinematics are introduced.

Let qqqxy ∈ Q, with Q := {qqq ∈ R4 : ‖qqq‖ = 1} as the unit quaternion that rotates any
vector, vvv ∈ R3, from one reference frame Fy to another frame Fx, through

vvvx = qqqxy ◦ vvvy ◦ q̃qqxy, (4)

https://luxspace.lu/resources/
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where ◦ is the quaternion multiplication operator, and q̃qqxy is the quaternion conjugate of
qqqxy. Equivalently, the attitude rotation can be performed using the Direction Cosine Matrix
(DCM) A(qqqxy) ∈ A, withA := {A ∈ R3×3 : AᵀA = I} (see Appendix A in [20]) as follows:

vvvx = A(qqqxy)vvvy. (5)

The attitude kinematics of a rigid body can be described as follows [21]:

q̇qqxy =
1
2
qqqxy ◦ωωωy, (6)

where ωωωy ∈ R3 is the angular velocity of frame Fy with respect to frame Fx, expressed in
Fy.

Letting qqq ≡ qqq(t) = qqqrb(t) and ωωω ≡ ωωω(t) = ωωωb(t), and letting qqqr ≡ qqqr(t) be the
desired/reference quaternion at time t, (6) can be written as

q̇qq =
1
2
qqq ◦ωωω, (7)

and the error quaternion signal, qqqe, is defined, in terms of the current attitude and the
reference one, as

qqqe :=
[

qe,0
qqqe

]
:= q̃qqr ◦ qqq. (8)

The ultimate behaviour of an ADCS would be to force the error quaternion to asymptot-
ically approach either

[
1 0 0 0

]ᵀ or
[
−1 0 0 0

]ᵀ, which could be achieved through
forcing the angular velocity, ωωω, profile to follow

ωωω = −Kqe,0 qqqe, (9)

where K is a positive control gain. The rationale behind why the ωωω profile is plausible is
given in Appendix A.

An additional operational constraint is imposed on the ADCS that dictates that the
angular rate around any axis does not exceed the maximum allowable angular rate, i.e.,
‖ωωω‖ ≤ ωmax. To be compliant with the attitude control specifications of Triton-X, the value
of K is set to 0.2, while the value of ωmax is set to 2 deg/s. Indeed, ωmax could be found
directly in the data sheets. The numerical value of K, instead, has been assessed through
numerical simulations in order to properly emulate the behavior of Triton-X ADCS, based
on the time duration to perform a 60-degree slew.

Substituting from (9) into (7), the adopted surrogate model for the ADCS is obtained:

q̇qq = −1
2

Kqe,0 qqq ◦ qqqe. (10)

One thing that has to be acknowledged is that the attitude and angular velocity profiles
of the actual satellite could differ slightly from the profiles generated by the surrogate
model assumed here, depending on the exact quaternion feedback regulator used by the
ADCS as well as the exact inertia tensor of the satellite. Nonetheless, changing the value
of K could bring the attitude and angular velocity profiles of the surrogate model very
close to those of the actual ADCS. This claim could be verified through benchmarking the
surrogate model against a full attitude control system, which uses one of the commonly
used feedback regulator proposed in [22], and the results are depicted in Figure 2. It is to
be noted that the initial and reference quaternions are randomly chosen for the simulation
in Figure 2. Moreover, the subscript (·)full refers to a quantity relating to the full attitude
control model, while the subscript (·)surr refers to surrogate model quantities.
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Figure 2. Validation of the surrogate ADCS model through random initial and desired attitudes.

3. Model Predictive Control
3.1. MPC Problem Formulation

The Model Predictive Control problem is, in its essence, a recurring optimization
problem that searches for the optimal control input over the receding control horizon, and,
in most cases, also solves for the state variables over the prediction horizon. Only the
first control input in the control horizon is realized by the actuators. In the context of our
problem, attitude dynamics are coupled with the ROE-based relative translational motion,
and the state vector is set to

sss =
[

δααα
qqq

]
, (11)

where the dynamics of the state vector are described by (3) and (10). The control input, on
the other hand, is set to

uuu =

[
u
qqqr

]
, (12)

where u is the magnitude of the piece-wise constant input acceleration provided by the
single thruster, and qqqr is the desired quaternion. The state vector as well as the control
vector are collated over the prediction and the control horizons in the two matrices S and
U respectively, such that

S =
[
sss0 sss1 . . . sssnp

]
,

U =
[
uuu0|1 uuu1|2 . . . uuunu−1|nu

]
,

(13)

with np being the length of the prediction horizon, and nu being the length of the con-
trol horizon, where np ≥ nu. It is to be noted that the notations sssk := sss(tk), where
k ∈

{
0, 1, . . . , np

}
, and uuuj := uuu

(
tj
)
, where j ∈ {0, 1, . . . , nu − 1}, are used, and the time dif-

ference between any two consecutive instances is constant and is equal to the user-defined
sampling time, i.e., tk+1 − tk = Ts. Moreover, after the control horizon is over, the input
acceleration is set to zero (i.e., uk = 0, ∀k ∈

{
nu, nu + 1, . . . , np

}
) and the desired attitude

is left to be decided by the mission-specific mode management logic of the ADCS. For
the sake of simulating the attitude evolution, the reference attitude at an arbitrary time
step beyond the control horizon is set to the quaternion from the previous step. Formally,
qqqr(tk) = qqqr(tk−1)∀k ∈

