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We consider an oscillating micromirror replacing one of the two fixed mirrors of a Mach-Zehnder interfer-
ometer. In this ideal optical set-up the quantum oscillator is subjected to the radiation pressure interaction of
travelling light waves, no cavity is involved. The aim of this configuration is to show that squeezed light can be
generated by pure scattering on a quantum system, without involving a cavity. The squeezing can be detected at
the output ports of the interferometer either by direct detection or by measuring the spectrum of the difference
current. We use the quantum-stochastic Schrödinger equation (Hudson-Parthasarathy equation) to model the
global evolution. Indeed, it can describe the scattering of photons and the resulting radiation pressure interac-
tion on the quantum oscillator. Moreover, it allows to consider also the interaction with a thermal bath, so that
it can describe also the damping of the harmonic oscillator and non-Markovian thermal effects. In this way we
have a unitary dynamics giving the evolution of oscillator and fields. The Bose fields of quantum stochastic
calculus and the related generalized Weyl operators allow to describe the whole optical circuit. By working
in the Heisenberg picture, the quantum Langevin equations for position and momentum and the output fields
arise, which are used to describe the monitoring in continuous time of the light at the output ports. In the case
of strong laser and weak radiation pressure interaction highly non-classical light is produced, and this can be
revealed either by direct detection (a negative MandelQ-parameter is found), either by the intensity spectrum of
the difference current of two photodetector; in the second case a nearly complete cancellation of the shot noise
can be reached. In this last case it appears that the Mach-Zehnder configuration together with the detection of
the difference current corresponds to an homodyne detection scheme, so that we can say that the apparatus is
measuring the “spectrum of squeezing”.

Keywords: Quantum optomechanics, radiation pressure interaction, quantum Langevin equations, squeezed light, Mach-
Zehnder interferometer.
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I. INTRODUCTION

Quantum optomechanical systems, such as oscillating mi-
cromirrors interacting with the light by radiation pressure,
have been a very active field of theoretical and experimental
research. It is usual to consider such a kind of systems cou-
pled with discrete modes of light in a cavity [1–12]; indeed,
the term of cavity optomechanics is often used. In principle,
also the case of travelling waves reflected by a micromirror
can be considered [13]; some of the effects typical of cavity
optomechanics can be found also in this case.

Here we want to show that, ideally, the pure reflection of
the light on an oscillating quantum micromirror can gener-
ate squeezed light out of “classical” coherent light. As dis-
cussed in [10, Sect. 4.5] the ponderomotive interaction pro-
duces intensity-dependent phase shifts which give rise to opti-
cal squeezing. Here we show that this is possible also without
the presence of a cavity; the pure scattering of the light on the
quantum oscillator can transform the coherent input light in
strongly squeezed output light.

Our interest here is not directly in the motion of the quan-
tum oscillator, but in the properties of the output light, in par-
ticular in detecting its squeezing. As we expect the interac-
tion with the quantum system to affect mainly the phase of
the light, we insert the quantum micromirror in the place of
one of the mirrors of a Mach-Zehnder interferometer (MZI)
[14, 15]; in this way we realize a phase sesitive optical circuit,
which provides the interference of the beam of interest with a
reference beam, in a way very similar to an homodyne detec-
tion scheme. At the output ports of the MZI, we can think to
use direct detection and to check for sub-Poissonian statistics
[16, 17]; or we can relay on homodyne detection to get the
spectrum of squeezing [18, Sect. 9.3].

As in [13], we use quantum stochastic calculus (QSC) and
the Hudson-Parthasarathy (HP) equation [19–21] to model the
unitary evolution of quantum oscillator and light field. This
equation can describe absorbtion/emission of quanta from a
quantum system (the oscillator in our case), and we use this
feature to introduce the interaction with a thermal bath, giving
damping and heating. Moreover, this equation allows also to
describe scattering of field quanta [22–25] and it is this feature
which is used to model the pure reflection of light. By using
QSC and HP-equation we can relay on the associated quan-
tum Langevin equations to study the motion of the oscillator
(without the need of some additional Markov approximation).
On the other side, the related notion of output fields [21, 28–
30] allows to describe the effects of the quantum micromirror
on the reflected light.

QSC involves continuous Bose fields, by which we can also
model travelling waves of quantum optical fields [26]. More-
over, by the related generalized Weyl operators [20, 21], it is
possible to describe the action of linear optical elements on
the light and to construct optical circuits [27], as the MZI in
the present work. Finally, by introducing suitable compatible
field observables, we can describe the monitoring of the out-
put light in continuous time (direct, heterodyne, homodyne
detection) [17, 18, 21, 28–34].

In Sect. II we introduce the Bose fields involved in QSC

and the Weyl operators and we show how to describe the MZI
by these objects. Let us stress that this is an important feature
of the formalism based on Bose fields: very general optical
circuits can be modeled in a similar way. The input light at
one of the input ports of the MZI is monochromatic coherent
light, while no light enter the other port. Then, we introduce
the quantum observables representing the possible detection
schemes at the two output ports and we formalize the connec-
tion between the detection results and squeezing by introduc-
ing suitable mode operators. In Sect. III we introduce the HP-
equation giving the unitary evolution of the quantum mechan-
ical oscillator interacting with the optical field and thermal
noise, with arbitrary noise spectrum. In the Heisenberg de-
scription position and momentum of the mechanical oscillator
satisfy a couple of quantum Langevin equations, which pre-
serve in time the canonical commutation relations, due to the
unitarity of the underlying dynamics. The system operators in
the HP-equation are chosen in such a way that all the forces
(mechanical harmonic force, damping and radiation pressure
forces) appear only in the equation for the momentum, as it
must be for a mechanical oscillator. The Langevin equations
can be explicitly solved and from this solution the form of
the output optical field can be obtained. The explicit form of
the output field for long times, together with the results about
the detection schemes are used in Sect. IV to get the analytic
expressions of the MandelQ-parameters or the intensity spec-
tra, depending on the applied measurement procedures. In the
limit of weak radiation pressure interaction and of strong laser
a very intense squeezing is produced and it can be detected ei-
ther by the spectrum of the difference of the photo-currents,
either by direct detection at the two output ports. Conclusions
and possible extensions are discussed in Sect. V.

II. THE OPTICAL CIRCUIT AND THE DETECTION
SCHEMES

Before discussing our optical circuit, the MZI in Figure 1,
we introduce the quantum fields used to represent both light
and thermal noise. A good presentation of QSC and of the
related notions is in the book [20]; presentations more aimed
to applications in quantum optics can be found in [21, 28].

Let us consider d Bose fields aj(t) satisfying the canonical
commutations rules (CCRs)

[ai(s), aj(t)] = 0, [ai(s), a
†
j(t)] = δijδ(t− s). (1)

This kind of fields are used in quantum optics also outside
QSC [26]. We work in the Fock representation, which means
that these CCRs are realized in the Hilbert space

Γ ≡ Γ
(
L2(R;Cd)

)
= C⊕

∞∑
n=1

L2(R;Cd)⊗sn; (2)

Γ is the symmetric Fock space over the one-particle space
L2(R;Cd) ≡ L2(R)⊗Cd and the direct sum on the right is its
decomposition in the n-particle spaces. In all developments,
a key role is played by the coherent vectors, or normalized
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FIG. 1. The optical circuit. BS: beam splitter. PS: phase shifter and fixed mirror. QO: reflecting quantum oscillator. Aj(t), Bj(t), Cj(t),
Dj(t): bosonic quantum fields. Ij(t): output currents.

exponential vectors, which can be introduced by giving their
components in the n-particle spaces:

e(f) = e−
1
2 ‖f‖

2
(

1, f, (2!)−1/2f ⊗ f,

. . . , (n!)−1/2f⊗n, . . .
)
, f ∈ L2(R;Cd). (3)

These vectors are completely analogous to the coherent vec-
tors of the case of discrete modes, as one sees by comparing
the representations in the spaces with fixed number of pho-
tons. Note that e(0) represents the vacuum state and that we
have

aj(t)e(f) = fj(t)e(f); (4)

this equation shows that e(f) is indeed a coherent vector for
the introduced family of annihilation operators.

To develop the theory of quantum stochastic differential
equations the integral version of the aj-fields is needed, to-
gether with the integral of quadratic expressions preserving
the number of quanta:

Aj(t) =

∫ t

0

aj(s)ds, ΛAij(t) =

∫ t

0

a†i (s)aj(s)ds. (5)

The operators ΛAij(t) were named gauge process; note that
ΛAjj(t) is the number process for the field j. The rigorous
definition of field and gauge operators is through their action
on the exponential vectors [20].

A. The Mach-Zehnder interferometer

A MZI, [15, Sects. 2.4, 2.5], [14, Sect. 3.2.3], is a phase
sensitive optical circuit characterized by the presence of two
beam splitters (BS) and two mirrors. MZI-like configurations
are well suited for generation and detection of squeezed light,
as in the case of [35], where the squeezing is produced by non
linear crystals.

Our proposal is a Mach-Zehnder interferometer in which
one of the mirrors is a reflecting and vibrating quantum os-
cillator (QO — a quantum optomechanical micro-mirror), see

Figure 1. The other mirror is a fixed one to which a tunable
phase shifter (PS) has been added. The fields A1 and A2 are
the optical fields entering the two input ports of the interfer-
ometer, while the field A3 will be used to model the thermal
reservoir affecting the oscillating mirror. For the fields we are
using the capital letters of the integral notation (5). In going
from left to right the change of letter (from A to B, C, D)
denotes that the fields have undergone a unitary transforma-
tion. Detection applies only to the fields D at the two output
ports; by Ij(t) we denote the two photo-currents from the de-
tectors. The fields D are detected and processed in order to
study the properties of the field C1. The notion of Weyl oper-
ator, needed to describe the linear optical elements, is recalled
in Sect. A. For simplicity, we assume that there are no losses
and that the optical paths in the two arms of the interferometer
are equal.

The idea of substituting the two mirrors in a MZI was pro-
posed also in [10, Sect. 6.5.1]; in that reference the two op-
tomechanical systems are coupled to cavities and the aim is to
entangle two macroscopic bodies.

1. First beam splitter

The first beam splitter, denoted by BS1 in Figure 1, has
transmittance η ∈ (0, 1) and it is represented by the Weyl
operator WBS1 := W(0;Vη) (see (A1), (A4)) acting on the
two optical fields with the transformation

Bj(t) =W†BS1Aj(t)WBS1, (6a)

B1(t) =
√
η A1(t) + i

√
1− η A2(t), (6b)

B2(t) = i
√

1− η A1(t) +
√
η A2(t). (6c)

Equivalently, by using the field densities, we have

bj(t) =

2∑
i=1

(Vη)jiai(t), (Vη)11 = (Vη)22 =
√
η,

(Vη)12 = (Vη)21 = i
√

1− η. (7)
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The a-fields satisfy the canonical commutation relations
(CCRs) (1); being (6) a unitary transformation, the same
CCRs hold for the b-field densities.

