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ABSTRACT

Acoustic signal processing in the spherical harmonics domain (SHD)
is an active research area that exploits the signals acquired by higher
order microphone arrays. A very important task is that concerning
the localization of active sound sources. In this paper, we propose
a simple yet effective method to localize prominent acoustic sources
in adverse acoustic scenarios. By using a proper normalization and
arrangement of the estimated spherical harmonic coefficients, we ex-
ploit low-rank approximations to estimate the far field modal direc-
tional pattern of the dominant source at each time-frame. The exper-
iments confirm the validity of the proposed approach, with superior
performance compared to other recent SHD-based approaches.

Index Terms— Source localization, spherical harmonics do-
main, singular value decomposition, microphone arrays

1. INTRODUCTION

The localization of acoustic sources is a well-known problem in the
field of acoustic signal processing [1] that typically concerns the
identification of the so-called direction of arrival (DOA) from a mul-
tichannel acquisition. The DOA information is essential in a great
variety of applications such as source separation [2,3] or sound field
reconstruction [4, 5].

A popular class of source localization approaches is based on
a beamformer-like operation, such as the steered response power
(SRP) [6] and its variant SRP-phase transform (SRP-PHAT) [7, 8].
These methods localize the source exploring the whole space of di-
rections while looking for areas where the response power is max-
imized. A second important class of approaches is represented by
subspace methods [9–11]. In general, subspace models exploit the
decomposition of the spatial covariance matrix (SCM) of the multi-
channel data in order to identify the source components. The multi-
ple signal classification (MUSIC) [10] algorithm represents a popu-
lar technique of this category, due to its inherent simplicity and effec-
tive performance. In practice, MUSIC computes a pseudospectrum
over the possible DOAs through the nullspace of the noise eigenvec-
tors of the SCM. The maxima in the pseudospectrum correspond to
the estimated DOAs of the sources.

The increasing availability of a high number of sensors in mi-
crophone arrays raised the adoption of sound field representations
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[12, 13] in order to exploit their characteristics in different appli-
cations [14–17] including source localization [18–20]. In this con-
text, the sound field decomposition in terms of spherical harmon-
ics (SH) has been widely adopted since it enables the decoupling
of frequency-dependent and direction-dependent components of the
acoustic field. It follows that many source localization techniques
have been adapted to the SH-domain (SHD), e.g., SHD-MUSIC [19]
and EB-ESPRIT [20], showing improved localization performance.

Recently, in [21] the relative harmonic coefficients (RHC) were
proposed as a useful feature for source localization in the SHD.
The RHCs can be thought of as the SHD counterpart of the rela-
tive transfer functions (RTF), containing the DOA information while
being independent from the source signal and robust to noise. Dif-
ferent approaches exploiting RHC were published in the literature,
including solutions based on grid search [22], gradient descent [23]
and Gaussian process [21]. In [24, 25], computationally efficient
approaches employing a search decouple on azimuth and elevation
were introduced, while [26] provides a closed-form solution limited
to first-order SHD. Inspired by the effectiveness of RTF and RHC
as features for localization, in [27] the authors introduced the rela-
tive sound pressure MUSIC (RMUSIC) and its SHD version (SHD-
RMUSIC) showing improved performance with respect to the tradi-
tional methods.

In this work, we propose a novel DOA estimation approach that
exploits low-rank signal approximations in the SHD, referred to as
SHD-LRA. Similarly to other SHD-based solutions, we exploit this
representation in order to estimate the direction-dependent compo-
nents that identify the source location. Differently from RHC mod-
els, the proposed technique works directly on the coefficients of the
spherical-harmonics-transformed array signals. Therefore, it does
not rely on any time-averaging operation typically required by other
methods. In particular, similarly to subspace-based solutions, we
rely on a low rank approximation of the data. However, the de-
composition is not applied on the SCM as in MUSIC-like methods,
but on the SHD signal, exploiting the properties of the so-called
modal directional pattern (MDP). MDPs are defined as frequency-
independent far-field model of the sources hence, they are analyti-
cally known. The proposed technique consists of three main steps:
(1) the acquired SHD coefficients are normalized in order to match
the ideal MDP norm under a single source assumption (W-disjoint
orthogonality assumption); (2) the low rank approximation of the
normalized SHD data is performed through the singular value de-
composition (SVD) of the normalized coefficients identifying the
MDP of the primary source; (3) the DOA estimate is retrieved by
pattern matching over a set of pre-computed MDP prototypes.