{
nu, nu + 1, . . . , np

}
.
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It is also important to note that the adopted satellite is assumed, without loss of
generality of the approach, to have its thruster directed along the z-direction of its body
frame, and hence the input acceleration vectors in Fb and in Fr can be related as

uuur = A
(
qqqrb
)

uuub,

uuub =
[
0 0 u

]ᵀ.
(14)

After having introduced the necessary notations, the optimization problem could then
be formulated as follows:

Problem 1.

min
S,U

Jδααα + Ju + Jδqqq

Subject to

sss0 =

δααα0

qqq0

, (15)

δαααk+1 =

Φk|k+1δαααk + Ψk|k+1ūuur
k|k+1, k ∈ {0, 1, . . . , nu − 1}

Φk|k+1δαααk, k ∈
{

nu, nu + 1, . . . , np − 1
} (16)

qqqk+1 = fff(tk, tk+1, qqqk, qqqr(tk)), ∀k ∈
{

0, 1, . . . , np − 1
}

(17)

‖qqqk‖2 = 1, ∀k ∈
{

1, . . . , np − 1
}

, (18)

‖ωωωk‖2 ≤ ω2
max, ∀k ∈

{
1, . . . , np − 1

}
, (19)

0 ≤ uk ≤ umax, ∀k ∈ {0, 1, . . . , nu − 1}, (20)

‖qqqr(tk)‖2 = 1, ∀k ∈ {0, 1, . . . , nu − 1}, (21)

where t0, δααα0, and qqq0, are the time, dimensionless ROE vector, and quaternion vector,
respectively, at the beginning of each horizon. Note that these are receding quantities that
are specific to each prediction horizon. Accordingly, they coincide with the quantities at the
beginning of the simulation only once, at the time of the first prediction. Moreover, umax is
the maximum applicable acceleration that can be provided by the thruster, ωωω is the angular
velocity vector of the satellite, and ωmax is the maximum allowable angular rate around
any axis.

Indeed, a constant value for the input acceleration vector, uuur
k|k+1, has to be fed to

the ROE dynamics constraint (16). However, the attitude dynamics are much faster than
those of the ROE, and since the vector uuur

k|k+1 is attitude-dependent, its value can change

significantly from tk to tk+1, even when uuub
k|k+1 is kept constant. Therefore, a prediction of

uuur
k|k+1, ūuur

k|k+1 had to be fixed and fed to the dynamics constraint (16). The value of ūuur
k|k+1 is

set to that of uuur
k|k+1 at time (tk + tk+1)/2, with its formal definition being as follows:

ūuur
k|k+1 := A

(
qqq

(
tk + tk+1

2

))
uuub

k|k+1,

uuub
k|k+1 :=

[
0 0 uk

]ᵀ.
(22)
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The attitude kinematics (10) are discretized through a symbolic Runge–Kutta fourth-
order scheme and the discrete kinematics are imposed as constraint (17) in Problem 1.
Moreover, the discrete angular velocity vector in constraint (19) in Problem 1, ωωωk, could
be obtained by applying Formula (9) using the discrete unit quaternion signal qqqk. It is also
worth noting that the squared norms (‖qqqk‖2, ‖ωωωk‖2, and ‖qqqr(tk)‖2) are constrained instead
of the norms themselves. This formulation is adopted to facilitate the job of the optimizer
since it allows the Jacobian of the constraints to be defined at all values of S and U.

The cost function components of Problem 1, Jδααα, Ju, and Jδqqq, are defined as

Jδααα =
(

δαααnp − δαααr

)ᵀ
P
(

δαααnp − δαααr

)
+

np−1

∑
k=0

(δαααk − δαααr)
ᵀQ(δαααk − δαααr),

Ju = Ru

nu−1

∑
k=0

u2
k ,

Jδqqq = Rδqqq

nu−1

∑
k=0

δqqqk
ᵀδqqqk, δqqqk := qqqr(tk)− qqq(tk),

(23)

where δαααr is the reference ROE vector, while P ∈ R6×6, Q ∈ R6×6, Ru ∈ R1, and Rδqqq ∈ R1

are positive-definite MPC gains.
It is important to note that the ultimate goal of autonomous orbit keeping is to ren-

dezvous with a virtual target then track its absolute orbit, i.e., δαααr = 000. Moreover, the
matrices P and Q are chosen to be diagonal matrices, which renders Jδααα a summation over
the squared weighted 2-norms of the error vector, δαααk − δαααr. This ultimately means that Jδααα

is a measure of distance between δαααk and δαααr, which is zero in our case, in a scaled-ROE
space. Indeed, reasoning Jδααα in terms of the magnitude of the error vector in a scaled-ROE
space does not only allow us to eventually drive δααα to δαααr, and hence for the satellite to
rendezvous and then track the orbit of the virtual target, but also allows us to indirectly
minimize the total delta-V cost, since the distance in the ROE space, or in a scaled-ROE
space for that matter (e.g., the dimensional ROE space, which scales the ROE vector by the
mean semi-major axis of the chief), can be used as a measure for the total delta-V cost [14,15].
A closer look at Jδααα reveals that while minimizing it indeed drives the error signal to zero,
it is, in fact, an implicit trade-off between fuel and time optimality, depending on the ratio
between the traces of P and Q, respectively. The greater the value of this ratio, the more
inclined towards fuel optimality the cost function becomes, while the lower the ratio, the
more the scheme leans towards time optimality.