2. The mirrors

a. The fixed mirror and the tunable phase shifter. In the
upper arm we have a fixed mirror, just to change the direction
of propagation of the beam, and a tunable phase shifter; their
effect on the beam is represented by the simple Weyl operator

WPS =W(0;VPS), VPS =

1 0 0
0 eiψ 0
0 0 1

 ,

whose action reduces to

C2(t) =W†PSB2(t)WPS = eiψB2(t), ΛC22(t) = ΛB22(t),
(8)

summarized in c2(t) = eiψb2(t).
Remark 1. By default we consider the phase shift to be tun-
able, once for all. However, by using an electro-optical phase
modulator, the phase shift ψ could become time dependent
and could be controlled by taking into account the detected
signal (closed loop feedback) [15, pp. 84, 221].

b. Interaction with the quantum system. The interaction
of the optical field B1(t) with the quantum system QO is
represented by a Hudson-Parthasarathy equation [20]. Then,
the field after the interaction is given by the output field
[21, 28, 34]:

C1(t) = Bout
1 (t) := U(t)†B1(t)U(t), (9a)

ΛC11(t) = ΛB, out
11 (t) := U(t)†ΛB11(t)U(t). (9b)

For the moment, U(t) is the unitary evolution solving a
generic HP-equation. It is important to stress that HP-equation
treats the quantum sub-system and the fields, representing the
thermal bath and/or the light, as a closed system; then, the
output fields represent the field operators in the Heisenberg
picture. Note that, in such a general framework, the quan-
tum system is not necessarily an oscillating micromirror; for
example, it could be another fixed mirror, or some two-level
atom absobing and emitting photons. In Section III we shall
complete our model by choosing both the system interacting
with the fields and their specific interactions.

We shall use also the density c1(t) ≡ bout
1 (t). The ex-

plicit expression of this field depends on the form of the HP-
equation and in our case it will be given in Sect. III E.
Remark 2. An important point is that the fields c1 and c2 sat-
isfy the CCRs as Bose free fields (cf. (1)). This is due to
the general properties of HP-equation [21, 28, 34], which im-
ply U(t)†B1(t)U(t) = U(T )†B1(t)U(T ), for any choice of
T ≥ t. So, the output fields are obtained by a unique uni-
tary transformation on the input fields and the commutation
relations are preserved.
Remark 3. We shall consider also the case of a fixed mirror;
in this case we have

C1(t) = eiφB1(t), ΛC11(t) = ΛB11(t).

The two phases ψ and φ take into account all the possi-
ble phase shifts induced by the MZI: reflections, beam split-
ters,. . .

3. Second beam splitter

The second beam splitter, denoted by BS2 in the figure, has
transmittance 1/2 and it is represented by the Weyl operator
WBS2 =W(0;V1/2), cf. (6), (7), (A1), (A4); it generates the
field transformations

Dj(t) =W†BS2Cj(t)WBS2, (10a)

D1(t) =
1√
2

[C1(t) + iC2(t)] , (10b)

D2(t) =
1√
2

[iC1(t) + C2(t)] . (10c)

Equivalently, we have

dj(t) =
ij−1

√
2

[
c1(t)− (−1)j ieiψb2(t)

]
, j = 1, 2. (11)

Remark 4. Again the d-fields are Bose free fields and satisfy
the CCRs, see (B2).

In the detection schemes of Sect. II C, a central role will be
played by the number operators of the D-fields,

N̂j(t) ≡ ΛDjj(t) =

∫ t

0

ds d†j(s)dj(s). (12)

By (11), we have

N̂j(t) =
1

2

∫ t

0

ds
[
c†1(s)c1(s)− (−1)j ieiψc†1(s)b2(s)

+ (−1)j ie−iψb†2(s)c1(s) + b†2(s)b2(s)
]
. (13)

B. The total system state

Our total system is composed by the quantum oscillator, the
two optical fields, A1, A2, and a thermal field A3 interacting
directly with the oscillator. As initial state we take a factorized
state composed by a generic statistical operator ρ0

m for the
oscillator, a coherent state for the field A1, the vacuum for
the field A2, and a thermal state for A3.

The general form of the coherent states for the fields is
given in (3); they are characterized by L2(R)-functions. To
have the vacuum for the field A2 it is enough to take the null
function, but to introduce a monochromatic laser for the field
A1 we need to have a starting and a ending time for the func-
tion. So, we take

ρT = ρ0
m ⊗ ρTem ⊗ ρTth, ρTem = ρTem1 ⊗ ρem2,(14a)

ρTem1 = |e1(fT )〉〈e1(fT )|, fT (t) = f(t)1(0,T )(t),

f(t) = λe−iω0t, λ ∈ C, ω0 > 0, (14b)
ρem2 = |e2(0)〉〈e2(0)|. (14c)
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In all the following developments, the current time t will be
always smaller than T , but in the final physical formulae we
shall take T → +∞.

Also mixture of coherent states could be used, such as the
phase-diffusion model of a laser [13]; however, due to the fact
that we consider only the case of equal optical paths in the
two arms of the MZI the only property of the field state we
shall use is |f(t)|2 = |λ|2; so, the pure monochromatic case
is sufficient.

The state ρTth will be discussed in Sect. III C.
We shall denote the quantum expectation of any operatorX

by the notation

〈X〉T ≡ Tr{XρT }. (15)

By using (11), we get the following useful formula, which
enables to compute field moments,

dj(t) ρ
T
em =

ij−1

√
2

[
c1(t) + (−1)jeiψ

√
1− η fT (t)

]
ρTem.

(16)

C. The detection schemes

We describe now some possible detection schemes. The
first one is to consider the simple counting processes of the
photons from the two output ports. Then, we shall consider
possible post-processing of the output currents from the de-
tectors and study their spectra.

The key point in the mathematical formulation of detection
schemes we shall consider is that the number operators (12),
{N̂j(t), j = 1, 2, 0 ≤ t ≤ T}, are a family of commuting
selfadjoint operators. Indeed, from the CCRs (B2) we obtain[

N̂i(t), N̂j(s)
]

= 0, ∀i, j = 1, 2, ∀t, s ∈ [0, T ]. (17)

Because they commute, these operators represent compatible
observables, the number of photons up to time t. We denote
by Nj(t) the observed counts, whose joint probability distri-
bution P can be in principle obtained by the “usual” rules of
quantum mechanics (from the joint projection valued measure
and the system state); they form a two-dimensional stochas-
tic process, whose components are two counting processes.
Obviously, also functions of these commuting operators rep-
resent compatible observables.

The physical quantities introduced in the following sec-
tions, like variances and spectra, can be expressed firstly by
means of the fields Dj and their densities dj (see the de-
tected fields in Section II A 3). The expressions we get in this
way are independent from the explicit structure of the MZI,
so they are very general. Then, they are particularized to
our optical circuit, but the interaction fields/optomechanical
component is left completely general (see the output field in
Section II A 2). The mathematical computations are given
in Appendix B; these computations are essentially the same
either for the case of direct detection, either in the case of
the intensity spectra. After the introduction of the interaction
fields/optomechanical component, given in Section III A, we
shall obtain the final explicit results in Section IV.

1. The counting processes

Here we consider the case of direct detection at the two out-
put ports of the MZI, which means to count the photons leav-
ing the two ports. So, the observed quantities are the processes
Nj(t), just introduced above, and the associated self-adjoint
operators are the number operators N̂j(t) (12). In particular,
the means at time T are

EP [Nj(T )] = 〈N̂j(T )〉T =

∫ T

0

dt 〈d†j(t)dj(t)〉T ; (18)

in the second equality we have expressed the number operator
in terms of the d-densities as in (13). Due to the stationarity
of the stimulating laser (see the state (14)), there exists an
asymptotic regime for the fields, and the following limits exist

nj := lim
T→+∞

EP [Nj(T )]

T

= lim
t→+∞

lim
T→+∞

〈d†j(t)dj(t)〉T , j = 1, 2, (19)

which represent the mean flux of photons at large times. The
proof of the existence of the limit is by explicit computations,
see Remark 10 and Appendix E.

As we have observables represented by commuting self-
adjoint operators, variances and covariances are given by the
quantum expectations

CovP [Ni(T ), Nj(T )]

= 〈N̂i(T )N̂j(T )〉T − 〈N̂i(T )〉T 〈N̂j(T )〉T . (20)

Then, by inserting the integral representation of the number
operators and by using (B3), we obtain the expression

CovP [Ni(T ), Nj(T )] = δij〈N̂j(t)〉T

+

∫ T

0

dt

∫ T

0

ds
(
〈d†j(t)d

†
i (s)di(s)dj(t)〉T

− 〈d†i (s)di(s)〉T 〈d
†
j(t)dj(t)〉T

)
. (21)

In (18)–(21), the mean rates of counts, their variances and
covariance are given in terms of the detected field densities
dj . The compatibility of the considered observables and the
structure of all these formulae are due only to the CCRs (B2)
obeyed by the d-fields; all these results are independent from
the specific structure of the optical circuit.

In the case of Poisson distribution the variance of the ob-
servable Nj would be equal to its mean. In quantum optics
it is usual to measure the difference from this distribution by
introducing the Mandel Q-parameter [16]:

Qj(T ) :=
VarP [Nj(T )]− EP [Nj(T )]

EP [Nj(T )]
; (22)

by definition the Q-parameter is greater than −1 and vanishes
for the Poisson distribution. As for (19), also for this quantity
it will exist the limit for large times in our case; by (21) we
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can write

Qj := lim
T→+∞

Qj(T )

= lim
T→+∞

1

njT

∫ T

0

dt

∫ T

0

ds
(
〈d†j(t)d

†
i (s)di(s)dj(t)〉T

−〈d†i (s)di(s)〉T 〈d
†
j(t)dj(t)〉T

)
≥ −1. (23)

When the Mandel parameter is negative, one speaks of sub-
Poissonian statistics and this fact has connections with the
presence of squeezed light [17, Sect. 2.3.6]; we shall discuss
this point in Sect. II C 4.

2. Post-processing and the spectra of the output light

We consider now the case of photo-counters designed to
measure the flux of arrivals of photons. The photo-detector
does not distinguish the single detected photons, but it pro-
duces an output photo-current proportional to a time mean of
the electrical pulses generated by the incoming photons. We
consider a simple explicit representation of the response func-
tion of the detector given by cκe−κ(t−r), so that the output
currents are represented by

Ij(t) = cκ
∫ t

0

e−κ(t−r) dNj(r), (24)

c > 0, κ > 0, j = 1, 2, 0 < t ≤ T ;

we are considering two identical, ideal detectors. Being Nj a
counting process, its infinitesimal increments have to be inter-
preted as 0 or 1: they are 1 at the times of a count [28, p. 22];
then, the stochastic integral in (24) is a sum on the random
times of the arrivals of the photons in the time interval (0, t).
The associated operators are given by

Îj(t) = cκ
∫ t

0

e−κ(t−r) dΛDjj(r).