We compare the performance of the proposed model with re-
spect to recent low-rank solutions that exploit the RTF model,
namely RMUSIC and SHD-MUSIC. Results show that the pro-
posed localization method provide a robust performance with high

ar
X

iv
:2

30
3.

08
48

0v
1 

 [
ee

ss
.A

S]
  1

5 
M

ar
 2

02
3



reverberation and low SNR, outperforming both RMUSIC and SHD-
MUSIC. The rest of the paper is organized as follows. In Sec. 2,
the problem of source localization in the SHD is introduced and we
provide the definition of the MDPs. Sec. 3 describes in details the
proposed method SHD-LRA based on low-rank approximation of
SHD signals. In Sec. 4, we provide the validation of SHD-LRA
and its performance is compared with respect to the reference tech-
niques. Finally, in Sec. 5 we draw conclusions and propose future
developments.

2. PROBLEM FORMULATION

The measured sound pressure P corresponding to a continuous
sound field on a sphere of radius R can be decomposed using the
SH basis functions as [13]

P
(
x′q, k

)
=

∞∑
nm

αnm(k)bn (kR)Ynm
(
x̂′q
)
, (1)

where
∑(·)
nm ≡

∑(·)
n=0

∑n
m=−n αnm(k) ∈ C is the sound field

coefficient of order n and degree m. The position vector is x′q ≡(
R, x̂′q

)
, with the unit vector x̂′q ≡

(
θ′q, φ

′
q

)
indicating the eleva-

tion and azimuth of x′q . The infinite summation of Eq. (1) is often
truncated at the sound field order N = dkRe [28], where k = 2πf

c
for a frequency f and propagation speed c, and d·e denotes the ceil-
ing operation due to the high-pass nature of the higher-order Bessel
functions. Then, for a maximum order N there are C = (N + 1)2

coefficients. The complex SH basis function Ynm(·) is defined as

Ynm
(
x̂′q
)

=

√
(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!Pn|m|

(
cos θ′q

)
eimφ

′
q (2)

where | · | denotes absolute value, (·)! represents factorial, Pn|m|(·)
is an associated Legendre polynomial, and i =

√
−1. Furthermore,

the dependency on array radius comes through the function bn(·)
which is defined as

bn(ξ) =

{
jn(ξ) for an open array

jn(ξ)− j′n(ξ)

h′
n(ξ)

hn(ξ) for a rigid spherical array
(3)

where hn(·) and jn(·) are the nth order spherical Hankel and Bessel
functions of the first kind, respectively.

Given the far-field approximation of the Green’s function, the
SH coefficients considering only the direct propagation paths from
L sources are given by

αnm(k) = 4πin
L∑
`=1

S`(k)G
(d)
` (k)Y ∗nm (x̂`) , (4)

where S`(k) is the `th source signal and G(d)
` (k) represents the di-

rect path gain between the origin and the `th source location x`, with
DOA vector x̂`. Note that the coefficients can be compactly written
as:

αnm(k) =

L∑
`=1

α̃nm (x̂`) S̃`(k) (5)

where S̃`(k) = S`(k)G
(d)
` (k) is the source image at the origin and

α̃nm (x̂`) = 4πinY ∗nm (x̂`) are source-independent coefficients
that are only a function of the source direction. The coefficients

xq
' xq

'

x�

R

φ
�

θ�

Source

x

y

z

Fig. 1. Reference geometry for the proposed method.

αnm can be estimated using the signals acquired by a spherical
microphone array with Q capsules as

αnm(k) ≈ 1

bn(kr)

Q∑
q=1

wqP
(
x′q, k

)
Y ∗nm

(
x̂′q
)
, (6)

where wq∀q are weights that ensure the validity of the orthonor-
mal property of the SHs. The source localization problem in the
SHD consists in the estimation of the DOA vectors x̂` correspond-
ing to the active sound sources from the measured SH coefficients
in Eq. (6). The geometry of the problem is graphically depicted in
Fig.1.

3. METHOD

Consider the matrix arrangement of the SH coefficients extracted for
a set of frequencies F = {k1, k2, . . . , kF } at a given time frame τ :

Aτ = [aN (k1),aN (k2), . . . ,aN (kF )] ∈ CC×F , (7)

where each column aN (k) contains the coefficients extracted for a
given frequency k up to the N th order, i.e.

aN (k) = [α0,0(k), α−1,1(k), . . . , αNN (k)]T . (8)

By writing the contribution from the `th source as:

s` =
[
S̃`(k1), S̃`(k2), . . . , S̃`(kF )

]T
, (9)

and using Eq. (5), matrix Aτ can be written as a sum of rank-1
matrices:

Aτ =

L∑
`=1

αN (x̂`) sT` , (10)

where the vectorαN (x̂`) ∈ CC compiles all the source-independent
coefficients up to the N th order, i.e.