Adding Ju to the compound cost function directly minimizes the total required thrust
from the onboard single thruster. The adopted convex form of Ju is the fuel-optimal form
of a cost function, which also coincides with the delta-V-optimal form for single-thruster
satellites [23].

Finally, the purpose of adding the last component of the cost function, Jδqqq, is to softly
constraint the desired attitude to be as close as possible to the actual attitude in order to
avoid unnecessary large slews, which in turn minimizes the attitude control effort. This
soft constraint allows large slew maneuvers, depending on the choice of the MPC gains,
only when it is meaningful from the ROE error (i.e., Jδααα) or fuel cost (i.e., Ju) points of view.

3.2. Parameter Tuning

In the proposed formulation of MPC, there are many parameters and gains to be
chosen, which can affect the overall performance and robustness of the MPC. In many
industrial applications, such parameters are chosen engineering experience. In this ap-
plication, the initial guess for the prediction horizon has been formulated based on the
literature review. Since the ∆V-optimal locations for ROE changes through impulsive
delta-V increments are known to occur, at most, every half-orbit [15], and since the input
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acceleration of the low-thrust propulsion system should be distributed around these ∆V-
optimal locations (if ∆V optimality is sought), the prediction horizon, npTs, is chosen to be
at least half the orbital period. In this setting, the MPC is able to foresee all the ∆V-optimal
locations throughout a certain orbit, which hence leads to optimal allocation of the available
thrust. Overly increasing the prediction horizon is expected to only overwhelm the onboard
processor, while not having much effect on the optimality of the solution.

The choice of the control horizon, nuTs, on the other hand, is decided through trial and
error, which is an iterative process as all the other parameters have to be fixed before the
tuning process starts. Nonetheless, regarding the choice of the nu value, it has to be a small
positive integer less than or equal to np. Common guidelines for choosing the prediction
and control horizons can be found in [24].

Tuning of the sampling time, Ts, has also been performed through trial and error. In
the context of Problem 1, although the dynamics of the ROE are slow and the sampling
time could be chosen as a large value in order to not solve the optimization problem so
frequently, the following important consideration has to be taken into account to carry out
the tuning process. Since the attitude dynamics are much faster than that of the ROE, one
cannot ignore that a fixed value for the input acceleration vector in the RTN frame, ūuur

k|k+1,
is fed to the linearized ROE dynamics constraint (16), see (22), which renders the model
used in the MPC not accurate unless a small value is chosen for the sampling time. Indeed,
including Jδqqq in the compound cost function helps in slowing down the attitude dynamics.
Still, the need to choose a scant value for the sampling time is meaningful. A compromise
has to be found between choosing a small Ts and having a more accurate model for the
MPC on one hand, and choosing a large Ts that allows the optimization problem to be
solved less frequently on the other.

The cost function gains (i.e., P, Q, Ru, and Rδqqq in this paper) are more challenging to
tune, since the cost function of the MPC is problem-dependent and no general guidelines
exist for its weighting. Thus, more focus is put on analyzing the effect of choosing different
cost function weights and on actually selecting an optimal set of these weights.

In order to reduce the number of tunable parameters, the components of the cost
function, i.e., Jδααα, Ju, and Jδqqq, are related to the main weighting matrix, Q, such that

P = fPQ,

Ju = fu Jδααα,

Jδqqq = fδqqq Jδααα,

(24)

where
Jδααα :=

(
np + fP

)
δααα

ᵀ
Qδααα,

Ju := nuRuu2,

Jδqqq := NN Rδqqqδqqq
ᵀ

δqqq,

(25)

with δααα being the expected value of δααα over the prediction horizon, which is approxi-
mated by the ROE vector at the beginning of each horizon, and u ≈ 0.5umax and δqqq ≈[
0.1 0.1 0.1 0.1

]ᵀ being predictions for the values of u and δqqq over the control horizon.
The approximated expected values, δααα, u, and δqqq, are illustrated graphically over one
prediction horizon in Figure 3. For imaging purposes, each of them is taken to be one-
dimensional. Indeed, the values assumed for u and δqqq are merely the authors’ predictions
for the expected values of these quantities over the whole simulation; however, choosing
other values for these variables would not affect the final MPC gains, as will be elaborated
upon later in the text.
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Substituting from (25) into (24), the MPC gains can be related to Q, δααα, u, and δqqq as

Ru =
fu
(
np + fP

)
nuu2 δααα

ᵀ
Qδααα,

Rδqqq =
fδqqq

(
np + fP

)
nuδqqq

ᵀ
δqqq

δααα
ᵀ

Qδααα,
(26)

where Ru and Rδqqq change for every prediction horizon.
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Figure 3. Assumed expected values δααα, u, and δqqq over one prediction horizon.

It is conceivable that when δα := ‖δααα‖ is very small (i.e., the rendezvous of the satellite
with its virtual target has already taken place), the priority should be given to Jδqqq in order
for the ADCS not to hyper-react to the small errors in δααα. Indeed, the phenomenon of
hyper-reaction of the ADCS when δα becomes too small has been verified via numerical
simulation for a system using the definition of Rδqqq in (26). It is for this reason that Rδqqq has
to be redefined in order to steer the priority to Jδqqq when δα is approaching zero, such that

Rδqqq = Sat

(
fδqqq

(
np + fP

)
nuδqqq

ᵀ
δqqq

δααα
ᵀ

Qδααα, Rδqqqmin, ∞

)
, (27)

where Sat(x, xmin, xmax) is the saturation function which is defined as follows:

Sat(x, xmin, xmax) :=


xmin, x ≤ xmin

x, xmin ≤ x ≤ xmax
xmax, x ≥ xmax

. (28)

Looking at Equations (24)–(27), it is clear that in order to define all the MPC gains, one
has to choose Q, fP, fu, fδqqq, and Rδqqqmin.