As we already remarked, the number operators form a family
of commuting self-adjoint operators; so, the same holds for
the family of current operators

{
Î1(t), Î2(s)

}
t,s∈[0,T ]

. We

can also process the output currents and measure the “sum”
current or the “difference” current:

I+(t) = I1(t) + I2(t), I−(t) = I1(t)− I2(t); (25)

the corresponding commuting self-adjoint operators will be
denoted by Î±(t) = Î1(t) ± Î2(t). A special role is played
by I−(t), which is the quantity measured in the balanced ho-
modyne detection scheme [15, 31, 36, 37]. Indeed, it is the
MZI itself which realizes the circuit needed for homodyning.
From Figure 1 one sees that the field C2(t) plays the role of
local oscillator, while C1(t) is the signal to be analyzed. They
interfere at the balanced beam splitter BS2; then, the fields
Dj(t) are detected, the photocurrents are subtracted and the
resulting signal is processed.

Anyone of the currents (24) or (25) can be sent to a spec-
trum analyzer and its intensity spectrum observed. Let us de-
note by I(t) one of these currents or a linear combination of
them, I(t) =

∑2
j=1 kjIj(t), kj ∈ R, and let Î(t) be the cor-

responding family of compatible quantum observables; its in-
tensity spectrum is given by

STI (µ) =
1

T
EP

∣∣∣∣∣
∫ T

0

eiµtI(t)dt

∣∣∣∣∣
2
 , (26a)

SI(µ) = lim
T→+∞

STI (µ). (26b)

This is the usual definition of spectrum of an asymptotically
stationary stochastic process, as it is in our case, see Sect. IV
and the computations in Appendix E. The limit is in the sense
of distributions, as Dirac-deltas can appear in the limit.

Remark 5. The intensity spectra are symmetric. Indeed, as I
is a real stochastic process, from the definition we have

STI (−µ) =
1

T
EP

[∫ T

0

e−iµtI(t)dt

∫ T

0

eiµsI(s)ds

]
= STI (µ).

By expressing the probabilistic means as quantum expecta-
tions, firstly we get from (19) the mean of the current at large
times:

lim
t→+∞

EP [I(t)] = lim
t→+∞

lim
T→+∞

〈Î(t)〉T

= c (k1n1 + k2n2) . (27)

Then, by subtracting and adding the contribution of the means
in (26), we obtain

SI(µ) = 2πc2 (k1n1 + k2n2)
2
δ(µ)

+
c2κ2

µ2 + κ2

∑
ij

ki

[
niδij + |λ|2 Σij(µ)

]
kj , (28)

Σji(µ) := lim
T→+∞

1

|λ|2 T
Re

∫ T

0

dt

∫ T

0

ds eiµ(t−s)

×
(
〈d†j(t)d

†
i (s)di(s)dj(t)〉T

− 〈d†j(t)dj(t)〉T 〈d
†
i (s)di(s)〉T

)
; (29)

the proof is given in Appendix B 1. These expressions of the
intensity spectra are independent from the specific structure of
the optical circuit, as it was the case of the covariance (21).

Remark 6. In the expression (28), the term with the Dirac
delta is the contribution of the constant component of the cur-
rents. The factor c2κ2

µ2+κ2 is the square modulus of the Fourier
transform of the response function of the detector. The term
δijnj is known as shot noise [31, p. 362]; it derives from hav-
ing written the expression inside (29) in normal order by us-
ing (B3). Finally, the matrix

[
niδij + |λ|2 Σij(µ)

]
is positive

semi-definite by construction.
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By comparing (29) with (21), we see that we have the con-
nection

lim
T→+∞

1

T
CovP [Ni(T ), Nj(T )] = δijnj + |λ|2 Σji(0).

(30)

3. The dependence on the output field

Our interest is on the field C1(t), the optical field after
the interaction with the opto-mechanical device. By compar-
ing our optical circuit with a balanced homodyne detection
scheme, see for instance [31, Sect. 8.4.4 and Fig. 8.7], we note
that there is a strict similarity and that the quantum field C2

has the role of the local oscillator in the homodyne scheme.
So, we put in evidence here the dependence of the observed
quantities on the field density c1(t).

By using (14) and (16), we get easily from (19) the follow-
ing expression for the mean rate at port j: 1

nj = lim
t→+∞

lim
T→+∞

1

2

{
|λ|2 (1− η) + 〈c†1(t)c1(t)〉T

+ (−1)j
√

1− η
(

eiψf(t)〈c†1(t)〉T + c.c.
)}
. (31)

We introduce now the reduced spectra, from which all our
physical quantities can be expressed: 2

Σ−(µ) = Σ0
−(µ) + Σψ−(µ), (32a)

Σ0
−(µ) = lim

T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)

×
{
f(t) f(s)〈c†1(s)c1(t)〉T

− f(t) f(s)〈c†1(s)〉T 〈c1(t)〉T + c.c.
}
, (32b)

Σψ−(µ) = lim
T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)
{

e2iψf(s)

×f(t)
[
〈c†1(t)c†1(s)〉T − 〈c†1(s)〉T 〈c†1(t)〉T

]
+ c.c.

}
, (32c)

Σ0(µ) = lim
T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)

×
[
eiψ
(
f(t)〈c†1(t)c†1(s)c1(s)〉T − f(t)〈c†1(t)〉T

× 〈c†1(s)c1(s)〉T + f(s)〈c†1(s)c†1(t)c1(t)〉T
− f(s)〈c†1(s)〉T 〈c†1(t)c1(t)〉T

)
+ c.c.

]
, (32d)

1 “c.c.” in an equation means “complex conjugated terms”.
2 The overline denotes the complex conjugation.

Σ+(µ) = lim
T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)

×
(
〈c†1(t)c†1(s)c1(s)c1(t)〉T

− 〈c†1(t)c1(t)〉T 〈c†1(s)c1(s)〉T
)
. (32e)

As discussed in Appendix B 2 they are real and symmetric:
Σ±(−µ) = Σ±(µ), Σ0(−µ) = Σ0(µ). Moreover, from
the explicit structures (32b) and (32c), we see that

Σ0
−(µ) ≥ 0, Σψ−(µ) + Σ

ψ+π/2
− (µ) = 0. (33)

In Appendix B 2 it is shown that the components (29) of the
spectra can be expressed by means of (32) in the following
way:

Σjj(µ) =
1

4

[
Σ+(µ) + (−1)j

√
1− ηΣ0(µ)

+ (1− η) Σ−(µ)
]
, (34a)

Σ12(µ) =
1

4
[Σ+(µ)− (1− η) Σ−(µ)] . (34b)

Then, by inserting these expressions into (28) we can derive
the four spectra which we are interested in:

SI+(µ) = 2πc2 (n1 + n2)
2
δ(µ)

+
c2κ2

µ2 + κ2

[
n1 + n2 + |λ|2 Σ+(µ)

]
, (35)

SI−(µ) = 2πc2 (n1 − n2)
2
δ(µ)

+
c2κ2

µ2 + κ2

[
n1 + n2 + |λ|2 (1− η) Σ−(µ)

]
, (36)

SIj (µ) = 2πc2n2
jδ(µ) +

c2κ2

µ2 + κ2

{
nj +

|λ|2

4

[
Σ+(µ)

+ (−1)j
√

1− ηΣ0(µ) + (1− η) Σ−(µ)
]}
. (37)

The meaning of the various terms is just as in Remark 6; note
that the shot noise is the same for the spectra of the two cur-
rents I±.

Now, let us go back to the direct detection and the count-
ing processes introduced in Section II C 1. We have already
obtained the mean rates in terms of the c1-field, see Eq. (31).
From (22), (23), (30) we obtain the asymptotic Q-parameters
for the counting processes at the two output ports:

Qj =
|λ|2

4nj

[
Σ+(0) + (−1)j

√
1− ηΣ0(0) + (1− η) Σ−(0)

]
.

(38)
We can consider also the counting process “sum” and the point
process “difference”; their variances can be computed from
the usual probabilistic identity

VarP [N1(T )±N2(T )] = VarP [N1(T )] + VarP [N2(T )]

± 2 CovP [N1(T ), N2(T )];
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their long time behaviour turns out to be

lim
T→+∞

VarP [N1(T ) +N2(T )]

T
= n1 + n2 + |λ|2 Σ+(0),

(39)

lim
T→+∞

VarP [N1(T )−N2(T )]

T

= n1 + n2 + |λ|2 (1− η) Σ−(0). (40)

Then, the MandelQ-parameter of the counting process “sum”
is

Q+ := lim
T→+∞

VarP [N1(T ) +N2(T )]−
∑2
j=1 EP [Nj(T )]∑2

i=1 EP [Ni(T )]

=
|λ|2

n1 + n2
Σ+(0). (41)

The difference of counts is not a counting process; however,
by analogy, we can introduce aQ-parameter also for this case:

Q− := lim
T→+∞

VarP [N1(T )−N2(T )]−
∑2
j=1 EP [Nj(T )]∑2

i=1 EP [Ni(T )]

=
|λ|2

n1 + n2
(1− η) Σ−(0). (42)

4. Shot noise reduction and squeezed light

The presence of shot noise reduction is usually attributed
to squeezed light [18, 38]. Here we formalize this connection
following [34], where a general balanced homodyne detection
is analyzed inside the theory of measurements in continuous
time.

By the gated Fourier transfom of the field c1(t), introduced
in Sect. II A 2, we define its frequency components

cT (µ) :=
1

|λ|
√
T

∫ T

0

dt eiµt f(t) c1(t)

=
λ

|λ|
√
T

∫ T

0

dt ei(µ+ω0)t c1(t). (43)

It is easy to check that the following commutations rules hold:

[cT (µ), c†T (µ′)] =

{
1 for µ = µ′,
ei(µ−µ

′)T−1
i(µ−µ′)T for µ 6= µ′.

(44)

By this, cT (µ) is a “mode operator”; however, for µ 6= µ′,
cT (µ) and cT (µ′) do not commute and, so, they do not act on
orthogonal Hilbert subspaces. We can say that they become
approximately orthogonal for |µ− µ′|T → +∞. The op-
erators (43) are examples of the temporal filtered modes dis-
cussed in [26, Sect. 2.1].

Then, we define the “two-modes quadrature” operators
QT (µ;ψ) and their fluctuation parts ∆QT (µ;ψ) by

QT (µ;ψ) := eiψcT (µ) + e−iψc†T (−µ), (45)
∆QT (µ;ψ) := QT (µ;ψ)− 〈QT (µ;ψ)〉T ; (46)

By using (43) into (45) we obtain 3

QT (µ;ψ) =
1

T

∫ T

0

dt eiµt

(
λ

|λ|
ei(ψ+ω0t)c1(t) + h.c.

)
,

from which we see thatQT (µ;ψ) is a finite-time Fourier com-
ponent of the quadrature λ

|λ| e
i(ψ+ω0t)c1(t) + h.c. of the field

density c1(t). Similar Fourier components have been intro-
duced in [18, Sect. 9.3], inside the treatment of the spectrum of
squeezing. For simplicity, we have extended the term “quadra-
ture” also to QT (µ;ψ).

The operators (45) enjoy the properties:

QT (µ;ψ)†= QT (−µ;ψ), [QT (µ;ψ), QT (µ′;ψ)] = 0,

[QT (µ;ψ), QT (−µ;ψ ± π/2)] = ∓2i.