αN (x̂`) := [α̃00, α̃1−1, · · · , α̃nm, · · · , α̃NN ]T . (11)

We denote this vector the modal directional pattern (MDP) of the
`th source (the dependence of its elements on the DOA x̂` has been



omitted for notation simplicity). Therefore, under an ideal noiseless
anechoic case, it holds that rank(Aτ ) = La, where La ≤ L is
the number of active sources at the analyzed frame. The objective of
the method is to find a low-rank approximation of Aτ that leads to
an estimate of the MDP of the primary active source, mapping such
MDP to the most likely DOA vector.

3.1. Proposed Approach

3.1.1. Step 1: Normalization

The norm of the MDP is DOA-independent. In particular

‖αN (x̂`) ‖ = ‖αN‖ =
√

4π(N + 1) ∀x̂`. (12)

Under the assumption that each column of Aτ is dominated by a
single source (W-disjoint orthogonality), we exploit the property
in Eq. (12) to normalize Aτ column-wise. Indeed, by assuming
L = 1, it holds that αnm(k) = α̃nm (x̂ˇ̀) S̃ˇ̀(k) and, thus,
aN (k) = Sˇ̀(k)αN (x̂ˇ̀), where the sub-index ˇ̀ indicates the
primary active source. According to Eq. (12)

‖aN (k)‖ = |Sˇ̀(k)|
√

4π(N + 1), (13)

thus, we normalize the coefficients as follows:

αnm(k) = |Ŝˇ̀(k)|αnm(k)

‖cn‖
√

4π(2n+ 1), (14)

cn := [αn,−n(k), · · · , αnn(k)] ∈ C2n+1, (15)
where

|Ŝˇ̀(k)| = 1

N

N∑
n=0

‖cn‖√
4π(2n+ 1)

(16)

is a mean-based estimate of the magnitude of the primary source.
Similarly to Eq. (7), the resulting normalized vectors, aN , lead to
the normalized matrix Aτ .

3.1.2. Step 2: Singular Value Decomposition

A low-rank approximation of Aτ can be obtained by solving

min
Âτ

‖Aτ − Âτ‖F , subject to rank(Âτ ) ≤ r (17)

where r is the rank of the approximating matrix Âτ , and ‖ · ‖F
denotes the Frobenius norm. The problem has analytic solution in
terms of the singular value decomposition (SVD) of Aτ . Let us
factorize Aτ as

Aτ = UΣVH , (18)
where U ∈ CC×C is the matrix containing the left singular vectors,
Σ ∈ RC×F is the diagonal matrix containing the ordered singular
values and V ∈ CF×F is the matrix containing the right singular
vectors. The particular rank-1 matrix that best approximates Aτ is
given by

Âτ = σ1u1v
T
1 ≈ ‖αN‖‖sˇ̀‖

αN (x̂ˇ̀)

‖αN‖
sTˇ̀

‖sˇ̀‖
, (19)

where u1 and v1 are the first columns of the corresponding SVD
matrices and σ1 is the first ordered singular value. Therefore, an
estimate of the primary MDP is directly given by using Eqs. (19)
and (12) as:

α̂N = ‖αN‖u1 =
√

4π(N + 1)u1. (20)

The α̂N retrieved from the first left singular vector is assumed
to be significantly robust to noise, as it comes from the best rank-1
approximation of Aτ in the least-squares provided by the SVD.

3.1.3. Step 3: DOA mapping

The final DOA estimate is obtained through pattern matching by us-
ing a pre-computed dictionary of MDPs corresponding to a prede-
fined spatial grid on the unit sphere surface:

ˆ̂x` = min
x̂`∈D

‖α̂N −αN (x̂`) ‖2, (21)

where D is the set containing the considered candidate locations.

4. EXPERIMENTS

The performance of the proposed approach was evaluated over
an extensive set of synthetically generated recordings with ran-
dom source-receiver configurations using the image-source method
[29] in a shoe-box room with dimensions 10 m × 8 m × 6 m.
To assess the effect of noise and reverberation, we ran simula-
tions both for anechoic (T60 = 0 s) and reverberant conditions
(T60 = {0.5, 1} s) considering a range of Signal-to-Noise Ratio
(SNR) values (SNR = {5, 10, 20, 40} dB), with 10 runs per room
condition. The simulations included the theoretical response of a
rigid spherical microphone array with 32 channels, hence the max-
imum SH order is N = 4. The sources were randomly placed in
the room with a distance from the array of 2 m. We processed the
signals at a sampling rate of 8 kHz, the STFT adopts a hamming
window of size 512 with 50 % overlap and 512 FFT points. The
sources were randomly taken in each simulation run from a set
of 3 male and 3 female Japanese and English speakers extracted
from [30].