The choice of Q is rather simple since all the ROEs can be weighted equally. However,
in order to enhance the stability of the final relative orbit (i.e., to keep the obtained orbit for



Aerospace 2023, 10, 959 12 of 25

as long as possible without it being affected much by the perturbations), an emphasis is
put on minimizing δa when the ROEs are close to the target ones, and Q is defined as

Q =


QI6, aδα ≤ 1m

Q
[

100 0
0 I5

]
, acδα > 1m

, (29)

where Q is a tuning parameter that controls the order of magnitude of the cost function,
and In is the identity matrix with dimensions n× n.

Fixing the value of Q to 105, of fP to 10, and of Rδqqqmin to 10−5, a brute force sensitivity
analysis over fu and fδqqq is carried out to choose adroit values for fu and fδqqq. Thanks to the
High-Performance Computer of the University of Luxembourg [25], 726 simulations could
be run simultaneously where, in addition to interchanging the values of fu and fδqqq, the seed
of the Random Number Generator (RNG), which controls the initial state at the beginning
of the simulation, could also be taken into account. In these simulations, and in the sequel,
warm-starting is employed at the beginning of each prediction horizon, meaning that the
optimized state and control profiles from the previous prediction horizon are utilized to
construct the initial guess for the current one.

Before starting the simulations, it was noted that the admissible values for fu and fδqqq

belong to the period [0, 1], since the most important component of the cost function is Jδααα

and since the two other components are normalized with respect to Jδααα (see (24)).
One simulation would have its RNG seed, fu, and fδqqq as one possible combination

from the following sets:

seed ∈ {0, 1, 2, 3, 4, 5},
fu, fδqqq ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.6, 0.7, 0.9, 1},

(30)

To this end, a fitness function needs to be introduced in order to asses how good the
output of the simulation is. Such fitness function in our context needed to address four
criteria (performance metrics):

1. Driving the ROE vector to zero, which is the main goal of the MPC scheme to achieve
orbit keeping. This is assessed through observing the norm of the finale of the ROE
time series, denoted as δαfin.

2. Enhancing the stability of the relative orbit finale which, in other words, is minimizing
the Root Mean Square (RMS) of the last portion of the relative semi-major axis profile
over time, denoted as δafin.

3. Minimizing the total delta-V, ∆Vtot.
4. Reducing the attitude effort, which is quantified through the mean angular rate of the

satellite, ‖ωωω‖mean.

It is necessary to state that the term “finale ” in this paper refers to the last 10% of the
simulation time span. Furthermore, although this research is concerned with low-thrust
propellers, the total delta-V is considered instead of the total thrust in order to enable
comparisons between the proposed scheme and those from the literature. The total delta-V
in our context can be calculated using the following formula:

∆Vtot =
∫ t f in

tinit

udt, (31)

where tinit and t f in are the initial and final times of the simulation, respectively. Given
that the input thrust/acceleration from the single thruster is piece-wise-constant, the total
delta-V can be rewritten as follows:

∆Vtot =
nh

∑
i=1

(
nu−1

∑
k=0

ukTs

)
j

, (32)
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with nh being the number of receding horizons being processed within a simulation, j the
horizon index, and Ts being the fixed sampling time.

The adopted overall fitness function could then be written as

φ = Kδα · fitness(δαfin)︸ ︷︷ ︸
φδα

+Kδa · fitness(δafin)︸ ︷︷ ︸
φδa

+ K∆V · fitness(∆Vtot)︸ ︷︷ ︸
φ∆V

+K‖ωωω‖ · fitness(‖ωωω‖mean)︸ ︷︷ ︸
φ‖ωωω‖

, (33)

where Kδa, Kδα, K∆V , and K‖ωωω‖ are weights that determine the importance of each of the
four criterion, and the function fitness(·) is defined as

fitness(x) =
1/x−min(1/x)

max(1/x)−min(1/x)
, (34)

with min(·) and max(·) being the minimum and maximum functions over all the simu-
lations. It is clear that this form of the fitness function only shoots out values between
0 and 1.

Running the simulations for the 726 combinations in (30) for a fixed initial chief
orbit, defined in Table 1, applying the definition of the fitness function in (34) to all the
726 simulations and to the four performance metrics, and fixing the values of the weights to
Kδα = 5, Kδa = 1, K∆V = 1, and K‖ωωω‖ = 1, which reflect the high importance of minimizing
δαfin in comparison to the other metrics, the heat maps that summarize all the simulations
could be obtained and are presented in Figure 4.

The heat maps in Figure 4 could only be obtained after averaging the fitness over each
RNG seed in (30), and after adopting a scattered data interpolant in order to smooth the
heat maps.

It is clear from the figures that the smaller fu is, the better φδα and φδa become, while
this relation is conceivably inverted for φ∆V . Furthermore, φ∆V and φ‖ωωω‖ could be noticed
to be positively correlated, and are both negatively correlated with φδα and φδa. Further
investigations on the simulations where φ∆V and φ‖ωωω‖ are both large revealed that minimal
input acceleration is provided at the current attitude of the satellite, which is almost
stagnant, while the effect of this acceleration on the orbit correction is, as well, minimal.
Nonetheless, the ROE vector is approaching its set point, although very slowly.