Then, a Heisenberg-like relation holds for the “fluctuation op-
erators” (46), [34, Theorem 7]:

〈∆QT (µ;ψ)†∆QT (µ;ψ)〉T
× 〈∆QT (µ;ψ ± π/2)†∆QT (µ;ψ ± π/2)〉T ≥ 1. (47)

It will be useful to have a notation for the quadrature fluc-
tuations for large T :

∆2(µ, ψ) := lim
T→+∞

〈∆QT (µ;ψ)†∆QT (µ;ψ)〉T ≥ 0. (48)

Then, by comparing (32a)–(32c) with (43), (45), (46), we ob-
tain the following representation of the reduced spectrum in
terms of the quadrature fluctuations:

1 + Σ−(µ) = ∆2(µ, ψ). (49)

From (47) and (49), we get the two bounds(
1 + Σ0

−(µ) + Σψ−

)(
1 + Σ0

−(µ) + Σ
ψ+π/2
−

)
≥ 1,(50a)

Σ−(µ)≡ Σ0
−(µ) + Σψ− ≥ −1; (50b)

recall that Σ0
−(µ) ≥ 0, ∀µ.

By this construction we see that on a coherent vector for
the modes cT (µ) and cT (−µ) we have ∆2(µ, ψ) = 1; in par-
ticular this is true for the vacuum state. Following [18] we
speak of squeezing when the fluctuations of a certain quadra-
ture are reduced under their value in the vacuum state; by
(49), this means when Σ−(µ) < 0 for some µ and ψ. Then,
the Heisenberg-like relation (50) says that, when the quadra-
ture (45) is squeezed, the complementary quadrature is anti-
squeezed.

A particular role is played by the mode operator for µ = 0;
in this case QT (0;ψ) involves the single mode cT (0), c†T (0)
and it is self-adjoint. To have Σ−(0) near the lower bound−1
means that the field state is near an eigenstate of QT (0;ψ),
i.e. a very squeezed state (but recall that the bound cannot
be reached, because QT (0;ψ) has a continuous spectrum).
Indeed, in Sect. IV A 3 we shall detect squeezing by finding

3 “h.c.” in an equation means “hermitian conjugated terms”.
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conditions under which Σ−(0) is near its lower bound. Note
that squeezing can be detected also by the counting of pho-
tons, because of the proportionality of the Q-parameter Q−
(42) to Σ−(0).

The monitoring schemes and the whole optical circuit dis-
cussed above are aimed to produce and to detect squeezing in
the light after the scattering on the movable mirror. In [13] the
same interaction mirror/light was considered, but with hetero-
dyne detection. That set up was not suitable to detect squeez-
ing, and indeed different effects were highlighted.
Remark 7 (Random phases). Equations (33), (50) recall us
that squeezing depends strongly on the phase. If some phase
is not stable, say ψ is highly random in time, from (32a)–
(32c) we get that Σ−(µ) reduces to Σ0

−(µ), which is always
positive.

D. The MZI without the quantum oscillating mirror

To better understand the behaviour of a MZI, let us consider
the case in which our oscillating quantum system is replaced
by a fixed mirror introducing a phase φ: c1(t) = eiφb1(t). By
using this expression in (31), (32) we get

nj =
|λ|2

2

[
1 + (−1)jχ cos (φ− ψ)

]
, (51)

Σ±(µ) = Σ0(µ) = 0. (52)

Recall that χ = 2
√
η (1− η) ∈ [0, 1], and χ = 1 for η = 1/2.

a. The counting processes. From (18), (19), (51) we get

EP [Nj(T )] = EP 〈ΛDjj(T )〉 = Tnj ,

EP [N1(T )] + EP [N2(T )] = |λ|2 T.

Remark 8. For η = 1/2, both beam splitters are perfectly
balanced and we get

EP [N1(T )] =
1

2
|λ|2 T [1− cos (ψ − φ)] .

In the case cos (ψ − φ) = 1, there is no light coming out from
port 1; for cos (ψ − φ) = −1 there is no light from port 2.
This property of a balanced MZI is well known in classical
optics, see [14, Sect. 3.2.3].

From (30), (32), (34), (38), (41), (42), we get

CovP [N1(T ), N2(T )] = 0,

lim
T→+∞

1

T
VarP [Nj(T )] = nj , (53)

Qj = 0, Q± = 0.

b. The spectrum of the ouput currents. From (34)–(37),
we get

SIj (µ) =
c2κ2

µ2 + κ2
nj + 2πc2n2

jδ(µ),

SI+(µ) =
c2 |λ|2 κ2

µ2 + κ2
+ 2πc2 |λ|4 δ(µ),

SI−(µ) =
c2 |λ|2 κ2

µ2 + κ2
+ 2πc2χ2 |λ|4 δ(µ) cos2 (ψ − φ) .

Only the shot-noise component and the δ-component due to
the constant mean contribute to the spectra. The δ-peak in
SI−(µ) can be made vanishing by tuning the phase, while
SI+(µ) is independent from the phases and from η.

In the case η = 1/2 we have χ = 1 and

SI1(µ) =
πc2 |λ|4

2
[1− cos (φ− ψ)]

2
δ(µ)

+
c2 |λ|2 κ2

2(µ2 + κ2)
[1− cos (φ− ψ)] , (54)

SI2(µ) =
πc2 |λ|4

2
[1 + cos (φ− ψ)]

2
δ(µ)

+
c2 |λ|2 κ2

2(µ2 + κ2)
[1 + cos (φ− ψ)] , (55)

SI−(µ) = 2πc2 |λ|4 [cos (φ− ψ)]
2
δ(µ) +

c2 |λ|2 κ2

µ2 + κ2
. (56)

By taking cos (φ− ψ) = ±1, one of the two spectra SIj (µ)
can be made to vanish, because there is no light from one of
the two ports. With the choice cos(φ − ψ) = 0, only the
δ-peak in SI−(µ) disappears.

Note that no squeezing is produced when both the mirrors
in the MZI are fixed and only linear elements are inserted in
the optical circuit.

III. THE HUDSON-PARTHASARATHY EQUATION FOR
THE MECHANICAL OSCILLATOR

We consider now the case of a micro-mirror mounted on
a vibrating structure and directly illuminated by a laser, so
that it is subjected to a radiation pressure force. The mirror
is only allowed to move perpendicularly to its plane. Being a
vibrating mesoscopic body, also thermal effects on its motion
have to be considered.

If we consider a well collimated laser beam and a perfect
mirror, it is possible to represent the light by a single ray im-
pinging on the mirror and reflected according to the laws of
the geometrical optics. Then, the scattering part of the HP-
equation can describe this effect, as it was already introduced
in [13, 25]; other applications of the scattering interaction are
given in [22–25]. As usual, also the thermal effects can be
modelled by the HP-equation and, indeed, QSC was initially
introduced to treat quantum noise [19, 20]; the specific case
of a damped mechanical oscillator was formalized in [9, 13].

HP-equation and quantum Langevin equations are based on
QSC [20], an Itô type-calculus involving the integral form
(5) of the quantum fields. By using these fields a theory of
quantum stochastic differential equations has been developed.
In handling the “stochastic differentials” a “promemoria” is
given by the Itô table:

dAk(t)dA†l (t) = δkldt, (57a)

dAi(t)dΛAkl(t) = δikdAl(t), (57b)

dΛAkl(t)dA
†
i (t) = δlidA

†
k(t), (57c)

dΛAkl(t)dΛAij(t) = δlidΛAkj(t), (57d)
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all the other products vanish. This table has the same role of
the heuristic rule (dW (t))2 = dt in classical Itô stochastic
calculus.

A. The equations of motion

Thus, we consider the general HP-equation for a system on
a Hilbert space H interacting with two bosonic fields on the
Fock space Γ, by pure scattering with the first one, and by
pure absorption/emission with the second one:

dU(t) =

{
−iHmdt+ (S − 11)dΛB11(t)

+ RdA†3(t)−R†dA3(t)− 1

2
R†Rdt

}
U(t), (58)

with the initial condition U(0) = 11. Here Hm, S, R, are
system operators; Hm is self-adjoint and S is unitary, so that
it can be written as S = eiŝ with ŝ selfadjoint.

The solution U(t) is a time-dependent unitary operator on
H ⊗ Γ giving the global fields/system evolution in the inter-
action picture with respect to the free evolution of the fields.
This latter is modelled by a time shift, while the free evolution
of the system and the fields/system interaction are determined
by the system operators Hm, S, and R. The corresponding
global Hamiltonian has been characterized in [39]. The un-
usual aspect of the evolution equation (58) is due to the use
of an Itô type calculus and to the underlying rules (57). In
writing (58) we have taken ~ = 1. To have an idea of the
system/field interaction it is useful to write at least the formal
expression of the total Hamiltonian in the interaction picture,
as done in [28, 30] for the case without the scattering part.
By using the rules summarized by (57) one can check that the
solution of (58) can be written as the time ordered exponential

U(t) =
←
T exp

∫ t

0

{
− iHmds

+RdA†3(s)−R†dA3(s) + iŝdΛB11(s)
}
.

By using the field densities as in Sect. II A, the formal total
Hamiltonian, in the interaction picture, is

Htot(t) = Hm + iRa†3(t)− iR†a3(t)− ŝb†1(t)b1(t); (59)

here we can recognize the system Hamiltonian, the absorp-
tion/emission of phonons, and the interaction of the system
with the incoming flow of photons.

Now we are going to select the system operators, as well the
thermal field state, on the basis of phenomenological motiva-
tions. To develop this point we need the evolution of a generic
system operator X in the Heisenberg description, which is
given by X(t) = U(t)†XU(t). By differentiating this prod-
uct according to the rules of QSC (57), the HP-equation (58)

implies the following quantum Langevin equations for X(t):

dX(t) = i[Hm(t), X(t)]dt

− 1

2

(
R(t)†[R(t), X(t)] + [X(t), R(t)†]R(t)

)
dt

+ [X(t), R(t)]dA†3(t)− [X(t), R(t)†]dA3(t)

+

(
S(t)†X(t)S(t)−X(t)

)
dΛB11(t). (60)

In our case, the mechanical system is characterized by the
position and momentum operators q, p, of which we take the
dimensionless version: [q, p] = i. Therefore, H = L2(R) and
the interactions between the fields and the mirror depend on
its position and momentum. Anyway, in the considered ap-
proximations, the dynamics of the system does not change the
instant of the interaction between one boson and the system.
Therefore, we are modelling an experiment where the system
displacement has no appreciable effect on the optical paths.

The oscillating micromirror is a mesoscopic object, which
is treated by an “effective quantization” of its position and mo-
mentum [10, Sect. 2.2]; when the pondemorotive interaction is
not present it is treated in the linear approximation. Thus, the
mechanical HamiltonianHm is taken to be a quadratic expres-
sion of q and p. Then, the terms with the field operators A3

must describe absorption/emission of phonons and must con-
tribute to the damping of the oscillator; as the intrinsic motion
is taken in the linear approximation, the operator R is taken
linear in q, p.

Finally, we have the ponderomotive interaction. The term
with the unitary system operator S must generate a force pro-
portional to the rate of photon arrivals: vdΛB11(t), v ∈ R. The
sign of v depends on how the reference axis for the position
is taken. With reference to Figure 1 the axis along which the
oscillator moves is vertical: if the positive direction is ”up”, v
is negative, if the positive direction is ”down”, v is positive.