We compare the performance of the proposed SHD-LRA
method with respect to the recent MUSIC-based models RMU-
SIC and SHD-RMUSIC, both introduced in [27]. Similarly to [27],
we perform the analysis over a limited frequency range (1-2.5 kHz),
hence exploiting the SHs up to the 3rd order. All the methods per-
formed localization by considering the same spatial grid of candidate
DOAs, with a separation of 3 degrees in elevation and 2 degrees in
azimuth. Location estimates are obtained over signal frames having
a duration of 0.3 s. To avoid undesired effects in the performance
analysis due to speech silences, the source signals were manually
processed to keep only audio segments with speech activity.

4.1. Metrics

The performance metrics used in the evaluation are the probability
of detection (PD) and the DOA root mean squared error (RMSE),
the former computed as the percentage of DOA estimates below an
absolute DOA error of 10 degrees. Given the angular error for a
given DOA estimate ˆ̂x`:

ψe = arccos
(

ˆ̂xT` x̂`
)
, (22)

we define nonanomalous estimates as those where |ψe| < 10°. The
PD is obtained as

PD =
Na
NT

, (23)

whereNa is the number of nonanomalous estimates andNT the total
number of estimates. The DOA RMSE is computed as:

RMSE =

√
1

Na

∑
i∈Na

ψ2
e,i, (24)

whereNa is the set containing the nonanomalous DOA estimates.
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Fig. 2. Probability of detection (PD) and DOA RMSE for different simulated conditions. Left column (a, d): T60 = 0.0 s. Middle column
(b, e): T60 = 0.5 s. Right column (c, f): T60 = 1 s.

4.2. Discussion

The results are collected in Fig. 2, which shows the average and stan-
dard deviation of the considered metrics computed across the differ-
ent simulation runs. The bar graphs in (a, b, c) show clearly how, in
general, the PD is significantly affected by the additive noise level
and room reverberation. As expected, while all methods provide al-
most perfect detection performance in anechoic and high SNR con-
ditions, the performance is severely degraded at lower SNRs or under
stronger room reflections. The proposed method SHD-LRA is, how-
ever, the one showing a more robust behavior. While both RMUSIC
and SHD-LRA provide almost identical results for (a) T60 = 0 s,
the performance drop is higher for RMUSIC when increasing the re-
verberation time (b, c), especially at lower SNRs. In all cases, the
SHD-RMUSIC method showed poorer performance, with a remark-
able sensitivity to noise compared to the other two methods.

A similar trend is observed for the DOA RMSE in the graphs
of the bottom panel (d, e, f). While, in anechoic conditions (d), the
performance of SHD-LRA is quite similar to that of RMUSIC, a
general improvement is observed for the proposed method in rever-
berant conditions (e, f) for every SNR. Interestingly, when reverber-
ation is present and the SNR is high, the angular error of the SHD-
RMUSIC method is smaller than that of RMUSIC. However, the low
PD shown by SHD-RMUSIC indicates that the overall performance
is less robust to non-ideal conditions. In general, with moderate and
high reverberation the proposed method SHD-LRA outperforms the
other two baseline approaches.

Finally, note that typical MUSIC-based methods need to com-
pute an SVD for the covariance matrix of each frequency bin, which
is of size Q × Q. In our method, we perform one single SVD for
all the considered frequencies at once from a matrix of size C × F .
Then, the cost of MUSIC-based methods is in the order ofO(FQ3),
while that of SHD-LRA is O(FC2), which is significantly lower as
C ≤ Q.

5. CONCLUSION

In this paper, we have presented a method for acoustic source local-
ization working in the spherical harmonics domain. The method is
based on the extraction of the underlying modal directional pattern
(MDP) corresponding to the direction of arrival (DOA) of the source.
To this end, the spherical harmonics coefficients computed from the
acquired multichannel signal at multiple time-frequency points, are
normalized and arranged into a matrix that is assumed to be low-
rank under ideal conditions. While the normalization step acts as a
denoising stage, the SVD applied over the resulting matrix helps to
identify the target dominant MDP and, consequently, the DOA of the
source. An evaluation comparing to other recent approaches using
simulated data confirms the robustness and potential of the proposed
approach. Future work will consider the extension of the method
to multi-source localization and a more comprehensive evaluation
involving recordings acquired in real scenarios.
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