The overall fitness function, φ, is depicted in Figure 5 and the fittest point, i.e., the
point with maximum overall fitness, ( fu = 0 and fδqqq = 0.02) is marked with the gray
circle on the heat map. It is clear from the fittest fu − fδqqq combination that, for the initial
chief orbit in Table 1, it was not necessary to include the direct delta-V penalty, Ju, in the
cost function, since Jδααα was already indirectly accounting for delta-V cost as previously
mentioned. One has to acknowledge that the fittest combination of fu and fδqqq in Figure 5
is not necessarily universal for any arbitrary initial chief’s orbit, and the selection of the
optimal fu − fδqqq combination needs to be performed again for each initial orbit of the
virtual chief. This does not represent a limitation of the approach, since the reference orbit
of the chief is fixed once as soon as the scientific mission is designed.

Table 1. Chief’s initial orbit for all the 726 simulations used in the sensitivity analysis.

ãc [km] θ̃c [◦] ẽx|c ẽy
∣∣
c ĩc [◦] Ω̃c [◦]

7121 0 10−5 0 45 0
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(a) δα fitness (φδα) (b) δa fitness (φδa)

(c) ∆V fitness (φ∆V) (d) ‖ωωω‖ fitness (φ‖ωωω‖)

Figure 4. Fitness of the four performance metrics.

Figure 5. Overall fitness (φ).

The employed approach served the need to identify an adroit set of combinations
of fu and fδqqq. Future investigations may focus on the setup of a heuristic approach, e.g.,
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genetic algorithms, to search for the combination that globally maximizes the overall fitness
function. In this context, note that the definition of the fitness functions and of the related
parameters impact the global optimum.

Finally, the values of the optimized fu and fδqqq are heavily dependant on the authors’
predictions of u and δqqq, and another choice of these quantities would have definitely led to
different optimal fu and fδqqq; however, the values of Ru and Rδqqq will not change since fu is
directly divided by u2 to obtain Ru and the same dynamics apply for fδqqq with the squared
2-norm of δqqq to obtain Rδqqq (see (26)).

3.3. Closing the Control Loop

The MPC described so far is one key module of the whole control loop, which, at
practical implementation, requires feedback to operate properly, which is provided by the
navigation system, which, in turn, relies on sensors as well as a state estimation filter. The
full closed loop, which illustrates the module execution logic onboard the deputy spacecraft,
is depicted in Figure 6. There, Osc2Mean is the function that transforms osculating orbital
elements to mean ones [18], Body2Inert is the method that rotates any vector from the
body frame to the inertial frame, and OE2ROE is the function that transforms the absolute
orbital elements of both the chief and the deputy to a ROE vector (see (2)). The breve accent,
˘(·), signifies a quantity which is affected by either one or a combination of the following

sources of errors:

• Estimation errors (e.g., ᾰααd);
• Actuator errors (e.g., q̆qq);
• Physical constraints (e.g., ŭuub).

Post-processing

OE2ROEDisplay
Display

Navigation (Deputy)

OE2ROE Osc2Mean SensorsFilter

Operator input

1. Chief's initial osculating orbit
2. Required final ROE (optional,
default is a vector of zeros)

Pre-processing

Osc2Mean
Define orbital
period & mean

motion

Dynamics (Deputy)

Osc2MeanOrbit propagator

Dynamics (Chief)

Osc2MeanOrbit propagator

Information that are passed once

Information that are recurrently
passed

Controller & Actuators (Deputy)

MPC

ADCS Pointing
error Body2Inert.

Figure 6. Closed loop of the deputy spacecraft.

The proposed MPC is validated by means of numerical simulations, emulating the
performance of the navigation module and the effects of the physical limitations of the
adopted actuators.

The physical limitations are only present in the saturation block (see Figure 6), which
could be implemented in the numerical simulations. In fact, this saturation is taken into
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account in the MPC implementation, but the saturation block after the MPC is implemented
anyway as a safeguard in case the MPC computes an infeasible solution.

The “Sensors” and “Filter” blocks in Figure 6 are replaced by the following surrogate
models, which treat the propagated state of the deputy as ground truth:

˘̃xxxi
d = x̃xxi

d +N (000, Σx̃xx),
˘̃αααd = Cart2OE( ˘̃xxxi

d),
(35)

where “Cart2OE” is the method that transforms the Cartesian state to orbital elements,
and N

(
µ, σ2) is a normally distributed random variable with µ as its expected value and

σ2 as its variance. Hence, Σx̃xx is the covariance matrix of the random noise affecting the
estimation of the Cartesian state of the deputy satellite, which is defined as

Σx̃xx =



σ2
rrr 0 0 0 0 0
0 σ2

rrr 0 0 0 0
0 0 σ2

rrr 0 0 0
0 0 0 σ2

vvv 0 0
0 0 0 0 σ2

vvv 0
0 0 0 0 0 σ2

vvv

, (36)

where σ2
rrr and σ2

vvv are the variances of the one-dimensional position and velocity estimation
errors, respectively, which, for the numerical simulations presented in this work, were
extracted from the publicly available Triton-X brochure.