To fix the various operators, our first requirement is that the
equations of motion for the means of position and momentum
must be the classical ones for an oscillator. This means to ask
that the quantum Langevin equations (60), particularized to
q, p, must take the form

dq(t) = Ωmp(t)dt+ dŴq(t), (61a)

dp(t) = − (Ωmq(t) + γmp(t)) dt+ vdΛB11(t)

+ dŴp(t). (61b)

Here, the elastic and damping forces and the radiation pres-
sure force appear only in the equation for the momentum, as
in the classical case. Then, the quantum noises Ŵq(t), Ŵp(t)
must have vanishing means, in order to have the classical
equations of motion for the means. The parameter Ωm > 0 is
the bare frequency of the oscillator and γm > 0 is the damp-
ing constant; moreover, we consider only the underdamped
case: Ω 2

m > γ 2
m/4. The frequency Ωm appears also in the first

equation, just for dimensional reasons; apart from the noise
term, the first equation says that p is proportional to the veloc-
ity. The idea of asking that the forces should appear only in
the equation for the momentum is used also in [4, 10], in the
context of cavity optomechanics. The difference is the pres-
ence of noise in the first of (61); this is due to the fact that our
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Langevin equations are not coming from some further approx-
imation, but are an exact consequence of a unitary dynamics
and that an Itô-type calculus is used.

To obtain equations (61) from (58), (60), it easy to check
that we must have

Hm = H0 +H1, H0 = Ωm

2

(
p2 + q2

)
, (62a)

H1 = γm
4 {q, p} , R = αq + βp, (62b)

α ≥ 0, β ∈ C, 0 < α Imβ = γm
2 < Ωm, (62c)

S = eiŝ = eivq+iφ, v ∈ R, φ ∈ [0, 2π). (62d)

We can always take α real and positive, because a phase can
be included in the definition of A3; H1 represents a modifica-
tion of the oscillator Hamiltonian due to the interaction with
the phonon bath. The phase φ in the scattering operator S will
affect only the evolution of the fields and represents a phase
shift due to the reflection; the parameter v is a pure number
and it depends on the incidence angle of the light and on the
frequency of the laser. Some freedom remains in the oper-
ator R; it will be fixed by asking “energy equipartition” in
the reduced equilibrium state of the oscillator, see Sect. III D.
When unbounded operators are involved, as in (62a), some
restrictions are needed in order to control the domains; then,
existence, uniqueness, unitarity of the solution of (58) can be
proved [40].

Finally, the quantum noises Ŵq(t) and Ŵp(t) come out
from the terms in the third line of Eq. (60) and are given by

Ŵq(t) = iβA†3(t)− iβ A3(t), (63a)

Ŵp(t) = iα
(
A3(t)−A†3(t)

)
. (63b)

By construction, due to the unitarity of U(t), the commutation
relations for the system operators are preserved; also a direct
verification is possible by showing that the quantum stochas-
tic differential of [q(t), p(t)] vanishes due to the commutation
rules satisfied by the noises (63), given in [13, (21)]. More-
over, our choice of the field state, given in Sect. III C, will be
such that the mean values of the noises Ŵq(t), Ŵp(t) are van-
ishing; then, the evolution equations for the mean values of q
and p coming from (61) are exactly the classical equations for
an underdamped oscillator.

The results on the mechanical Hamiltonian and the inter-
action oscillator-phonons have been obtained in [9] starting
from symmetry requirements, while the scattering interaction
with photons has been introduced in [13]. Here we have
shown how to get the system/fields evolution by simplified
arguments.

We can observe that the motion of the mirror changes the
optical path, and, similarly, the velocity of the mirror changes
the frequency of the scattered photons (momentum conserva-
tion). These effects are not taken into account, as we expect
them to be small. The mirror vibrations could also increase
the dispersion of the C1-beam; this effect could be corrected
by lenses. Moreover, any change in the optical path in the
lower arm of the MZI has to be compensated in the upper one.
Another point is that we have considered a single vibrational
mode of the mechanical oscillator, while physical oscillators

could have more modes; this problem is present also in cav-
ity optomechanics [10, Sect. 2.2]. Usually, it is assumed that a
single mode is involved in the response to the optical force, but
also the multimode case has been studied [4]. As our presen-
tation is aimed at giving a proof-of-principle of the production
of non-classical light by pure scattering, we have considered
the case of a response practically restricted to a single me-
chanical mode, while the theory could be generalized also to
the multimode case.

B. The mechanical mode operator and the solution of the
Langevin equations

The quadratic Hamiltonian Hm (62a) can be diagonalized
by introducing a suitable mode operator. Firstly, we introduce
the damped frequency ωm and the phase factor τ by

ωm =

√
Ω 2

m −
γ 2

m

4
, (64a)

τ =
ωm

Ωm
− i

2

γm

Ωm
= − i

Ωm

(γm

2
+ iωm

)
. (64b)

Then, we define the mode operator for the mechanical oscil-
lator

am =

√
Ωm

2ωm
(q + iτp)

=
1√

2ωmΩm

(
Ωmq +

γm

2
p+ iωmp

)
, (65)

satisfying the commutation rules [am, a
†
m] = 1; the inverse

transformation turns out to be

q =

√
Ωm

2ωm

(
τ am + τa†m

)
, p = i

√
Ωm

2ωm

(
a†m − am

)
.

(66)
Let us stress that the connection between the mode opera-
tor and the couple position-momentum is not the usual one,
but the phase τ appears. By these definitions, the mechanical
Hamiltonian (62a) can be rewritten in the form

Hm = H0 +H1 = ωm

(
a†mam +

1

2

)
. (67)

Directly from (60) and (67), or from (65) and (61), one gets
the quantum Langevin equation for am:

dam(t) = −
(

iωm +
γm

2

)
am(t)dt

+ dŴam(t) + iτv

√
Ωm

2ωm
dΛB11(t), (68)

Ŵam(t) =

√
Ωm

2ωm

(
Ŵq(t) + iτŴp(t)

)
. (69)

The linearity of such equation allows for an explicit solution

am(t) = e−(iωm+ γm
2 )tam +

∫ t

0

e−(iωm+ γm
2 )(t−s)dŴam(s)

+ iτv

√
Ωm

2ωm

∫ t

0

e−(iωm+ γm
2 )(t−s)dΛB11(s), (70)
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leading to the position and momentum Heisenberg operators

q(t) = e−γmt/2
(
q cosωmt+

γmq + 2Ωmp

2ωm
sinωmt

)
+

√
Ωm

2ωm

∫ t

0

e−
γm
2 (t−s)

[
e−iωm(t−s)τ dŴam(s) + h.c.

]
+

Ωmv

ωm

∫ t

0

e−
γm
2 (t−s) sinωm (t− s) dΛB11(s), (71)

p(t) = e−γmt/2
(
p cosωmt−

2Ωmq + γmp

2ωm
sinωmt

)
−
√

Ωm

2ωm

∫ t

0

e−
γm
2 (t−s)

[
ie−iωm(t−s)dŴam(s) + h.c.

]
+ v

∫ t

0

e−
γm
2 (t−s)

(
cosωm (t− s)

− γm

2ωm
sinωm (t− s)

)
dΛB11(s). (72)

C. The state of the thermal field

To describe a general thermal bath, we take as field state a
suitable mixture of coherent states, as in [9, 13]. Let u be a
stationary Gaussian complex random process with

E[u(t)] = 0, E[u(t)u(s)] = 0, (73a)

E[u(t)u(s)] = F (t− s), (73b)

F (t) =
1

2π

∫ +∞

−∞
eiνtN(ν) dν, (73c)

N(ν) ≥ 0, N(ν) ∈ L1(R). (73d)

Thanks to stationarity, the function F (t) is positive definite,
so that, according to Bochner’s theorem [41, Theor. IX.9], its
Fourier transform

N(ν) =

∫ +∞

−∞
e−iνtF (t) dt (73e)

is a positive function, which we assume to be absolutely in-
tegrable, thus implying a finite power spectral density for the
process. The quantity N(ν) will play the role of noise spec-
tral density in the dynamics of the oscillator; it could be the
Bose-Einstein distribution or any other temperature dependent
function.

We take the state of the thermal fieldA3(t) to be the mixture
of coherent states

ρTth = E [|e3(uT )〉〈e3(uT )|] , uT (t) := 1[0,T ](t)u(t).
(74)

The quantity u is a complex stochastic process with locally
square integrable trajectories and E denotes the expectation
with respect to the probability law of the process u. In the
argument of a coherent vector only square integrable functions
are allowed, while the trajectories of the process u are only
locally square integrable, i.e.

∫ t1
t0
|u(t)|2 dt < +∞ for all

time intervals (t0, t1) of finite length. So, we have introduced
the cutoff T , representing a large time, which we will let tend
to infinity in the final formulae describing the quantities of
direct physical interest, as for the state of the optical fields.
As explained in [9, Sect. 3.2.1] this is a field analog of the
regular P -representation of the case of discrete modes [31].

D. The equilibrium state of the quantum oscillator

When the field state ρTfield = ρTem ⊗ ρTth is the vacuum state
or, more generally, a coherent vector, the reduced system state
ρm(t) satisfies a Markovian master equation [20, 21] with a
Lindblad type generator [42, 43]. If a more general state is
taken for the field state, non-Markov effects enter into play
and a simple closed evolution equation for the reduced dy-
namics could even not exist [21, 23]. Indeed, this is the case
for the thermal state introduced in Sect. III C. While the re-
duced state for the mechanical oscillator does not satisfy a
simple closed master equation, in principle all the properties
of the mechanical oscillator can be computed (without relying
on a master equation), because we have the explicit solutions
of the Langevin equations and the quantum correlations of the
fields introduced in Sects. II B, III C.

By using system Weyl operators in the Heisenberg picture
one could prove the existence and characterize the reduced
equilibrium state of the quantum oscillator

ρeq
m = lim

T→+∞
TrΓ

{
U(T )

(
ρm ⊗ ρTfield

)
U(T )†

}
,

where TrΓ denotes the partial trace over the fields. However,
in this work we need only the first and second moments of po-
sition and momentum at equilibrium. By taking the quantum
expectation of (71) and (72) and the limit for large times, we
obtain

〈p〉eq = 0, 〈q〉eq =
vη |λ|2

Ωm
=: q∞. (75)

The same procedure can be applied to q(t)2 and p(t)2. We
can introduce now the last requirement to fix completely the
system operator R.
Assumption 1. We ask to have energy equipartition in the
mean for the fluctuation contributions, i.e. we require

〈q2〉eq − q2
∞ = 〈p2〉eq;

moreover, we ask this equipartition to hold for any tempera-
ture, i.e. independently from the choice of N(ν) in the defini-
tion of the state of the thermal field, given in Sect. III C.

The computations of the second moments are long; the re-
sults are reported in Appendix C. The Assumption above can
be applied to (C1), (C2), and this fixes the residual freedom in
the definition of the operator R given in (62b); the final result
is

α =

√
γmΩm

2ωm
, β = iτ

√
γmΩm

2ωm

⇒ R =
√
γm am.

(76)
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So, all the system operators in the HP-equation (58) are now
fixed and the same holds for the quantum noises (63) and (69).
As reported in Appendix C, the final expressions of the second
moments turns out to be

〈q2〉eq−q2
∞ = 〈p2〉eq =

Ωm

ωm

(
Neff +

1

2

)
+
η |λ|2 v2

2γm
, (77)

〈{q, p}〉eq = − γm

ωm

(
Neff +

1

2

)
, (78)

Neff :=
γm

2π

∫
R

N(ν)
γ 2
m

4 + (ωm − ν)
2

dν. (79)

As we have already observed, the solution U(t) of the HP-
equation is the unitary evolution operator in the interaction
picture with respect to the free-field dynamics. To physically
understand this dynamics and to visualize the system/field in-
teraction, it is useful to discuss the formal Hamiltonian (59).
By (62), (65), (67), (76), we get

Htot(t) = ωm

(
a†mam +

1

2

)
+ i
√
γm ama

†
3(t)

− i
√
γm a†ma3(t)− (vq + φ) b†1(t)b1(t).

The first three terms represent the system Hamiltonian and the
system/phonon interaction; the appearance is that of an optical
mode with absorption/emission interaction with a Bose field.
However, the mechanical mode operator is connected to posi-
tion and momentum in an unusual way (65); no rotating wave
approximation is involved and the effects on the equations of
motion (61) are the noise terms dŴq(t), dŴp(t) and the pres-
ence of the damping term in the equation for the momentum.
The final term is the strict analog of the interaction used in all
the works in cavity optomechanics and it gives the radiation
pressure force in the equation for momentum. Let us recall
that the peculiar feature of the HP-equation is that the motion
is given in the singular limit of vanishing interaction time and
that the resulting evolution equation is the HP-equation (58).

As already observed at the beginning of Sect. III D, in the
case of a generic noise spectrum, it does not exist a closed
master equation for the reduced state of the mechanical oscil-
lator; this is not a problem because all the following compu-
tations will be based on the solution (71) of the Heisenberg
equations of motion (61). Only in the limiting case of con-
stant phonon spectrum, N(ν) → Neff a Markovian master
equation is obtained (without involving new approximations),
given in [13, p. 326]. The Liouville operator can be written in
Lindblad form [42, 43]. It contains a term with the structure
of the generator of a Poisson semigroup, due to the contribu-
tion of the kicks of the photons, while the other terms have the
structure of an optical master equation. Once again, this is not
due to some rotating wave approximation, but to the unusual
definition of the mechanical mode operator. The Heisenberg
equations of motion (61) do not depend on the noise spectrum
and they describe a mechanical Brownian oscillator.

E. Input-output relations and the scattering operator

Also the fields in the Heisenberg picture can be introduced
[29, 30]; these are known as output fields and they have been
defined in (9). The outputs fields C1(t), C†1(t), ΛC11(t) rep-
resent the fields after the interaction with the system, while
B1(t), B†1(t), ΛB11(t) are the fields before the interaction and,
so, they are called input fields. By the properties of U(t) we
get, ∀T ≥ t,

U(T )†B1(t)U(T ) = U(t)†B1(t)U(t) ≡ C1(t),

U(T )†ΛB11(t)U(T ) = U(t)†ΛB11(t)U(t) ≡ ΛC11(t).

This implies that the output fields satisfy the same CCRs as
the input fields, as anticipated in Remark 2. Self-adjoint com-
binations of the output fields commuting for different times
represent field observables which can be measured with con-
tinuity in time and this is the key ingredient for a quantum
theory of measurements in continuous time [21, 30, 34, 44].
Output fields were introduced independently in quantum op-
tics in connections with quantum Langevin equations and are
often used [15, 28, 29, 31, 45].

By differentiating the products defining the output fields (9)
and using (58) and (57), we get the input/output relations [21]

dC1(t) = S(t)dB1(t) = eivq(t)+iφdB1(t), (80)
dΛC11(t) = S(t)†S(t)dΛB11(t) = dΛB11(t). (81)

Note that the number operator for the photons is not changed
by the interaction with the mirror.

By using the field densities we can write Eq. (80) as

c1(t) = eivq(t)+iφb1(t). (82)

This is the key result which allows for the computation of the
various observed quantities by inserting it into (31)–(32). As
already stressed, by (81) no trace of the interaction is con-
tained in the number process for the field C1; so, only after
some kind of interference with a reference field, the “quantum
phase” introduced by the interaction can be detected. Indeed,
in our scheme the fields C1(t) and C2(t) are made to interfere
at the second beam splitter and they are the D-fields at the
output ports which are monitored.

Another important point is that the motion of the oscillator
will depend on the intensity of the incoming light; so, the term
eivq(t) should introduce an intensity dependent phase in the
field. In quantum optics, it is expected that this situation could
squeeze the light [10, Sect. 4.5]. Indeed, we shall see typi-
cal effects of squeezing in the various detection schemes dis-
cussed in Section IV. In Ref. [10] the case of cavity optome-
chanics is considered and the term ponderomotive squeezing
is introduced; this terminology is well suited also in our case,
as in both cases the radiation pressure interaction is involved.

To apply (82) in explicit computation, we need to elaborate
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the scattering operator eivq(t). Let us define the functions

`t(s) := l(t− s)1(0,t)(s), (83)

l(t) := −ivτ

√
Ωmγm

2ωm
e−

γm
2 |t|eiωmt,

Vt(s) := exp
{

2ih(t− s)1(0,t)(s)
}
, (84)

h(t) :=
v2Ωm

2ωm
e−

γm
2 |t| sinωmt. (85)

We consider Vt as the unitary operator defined by(
Vtw

)
(s) = Vt(s)w(s), ∀w ∈ L2(R). (86)

Then, (71) can be written as

ivq(t) = ive−γmt/2
(
e−iωmtτ am + eiωmtτ a†m

)
+

∫ t

0

l(t− s)dA†3(s)−
∫ t

0

l(t− s) dA3(s)

+ 2i

∫ t

0

h(t− s) dΛB11(s).

Take now the scattering operator (62d); in the Heisenberg
picture we have

S(t) = U(t)†SU(t) = eivq(t)+iφ, (87a)

eivq(t) = S0(t)W3(`t)W1(Vt); (87b)

in this decomposition a system operator and two Weyl opera-
tors appear:

S0(t) = exp

{
ive−γmt/2

(
q cosωmt

+
γmq + 2Ωmp

2ωm
sinωmt

)}
t→+∞−→ 1, (88)

W1(Vt) = exp

{
2i

∫ t

0

h(t− s) dΛB11(s)

}
, (89)

W3(`t) = exp

{∫ +∞

0

`t(s)dA
†
3(s)− h.c.

}
. (90)

The operator W1(Vt) (89) is a Weyl operator acting only on
the electromagnetic component and characterized by the uni-
tary operator Vt (86), and W3(`t) (90) is a displacement oper-
ator with function `t (83) acting on the thermal component.

From this decomposition, some useful properties of the
scattering operator follow.

Proposition 1. The following identities hold:

Vs(t)e
i Im 〈`s|`t〉S0(t)S0(s) = Vt(s)e

−i Im 〈`s|`t〉S0(s)S0(t),
(91)

Vt(s)e
ivq(s)eivq(t) = Vs(t)e

ivq(t)eivq(s), (92)

Vt(s)e
−ivq(t)eivq(s)eivq(t) = Vs(t)e

ivq(s), (93)

b1(s)eivq(t) = eivq(t)Vt(s)b1(s). (94)

The proof of this Proposition is given in Appendix D.
Remark 9. To get the case of a fixed mirror we can send the
mass of the oscillator to infinity. One has to introduce the posi-
tion and momentum operators in physical units, by which one
sees that v = g0/

√
~mΩm, where g0 is the radiation pressure

constant in physical units. Letting m → +∞ we get v = 0.
Then, the action of the evolution on the field (82) reduces to
c1(t) = eiφb1(t), which is the case considered in Sect. II D.
So, in this case the dynamics U(t) plays the role of a Weyl op-
erator, as it is in the upper arm, where a shiftψ was introduced,
due to the fixed mirror and a phase shifter. Indeed, any Weyl
operator can be obtained by means of a suitable HP-equation
and the whole optical circuit can be seen as a network where
the output field from a node becomes the input field in another
node. Indeed, such networks are studied, for instance, in [55]
and similar ideas are below the cascaded systems in [18, Sect.
19.2].

IV. DETECTION OF THE OUTPUT LIGHT

By considering the concrete model of micromirror/fields in-
teraction via radiation pressure, giving rise to the connection
(82) of the field c1(t) with the scattering operator, we obtain
the reduced spectra (32) and the mean rate (31) in terms of
the scattering operator (87); this is done in Appendix E. Then,
the moments of the scattering operator can be elaborated and
computed (see Appendices E 1–E 3); in this way we obtain the
final formulae for the variances and the spectra.

a. Some useful notations. To abbreviate the final expres-
sions we need some definitions. We recall that we have al-
ready introduced `(t) in (83), h(t) in (85), Neff in (79); we
need also

χ := 2
√
η (1− η), χ ∈ [0, 1], (95)

α := ψ − φ− θ, K :=
Ωmv

2

2ωm

(
Neff +

1

2

)
, (96)

M := η |λ|2
∫ +∞

0

ds [1− cos 2h(s)] , (97)

θ := η |λ|2
∫ +∞

0

ds sin 2h(s), (98)

g(t) :=
v2Ωm

2ωm

[
e−

γm
2 |t| cosωmt

+

∫
R

dν
γmN(ν) cos νt

π
[
(ν − ωm)

2
+ γm

2/4
]]. (99)

Remark 10 (The mean rate of counts). By the computations
given in the appendices (Eqs. (E1) and (E11)), we obtain the
expressions of the mean rates of counts at the two output ports:

nj =
|λ|2

2

[
1 + (−1)jχe−(K+M) cosα

]
, (100)

from which we get

n1 + n2 = |λ|2 , n2 − n1 = |λ|2 χe−(K+M) cosα.
(101)
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A. The spectrum of the output currents

The analytic expressions of the reduced spectra (32) are ob-
tained in Appendix E:

Σ0
−(µ) = 2 |λ|2 ηe−2(K+M) Re

∫ +∞

0

ds eiµs

×
[
exp

{
η |λ|2

∫ +∞

0

du
(

e−2ih(u) − 1
)

×
(

e2ih(s+u) − 1
)

+ g(s) + ih(s)

}
− 1 + c.c.

]
,(102a)

Σψ−(µ) = 2 |λ|2 ηe−2(K+M) Re

∫ +∞

0

ds eiµs

×
{

e−2iα

[
exp

{
η |λ|2

∫ +∞

0

du
(

e2ih(u) − 1
)

×
(

e2ih(s+u) − 1
)
− g(s) + ih(s)

}
− 1

]
+ c.c.

}
,(102b)

Σ0(µ) = 2e−(K+M)η3/2 |λ|2

× Re

∫ +∞

0

dt eiµt
[
e−iα

(
e2ih(t) − 1

)
+ c.c.