It is to be noted that the relative navigation is typically more accurate than the absolute
one [4,5]. It is for this reason that a similar model is used to emulate the behaviour of the
relative navigation system within the numerical simulations as follows:

δααα = OE2ROE(αααc, αααd)

δ̆ααα = δααα +N (000, Σδααα),
(37)

where Σδααα is the covariance matrix of the random noise affecting the estimation of the ROE
vector, which is expanded as

Σδααα =



σ2
δa 0 0 0 0 0
0 σ2

δλ 0 0 0 0
0 0 σ2

δex
0 0 0

0 0 0 σ2
δey

0 0
0 0 0 0 σ2

δix
0

0 0 0 0 0 σ2
δiy


, (38)

with the diagonal elements being the variances of the random noise that affect each element
of the ROE vector. These variances are taken to all be equal in the sequel, i.e., σδa = σδλ =
σδex = σδey = σδix = σδiy = σδααα.

Lastly, the “Pointing error” block is replaced by the following surrogate model:

q̆qq = qqq ◦ qqqpe,

qqqpe =
[
cos

(
ζqqqpe

2

)
sin
(

ζqqqpe
2

)
q̂qqᵀpe

]ᵀ
,

(39)

where ζqqqpe is the pointing error angle, which was obtained from the Triton-X brochure in
the validation simulations, and q̂qqpe is a random three-element unit vector.

It is important to note that although the chief, in this context, is a virtual point, it is
propagated using the perturbed dynamics for two main reasons:
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• In many applications, the tracking of the reference orbit and the absolute control of
the reference orbit are handled separately;

• The proposed scheme can be directly applied to the rendezvous with an actual spacecraft.

As a result, the autonomous orbit keeping compensates errors and perturbations
acting on the relative dynamics.

4. MPC Validation

In order to test the stability of the proposed MPC scheme, and thanks to the paral-
lelization capabilities of the HPC facilities of the University of Luxembourg, the algorithm
was run over 500 different simulations, each with a different initial ROE vector, such that

ac · δααα(tinit) [m] ∈



[−100, 100]
[−1000, 1000]
[−100, 100]
[−100, 100]
[−100, 100]
[−100, 100]

, (40)

where tinit is the initial time of each simulation.
The simulation and MPC parameters used in the 500-run Monte Carlo simulation are

summarized in Table 2.

Table 2. Monte Carlo simulation and MPC parameters.

Chief’s
initial orbit

ãc [km] θ̃c [◦] ẽx|c ẽy
∣∣
c ĩc [◦] Ω̃c [◦]

7121 0 10−5 0 45 0

MPC parameters

Ts [s] np [Ts] nu [Ts] umax
[m/s2] ωmax [◦/s]

50 s 60 15 3.5× 10−5 2

Q fP fu fδqqq Rδqqqmin

105 10 0.0 0.02 10−5

Miscellaneous
K σrrr [m] σvvv [m/s] acσδααα [m] ζqqqpe [arcs]

0.2 10 0.5 1 25

It is to be noted that although the sampling time used in predicting the MPC states,
Ts, is 50 s, the attitude dynamics are propagated each second in the simulations since
the attitude changes much faster than the ROEs. Moreover, constraining the maximum
allowable acceleration is a consequence of the physical constraint on the maximum thrust
that can be provided by the onboard throttleable electric propulsion system. The value
of the maximum allowable acceleration, umax, was obtained for the following simulations
from the information on Triton-X brochure on both, the maximum thrust, which is set equal
to 7 mN, and the mass of the satellite, which is assumed to be constant, 200 kg, throughout
the maneuver.

The main performance metrics over the 500 Monte Carlo runs are depicted in Figure 7,
while the statistics of these metrics are presented in Table 3.
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Table 3. Performance metrics over 500 simulations.

acδαfin [m] acδafin [m] ∆Vtot [m/s] ‖ωωω‖mean [◦/s]

Mean 4.38 2.05 0.406 0.228

Median 4.29 2.02 0.409 0.226

Max 9.82 4.49 0.58 0.331
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1 50 100 150 200 250 300 350 400 450 500
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1 50 100 150 200 250 300 350 400 450 500
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1
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0

0.2

0.4

Figure 7. Performance metrics over the Monte Carlo simulation.

In order to gain an insight into how the proposed scheme performs, the results of an
arbitrary simulation out of the 500 simulations are presented. The randomly selected initial
ROE (according to (40)) vector is given in Table 4 alongside the reference ROE vector.

Table 4. Parameters of an arbitrary simulation out of the 500 Monte Carlo runs.

Initial ROE
acδa [m] acδλ [m] acδex [m] acδey [m] acδix [m] acδiy [m]

64.62 −947.77 −57.84 23.68 −80.35 24.03

Reference ROE
acδa [m] acδλ [m] acδex [m] acδey [m] acδix [m] acδiy [m]

0 0 0 0 0 0

The ROE states are seen to approach their set points (zero for rendezvous with the
virtual target) in Figure 8. It is of significance to mention that the chief’s mean orbital
period, which is the unit of time in Figure 8, is 5974.46 s.

The trajectory followed by the satellite is depicted in Figure 9 in both the transversal–
radial and the normal–radial planes. This trajectory could be obtained by transforming the
ROE to the relative Cartesian states in the RTN frame using the transformation in [26]. It
can be seen from Figure 9a that the orbit maneuver is taking place gradually thanks to the
continuous firing of the thruster, in contrast to the impulsive-thrust maneuvers where the
velocity changes at a handful of points on the orbit.