]
,(102c)

Σ+(µ) = 0. (102d)

We stress that the vanishing of the component Σ+(µ) is due
to the scattering structure of the interaction leaving ΛD11(t) in-
variant, see (81). Let us recall that Σ−(µ) = Σ0

−(µ) + Σψ−(µ)
and that (33) holds. For v = 0, which is equivalent to the
case of a fixed mirror (see Remark 9 and Sect. II D), we have
g(s) = h(s) = 0 and all the reduced spectra (102) vanish.

Then, by (102d), from (35)–(37), (100), (101), we obtain
the final expressions of the intensity spectra:

SIj (µ) = 2πc2n2
jδ(µ) +

c2κ2 |λ|2

4 (µ2 + κ2)

[
2 + (−1)j

√
1− η

×
(

4
√
ηe−(K+M) cosα+ Σ0(µ)

)
+ (1− η) Σ−(µ)

]
,(103)

SI−(µ) = 2πc2 |λ|4 χ2e−2(K+M) (cosα)
2
δ(µ)

+
c2κ2 |λ|2

µ2 + κ2
[1 + (1− η) Σ−(µ)] , (104)

SI+(µ) = 2πc2 |λ|4 δ(µ) +
c2κ2 |λ|2

µ2 + κ2
. (105)

Let us recall that the terms proportional to the Dirac deltas are
the contribution of the constant part of the various currents,
the factor c2κ2

µ2+κ2 is the square modulus of the Fourier trans-
form of the detector response function, the constant terms in-
side the square brackets are the contributions of the shot noise.

1. The reduced spectra

The reduced spectrum Σ−(µ) can be obtained from the
measurements of SI−(µ) and SI+(µ). In these two spectra
the sharp peaks in µ = 0 can be individuated and subtracted.
Then, the contribution of the detector response function is es-
timated from

c2κ2 |λ|2

µ2 + κ2
= SI+(µ)− 2πc2 |λ|4 δ(µ).

Finally, the reduced spectrum Σ−(µ) is estimated from the
measurement of the I−-spectrum (104) by taking

Σ−(µ) =
κ2 + µ2

c2κ2 |λ|2
SI−(µ)− 1

− 2π |λ|2 χ2 (cosα)
2

e−2(K+M)δ(µ).

As discussed in Sect. II C 4, when the reduced spectrum is
negative, the shot noise n1 + n2 is reduced and this effect
is due to the presence of squeezing in the light in field C1.
According to Eq. (49), 1 + Σ−(µ) is equal to the variance of
the quadrature QT (µ;ψ) (45). Let us discuss here the sign of
Σ−(0) in the general case. By defining

Z := 4 |λ|2 ηe−2(K+M)

∫ +∞

0

ds

[
1− exp

{
−g(s) + ih(s)

+ η |λ|2
∫ +∞

0

du
(

e2ih(u) − 1
)(

e2ih(s+u) − 1
)}]

, (106)

we can write

Σ−(0) = Σ0
−(0)− Re

(
e−2iαZ

)
.

By choosing ψ = ψ0 such that 2α0 = argZ, we get the
minimum possible value of Σ−(0):

Σ−(0)
∣∣
ψ=ψ0

= Σ0
−(0)− |Z| . (107)

As we shall see, for certain values of the parameters it be-
comes negative. We recall that Σ0

−(0) ≥ 0. By the fact that
the functions g(s) (99) grows with the temperature, by com-
paring (102a) and (106), we see that at high temperature this
minimum value is positive.

By taking instead ψ = ψ1 = ψ0 ± π
2 , we get the maximum

value:

Σ−(0)
∣∣
ψ=ψ1

= Σ0
−(0) + |Z| . (108)

By the two bounds (50), we have

1 ≤
(

1 + Σ−(0)
∣∣
ψ=ψ0

)(
1 + Σ−(0)

∣∣
ψ=ψ1

)
=
(
1 + Σ0

−(0)
)2 − |Z|2 ,

−1 ≤ Σ−(0)
∣∣
ψ=ψ0

=
Σ0
−(0)2 − |Z|2

Σ0
−(0) + |Z|

. (109)

Aside from the value in µ = 0, we can say in general that
the reduced spectra vanish for very large µ:

lim
µ→±∞

Σ−(µ) = 0, lim
µ→±∞

Σ0(µ) = 0. (110)
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a. The reduced spectrum Σ0(µ). As done for Σ−(µ),
also the reduced spectrum Σ0(µ) can be estimated from mea-
surements of the intensity spectra (103) and of the mean fluxes
of photons (100). From (97), (98), (102c) we see that we have

Σ0(0) = 4e−(K+M)√η (θ sinα−M cosα) . (111)

From (103) we see also that, when Σ−(0) is negative, there
is shot noise reduction in at least one of the intensity spectra,
which means that the presence of non-classical light can be
detected in at least one of the two monitored beams.

2. Weak interaction and strong laser

The expressions (102) of the reduced spectra are very in-
volved, as they contain integrals of exponentials of functions
and of other integrals. . . So, in order to have some idea of their
behaviour and to see if light squeezing is present, we need
some approximation. In the following we shall study the case
of weak interaction and strong laser and we shall also show
that in this extreme case a strong squeezing appears.
Remark 11 (The approximation of flat noise spectrum). From
now on we use the following approximation: the spectral
function N(ν) is slowly varying in a neighbourhood of ωm

of width γm. By (85), (79), (99) this approximation gives

Neff ' N(ωm),

g(t) + ih(t) ' v2Ωm

2ωm
e−

γm
2 |t|

×
[
(N(ωm) + 1) eiωmt +N(ωm)e−iωmt

]
. (112)

The radiation pressure interaction is certainly weak; more-
over, in principle the interaction parameter |v| can be changed
by changing the angle of incidence on the mirrors of the MZI.
Remark 12 (Weak interaction). The parameter v2 is small and
the temperature is not too high; precisely, we assume to have(

Neff +
1

2

)
v2Ωm

2ωm
� 1, (113a)(

η |λ|2 v4Ωm

4γmωm

)2

� v2Ωm

2ωm
� 1. (113b)

In particular, these conditions imply K +M ' 0.
By using these conditions it is sufficient to take only the

first order terms in the formulae (102) for the reduced spec-
tra; by the computations given in Appendix F, we obtain the
following expressions

Σ−(µ) ' 2η |λ|2 v2Ωm
3[

γ 2
m

4 + (µ+ ωm)
2
] [

γ 2
m

4 + (µ− ωm)
2
]

×
[(

1− µ2

Ω 2
m

)
sin 2α+ E(µ) (1− cos 2α)

]
, (114)

E(µ) :=
η |λ|2 v2

Ωm
+

γm

2ωm
(2N(ωm) + 1)

(
1 +

µ2

Ω 2
m

)
,

(115)

Σ0(µ) '
4η3/2 |λ|2 v2Ωm

(
Ω 2

m − µ2
)

sinα[
γ 2
m

4 + (µ+ ωm)
2
] [

γ 2
m

4 + (µ− ωm)
2
] . (116)

Let us note that, by series expansions of the exponentials
in the formulae (102), we would have obtained a representa-
tion of the spectra in terms of peaks centered in µ = ±nωm.
Equations (114), (116) give the relevant peaks under the as-
sumption (113). Without the assumption of flat noise spec-
trum (Remark 11), also a smooth component would appear
inside the peak structure of the optical spectrum.

3. Production and detection of squeezed light

As discussed in Sect. II C 4, the squeezing of the light in
the field C1 is revealed by the negativity of Σ−(µ) for some
choice of the tunable phase ψ. Let us consider the case µ =
0 in (114); as done in Sect. IV A 1 for the general case, the
minimum of the approximated expression of Σ−(0) is for ψ =
ψ0 such that

sin 2α0 = − 1√
E(0)2 + 1

, cos 2α0 =
E(0)√
E(0)2 + 1

.

(117)
With this choice we get

Σ−(0)
∣∣
ψ=ψ0

= Σ0
−(0) + Σψ0

− (0)

'2η |λ|2 v2

Ωm

(
E(0)−

√
E(0)2 + 1

)
. (118)

This minimum is negative, but it can be far from the theoret-
ical bound −1. Moreover, the whole spectrum (114) can be
too small. So, to overcome these drawbacks we ask to have a
sufficiently strong laser, which however has to satisfy (113).
Let us note that the configuration represented by the second
beam splitter, the two detectors, subtraction of the currents,
very bright reference beam (i.e. η small) is indeed the config-
uration of balanced homodyne detection.

Remark 13 (Strong laser). We assume the laser to be strong
enough to satisfy

η |λ|2 v2

Ωm
� γm

ωm

(
N(ωm) +

1

2

)
, E(0)2 � 1. (119)

From a mathematical point of view the requirements (119)
and (113) are compatible and can be realized by keeping con-
stant the product L := η |λ|2 v2(1+ε), ε ∈ (0, 1), while |λ|2
is taken very high and v2 very small. In this limit q∞ (75) is
big and one needs to shift the micromirror in such a way that
the two optical paths in the MZI remain equal. Also the fluc-
tuations of the position of the mirror (77) become large. This
could give a dispersion of the beam C1, and also this effect
should be corrected, say by the use of lenses.

By the choices (113), (119), from (118), (96), (97) we get
that Σ−(0)

∣∣
ψ=ψ0

is near its theoretical lower bound:

0 < 1 + Σ−(0)
∣∣
ψ=ψ0

� 1. (120)
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By the connection (49) with the quadrature fluctuations, this
means that a strong squeezing has been produced. To have
also a good detection of this squeezing we need a strong can-
cellation of the shot noise in the spectrum of the difference
current (104); this means to have also η small, while the laser
must bee sufficiently strong to keep (119) valid.

As one can check, by taking ψ = ψ1 = ψ0 ± π/2 one
obtains a very high maximum of Σ−(0). In (104), the fac-
tor c

2κ2|λ|2
µ2+κ2 appears; in the considered approximations |λ|2 is

very strong, so, the constant c2, coming from the detector re-
sponse function, has to be taken sufficiently small in order to
keep this factor finite.

It is worth noting that a good squeezing can be obtained
also under less extreme conditions, with respect to (119). As
an example, let us take

N(ωm) = 0,
γm

ωm
=

1

5
,

η |λ|2 v2

Ωm
= 1. (121)

Then, (118) gives

Σ−(0)
∣∣
ψ0
' −0.773214, (122)

which indicates a strong squeezing. By taking also η = 1/10,
we get also a good reduction of the shot noise in the detected
beam

1 + (1− η)Σ−(0)
∣∣
ψ0
' 0.304108.

By considering the complementary quadrature, i.e. ψ1 = ψ0±
π/2, we get instead

Σ−(0)
∣∣
ψ1
' 5.173214. (123)

With the choice (121) for the parameters, the conditions
(113) reduce to v2 � 0.32 and (121) means to have a very
strong laser. We expect the constant v2 to be small and, per-
haps, the laser has to be unrealistically strong. Moreover, by
(77), the standard deviation of the position turns out to be of
order 1; so, also in non extreme cases, the dispersion has to be
corrected.

It is interesting to see the full reduced spectrum either for
phase ψ0, which minimizes Σ−(0), either for ψ1 = ψ0±π/2,
which maximizes it; these two cases are plotted in Fig. 2 for
the parameters (121).