The thrust exerted by the onboard thruster is depicted in Figure 10. This thrust is
also projected on the RTN frame and the projection is presented in the same figure. It is
interesting to see that the MPC does not follow a trajectory that minimizes the radial burns,
which has been a usual constraint imposed on the MPC in earlier studies [17]. Although
firing in the radial direction to correct δλ errors is known to be more delta-V-expensive
than firing in the transversal direction to build up δa drift, which takes care of correcting
the δλ error by exploiting the natural dynamics, this is not the case for close-proximity
maneuvers where the initial δλ error is small. This can be verified by looking at the solution
to the linearized forced Gauss variational equations [19], and it could also be verified via
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our preliminary experiments in which the projection of thrust on the radial direction was
soft-constrained.
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Figure 8. ROE profile of the Monte Carlo run defined by Table 4.
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(a) Trajectory in the TR plane.
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Figure 9. Trajectory followed by the satellite of the Monte Carlo run defined by Table 4.

In Figure 11a, the error quaternion angle signal suggests that at each optimization
step, the attitude starts from a value that does not coincide with the reference attitude.
Nevertheless, by the end of each step, the attitude gradually converges towards the refer-
ence one, resulting in the error quaternion angle approaching a value close to zero. A very
interesting feature of the proposed scheme is that the propulsion system is always turned
on even when attitude redirection maneuvers are taking place. The optimizer calculates
the reference attitude knowing that the satellite will not necessarily be aligned with it for
the whole upcoming control step.

It is worth noting that the angle of any quaternion (e.g., the error quaternion, qqqe, or the
current quaternion, qqq) can be found as follows:

ζqqq = arctan
(
‖qqq‖
q0

)
, (41)
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where ‖qqq‖ and q0 are the vector and the scalar parts of the quaternion qqq, respectively. Lastly,
the effect of adding the Jδqqq term to the cost function of Problem 1 could be seen clearly in
Figure 11b, where the quaternion angle rate is depicted. The quaternion angle rate, which
can be thought of as a signed version of ‖ωωω‖, is seen to be much lower than its maximum
allowable values, 2◦/s. Our preliminary simulations, which did not contain the term Jδqqq

on their cost function, always had the attitude rate saturating at its maximum value, which
is a hyper-reaction that is not desired in a real mission.

(a) Thrust vector in the RTN frame (b) Thrust output of the single thruster
Figure 10. Thrust level of the Monte Carlo run defined by Table 4.
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Figure 11. Attitude profile of the Monte Carlo run defined by Table 4.

In order to test the efficiency and the optimality of the proposed MPC scheme, it is
benchmarked against the approach proposed in [17] for a similar problem, where an out-
of-plane (OOP) relative orbit correction maneuver had to be performed. The parameters
used for this benchmark simulation are summarized in Table 5. Any missing parameter in
Table 5 is set to its value in Table 2, except for the maximum allowable acceleration, which
is set to umax = 3.2× 10−5 m/s2. Applying this maximum acceleration to the satellite
employed in [17], which has a mass of 20 kg, renders the maximum thrust as 0.64 mN.
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Table 5. Benchmark simulation parameters.

Chief’s initial
orbit

ãc [km] θ̃c [◦] ẽx|c ẽy
∣∣
c ĩc[◦] Ω̃c [◦]

6828 0 10−5 0 78 0

Initial ROE
acδa [m] acδλ [m] acδex [m] acδey [m] acδix [m] acδiy [m]

0 0 273 0 10 70

Reference ROE
acδa [m] acδλ [m] acδex [m] acδey [m] acδix [m] acδiy [m]

0 0 273 0 400 120

The setting of this maneuver is interesting not only because it allows two different MPC
schemes to be compared, but also because OOP maneuvers require only normal acceleration.
In fact, the ∆V-optimal locations for impulsive normal burns for such maneuvers could be
analytically calculated [15]. For the case of electric propulsion, a controller is said to be ∆V-
optimal for out-of-plane maneuvers if the thrust in the normal direction is bang-bang-like
and is distributed almost evenly around the ∆V-optimal locations. The thrust profile of the
proposed MPC is depicted in Figure 12a, which reveals that the proposed MPC behaves as
a fuel-efficient scheme would be expected to behave.

(a) (b)

Figure 12. Thrust level for the benchmark simulation: (a) thrust vector in the RTN frame;
(b) comparison of the thrust in the normal direction.

It can also be seen from Figure 12a that the thrust components in the radial and the
transversal directions are not exactly zero due to in-plane perturbation compensation and
also owing to the fact that the thrust is provided during slew maneuvers. Therefore, the
radial and transversal thrust components become more visible when the thrust direction
is required to flip from the positive to the negative normal direction. In this situation, the
satellite has to pass by many transient attitudes for which the radial and the transversal
components are not necessarily zero.

Figure 12b depicts a comparison between the normal component of the thrust profile
of the proposed MPC scheme and the MPC scheme proposed by [17].

The dimensional ROE profiles of the two MPCs are also shown in Figure 13, and a
brief comparison between the performance of both schemes is presented in Table 6, where
the convergence time is defined as the time it takes all elements in the error-dimensional
ROE vector, acδαααerr = ac(δααα− δαααr), to be less than 5 [m].
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Table 6. Comparison between the proposed and the reference MPCs.

Convergence Time [orbits] Terminal ac(δααα− δαααr) [m] ∆Vtot [m/s]

Proposed MPC 4.1
[
0.9 −0.4 1.9 −0.33. 0.0 −0.5

]ᵀ 0.664

Reference MPC 6.6
[
−3.6 9.2 −1.4 2.0 −2.9 1.6

]ᵀ 0.501
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Figure 13. ROE profile of the benchmark maneuver defined by Table 5.

It is clear from Table 6 as well as Figure 13 that, for the simulation defined by Table 5,
the proposed scheme is much faster, in fact 1.61 times as fast as that of [17]. Furthermore,
the proposed MPC appears to be much more precise than the reference one; however, it
consumes 24.04% more delta-V, as seen in Table 6. Indeed, consuming more delta-V than
the reference MPC is conceivable since the proposed MPC is not designed to be delta-
V-optimal in the first place. Again, the cost function of Problem 1 has two components
(after eliminating Ju as discussed in Section 3.2): the first one, Jδααα, deals with gradually
approaching the reference ROE vector, and implicitly implies a trade-off between fuel and
time optimality (depending on fP), while the second component, Jδqqq, is added to minimize
the attitude change throughout the maneuver. It is believed that a smaller total delta-V
could be achieved using a different set of MPC gains; however, it would be at the cost of
more abrupt attitude changes and/or more maneuvering time. The ROE profile in Figure 13
implies the evolution of the OOP variables, δix and δiy, from their initial values to their set
points, while the in-plane variables fluctuate slightly around their initial/reference values
as a response to the relative orbital perturbations as well as to the unavoidable radial and
transversal accelerations during each attitude flip from the positive to the negative normal
direction and vice-versa.

Lastly, Figure 14 relates to the attitude evolution of the system, where Figure 14a shows
how the attitude is changing smoothly to recurrently flip the thrust direction from/to the
positive to/from the negative normal direction, while the error quaternion angle is starting
from a nonzero value only when the thrust direction is required to be flipped, and is seen to
always approach zero. Moreover, although the objective is clearly to flip the thrust direction,
the error quaternion angle is never 180◦, which could only mean that the optimizer chooses
the reference quaternion to evolve smoothly until it reaches the flipped attitude so that a
hyper-reaction of angular velocity can be avoided. The quaternion angle rate is seen in
Figure 14b to turn swiftly and almost reach its full potential, i.e., ±ωmax, when the thrust
direction is set to change from/to the positive to/from the negative normal direction.
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Figure 14. Attitude profile of the benchmark maneuver defined by Table 5.

5. Conclusions

This paper proposes an MPC scheme to address the problem of optimal absolute
orbit keeping for underactuated satellites that use electrical propulsion systems. Currently,
several small-satellite platforms are equipped with unidirectional thrusters, requiring
constant attitude slews to take place during time-extended orbit maneuvers in order to
redirect the thruster to the desired propulsion direction. Although the proposed controller is
concerning a single satellite, formation flying techniques have been utilized by assuming the
satellite to be flying in formation with a virtual spacecraft (flying on the reference trajectory)
with respect to which it is required to keep a predefined relative orbit (rendezvous in most
cases). This approach allows astrodynamics’ insight into the classical linearized control
problem to be leveraged. Moreover, this allows a direct implementation of the proposed
algorithm in true multi-satellite relative-orbit-keeping contexts.

Designed to comprise a trade-off between fuel and time optimality through manipu-
lating the controller gains, the proposed MPC couples the attitude and the relative orbital
dynamics such that the control thrust is provided during the attitude redirection maneuvers.
The stability of the control scheme is verified through Monte Carlo numerical simulations
in which navigation errors, hardware errors, and physical constraints are emulated. In
order to assess the controller’s performance, the proposed MPC has also been compared
to a reference MPC from the literature. As for the compared scenario, the proposed MPC
achieves more accurate orbit keeping in a shorter time frame. Such improved performance
is achieved at the cost of a slightly larger delta-V cost, corresponding to approximately 24%
of the total maneuver cost, and therefore is negligible at the mission level.
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Appendix A. Stability of the Surrogate Model of the ADCS

Letting qqqe be the unit error quaternion between the desired and the actual attitudes,
and ωωωe := ωωω−ωωωr be the error angular velocity vector, with ωωω being the angular velocity
vector and ωωωr being the reference/set point of ωωω, the dynamics of the error unit quaternion
as given by [21] could be written as

q̇qqe =
1
2
qqqe ◦ωωωe. (A1)

Note that, for slew maneuvers, the reference angular velocity vector is always zero,
i.e., ωωωr = 000, which enables (A1) to be rewritten as

q̇qqe =
1
2
qqqe ◦ωωω. (A2)

If the angular velocity profile could be forced, via the input torques, to follow (9), i.e.,
ωωω = −K qe,0 qqqe, the error quaternion kinematics could be expressed as

q̇qqe = −
K qe,0

2
qqqe ◦ qqqe = −

K qe,0

2

[
−‖qqqe‖2

qe,0 qqqe

]
=

K
2

[
‖qqqe‖2 qe,0
−q2

e,0 qqqe

]
. (A3)

Noting that K is a positive gain, (A3) could be rewritten as
q̇e,0
q̇e,1
q̇e,2
q̇e,3

 =


K0 qe,0
−K1 qe,1
−K2 qe,2
−K3 qe,3

, (A4)

where K0, K1, K2, and K3, are all positive, and qe,1, qe,2, and qe,3 are the three components
of qqqe. Equation (A4) suggests that, under the constraint ‖qqqe‖ = 1, the error quaternion
asymptotically approaches either

[
1 0 0 0

]ᵀ or
[
−1 0 0 0

]ᵀ regardless of the initial
condition of qqqe.
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