We can see that Σ−(µ)
∣∣
ψ0

is negative in a whole neighbor-
hood of µ = 0 and, by enlarging the plot, that even Σ−(µ)

∣∣
ψ1

becomes negative; so, squeezing does not concern a single
mode. It is possible to quantify the squeezing by finding
the minimum (and the maximum) for every µ of the quadra-
ture fluctuations (48), which are connected to the spectrum by
(49). So, we define

∆2
−(µ) = min

ψ
∆2(µ, ψ), (124a)

∆2
+(µ) = max

ψ
∆2(µ, ψ). (124b)

Then, we can say that the variance of the two mode quadrature
(45), for every fixed µ, spans the interval [∆2

−(µ),∆2
+(µ)]

FIG. 2. The reduced spectrum Σ−(µ) of the light reflected by the
oscillating micromirror of Figure 1. The spectrum is plotted for the
two different phases: ψ0, which minimizes Σ−(0) (see (118)) and
ψ1 = ψ0 ±π/2, which maximizes Σ−(0). The frequency scale is in
units of Ωm, the bare frequency of the oscillator; the other parameters
are taken as in (121). A negative value denotes squeezing of the
corresponding quadrature (45).

when the phaseψ is varied. The expression (114) can be easily
minimized/maximized for every µ; the result is

∆2
±(µ) ' 1 +

2η |λ|2 v2

Ωm

[(
1− µ2

Ω 2
m

)2

+ 4
(

1− ω 2
m

Ω 2
m

)
µ2

Ω 2
m

]

×

E(µ)±

√(
1− µ2

Ω 2
m

)2

+ E(µ)2

 . (125)

Note that ∆2
−(µ) < 1 for all the values of µ, except for

µ2 = 1, where it takes the value 1. The computations have
been done under the conditions of Remark 12; so, we see that
there is squeezing for all choices of the parameters compatible
with Remark 12 and for all µ. For the choice of the parame-
ters given in (121), the quantities ∆2

±(µ) are plotted in Figs. 3
and 4; recall that the spectra are symmetric with respect to 0.
An unexpected feature, shown by Fig. 3, is that strong squeez-
ing is present between µ = 0 and µ = ±1, and also around
µ = ±1.5Ωm. Moreover, the high pick in Fig. 4 shows that
around µ = ±Ωm the fluctuations are very far from the mini-
mal uncertainty bound (50a), i.e. ∆2

−(µ)∆2
+(µ) ≥ 1.

B. The counting processes

The non-classical signature of the output light can be de-
tected also by means of the counting processes at the two out-
put ports and of the related Mandel Q-parameters (22). More-
over, a simple witness of squeezing is the variance of the dif-
ference of counts; indeed, the parameter Q− is proportional
to Σ−(0), see (42).

Let us consider the counting of photons at the two output
ports of the MZI. The mean flux of counts are given in (100),
and the Mandel parameters are obtained from (38), (102c),
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FIG. 3. The minimum variance ∆2
−(µ), (124a), of the two-mode

quadrature (45) of the light reflected by the oscillating micromirror
of Figure 1. The other parameters are the same as in (121). A value
under 1 denotes squeezing of at least a µ-quadrature.

FIG. 4. The maximum variance ∆2
+(µ), (124b), of the two-mode

quadrature (45) of the light reflected by the oscillating micromirror
of Figure 1. The other parameters are the same as in (121). With the
choice of the phase maximizing the variance, the quadratures around
µ/Ωm = 1 appear to be strongly anti-squeezed.

(97), (98):

Qj =
|λ|2

4nj

[
(−1)j

√
1− ηΣ0(0) + (1− η) Σ−(0)

]
. (126)

When Σ−(0) is negative, at least one of the Mandel param-
eters Q1 and Q2 is negative. Moreover, when η = 0 we get
Qj = 0 from Eqs. (102); indeed, the two counting processes
are of Poisson type: the oscillator is not reached by the light
and the input light is classical. When η = 1 we get again
Qj = 0: the light interacts with the oscillator, but there is
no interference with a reference beam and we only count the
photons in the field C1 for which we have ΛC11 = ΛB11, see (9).

From (21), (34b), (39)–(42) we have also

lim
T→+∞

CovP [N1(T ), N2(T )]

T
= −|λ|

2

4
(1− η) Σ−(0).

lim
T→+∞

VarP [N1(T ) +N2(T )]

T
= n1 + n2 = |λ|2 ,

lim
T→+∞

VarP [N1(T )−N2(T )]

T
= |λ|2 [1 + (1− η) Σ−(0)] ,

Q+ = 0, Q− = (1− η) Σ−(0).

Note that, for the sum of the counts we get the mean value
EP [N1(T ) + N2(T )] = |λ|2 T and the Mandel parameter
Q+ = 0. Indeed, we have pure scattering on the oscillator,
which gives rise to a phase change, without changing the total
number of photons.

Under the extreme assumptions (113), (119), and for η very
small and the phase α0 introduced above, we find that the two
Mandel parameters take a value slightly greater than −1/2.
Similarly, under the same conditions, we find that the shot
noise for the spectra (103) can be reduced nearly to half its
value. So, as expected, the homodyne-like configuration and
the measurement of the spectrum remains the most efficient
way to detect squeezing in the field C1.

V. CONCLUSIONS AND FINAL REMARKS

In this work we have shown that the ideal apparatus of Fig-
ure 1 could produce squeezed light out from a coherent input
state (Sect. IV A 3). This set up does not include any cav-
ity; only travelling waves and pure scattering are involved.
The squeezing is detected by counting measurements or by
observing intensity spectra; in any case it appears as squeez-
ing of some quadrature of the frequency mode operators (43).
When these operators involve a long time interval, they are
strongly affected by the intensity dependent phase shifts of
(80); instead, no squeezing can be seen in a short interval of
time, because for nearly equal times the phase shifts compen-
sate, as in (81).

In the case of very strong laser of Remark 13, the squeez-
ing can be nearly total, as in (120); however, the assumption
of extremely strong laser can be relaxed and a good squeez-
ing can be reached under the condition (121). As we expect
the parameter v2 to be small, even this last condition could be
problematic; in any case we have shown that, in principle, an
oscillating quantum mirror can squeeze light by pure scatter-
ing, without the presence of a cavity.

Beyond the production of squeezed light, a second aim in
our work was to show the flexibility of QSC and HP-equation;
in constructing our example we have touched many points on
open system theory, quantum optics, quantum information.

By the interaction of the phonon field with the quantum os-
cillator and the choice of field state (Sects. III A–III D) we
have shown how to describe a quantum damped mechanical
oscillator (with the classical dynamics, at least for mean val-
ues, see (61)) and how to model the interaction with a bath
with arbitrary noise spectrum (non Markovian effects can be
included, see also [9, 13]). Moreover, by using the scattering
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component of the HP-equation we have shown how to model
the light scattering on the moving mirror, again generating the
appearance of the right expression of the radiation pressure
force in the Langevin equation for the momentum.

The HP-equation generates a unitary dynamics and the
quantum Langevin equations are just the Heisenberg equa-
tions of motion for system operators. Having Bose fields, we
can say that this construction realizes a unitary model of an
open quantum system interacting with bosonic environments.
Let us stress that what we are using can also be seen as a
continuous-time limit of other approaches to Markovian and
non-Markovian unitary dinamics, known as collision models
or repeated interactions [46–53].

Moreover, the formalism of QSC allows also to describe the
monitoring of the system in continuous time. By introducing
the fields in the Heisenberg description (the output fields, Sect.
III E) one can individuate combinations of these fields made
up of self-adjoint operators commuting at different times, and,
so, representing compatible observables (Sects. II C 1, II C 2).
By these means, also measurement based feedback can be in-
troduced, and connections with quantum filtering, quantum
trajectories, quantum stochastic master equations have been
developed [15, 18, 23, 31, 33, 34, 54].

Finally, we have shown how QSC and the generalized Weyl
operators allow to describe a simple optical circuit, but more
general linear optical devices can be modelled, such as polar-
izing beam splitters, electro-optical phase modulators, wave
platters. . . [15, 21, 27, 32–34, 55]. The choice of a Mach-
Zehnder interferometer made in this work is due to the fact
that it is a phase sensible apparatus; indeed, in a quantum con-
text, it is often used in problems of estimation of a phase [15].
Moreover, as stressed in Sect. II A 3, when the whole appara-
tus is used to measure the spectrum of the difference current,
it is similar to a homodyne scheme which is the usual way to
detect the spectrum of squeezing [18].

Appendix A: Linear optical devices and Weyl operators

The generalized Weyl operators are unitary operators on the
Fock space Γ (2), defined through their action on the exponen-
tial vectors (3):

W(g;V ) ∈ U(Γ), g ∈ L2(R;Cd), V ∈ U
(
L2(R;Cd)

)
,

W(g;V ) e(f) = exp {i Im 〈V f |g〉} e(V f + g), (A1)

∀f ∈ L2(R;Cd). From this definition the following composi-
tion rule follows:

W(h;U)W(g;V ) = e−i Im 〈h|Ug〉W(h+ Ug;UV ). (A2)

In the case V = 11, it is possible to show that

W(g; 11) = exp

{ d∑
k=1

(∫ +∞

−∞
gk(t)dA†k(t)− h.c.

)}
.

From (A1) one sees thatW(g; 11) is the field analog of what is
called a displacement operator in quantum optics [34].

We shall need Weyl operators to analyze the output field
dynamics in Sects. III E, E 1, E 2, and also to describe linear
optical elements in the MZI of Fig. 1. Indeed, when the Bose
fields of QSC are used to describe travelling light waves, the
Weyl operators can be used to describe linear optical elements
[27].

Let V be the unitary operator defined by (V f)j(t) =∑
i Vjifi(t), where {Vij} is a unitary matrix,

∑
j Vjk Vji =

δki. Then, the Weyl operatorW(0;V ) gives the field transfo-
mation

Aj(t) 7−→ W(0;V )†Aj(t)W(0;V ) =
∑
i

VjiAi(t),

ΛAij(t) 7−→ W(0;V )†ΛAij(t)W(0;V ) (A3)

=
∑
kl

Vil VjkΛAlk(t).

This transformation can be used to describe linear elements
in optical circuits [27], such as (polarizing) beam splitters,
half(or quarter)-wave platters, . . . The key point is that these
transformations, being unitary, preserve CCRs.

a. Beam splitter. A beam splitter of transmittance η ∈
[0, 1] can be represented by the Weyl operatorW(0;Vη) with

Vη =

( √
η i

√
1− η

i
√

1− η √
η

)
. (A4)

Inside the matrix Vη different choices of the phases can be
done. The choice above is the one of [27, Sect. 3.4] and
[38, Sect. 14.4]. Another typical choice is to take (Vη)12 =
−
√

1− η = −(Vη)21 [37, Eq. (5.9)]. The different conven-
tions are irrelevant because the physical phases can be ad-
justed by adding suitable phase shifts at the end.

Appendix B: Computations of variances and spectra

For the detected fields we employ the usual notation of the-
oretical physics already introduced in Sect. II:

dj(t) =
dDj(t)

dt
,

dΛDjj(t)

dt
= d†j(t)dj(t); (B1)

these fields satisfy the canonical commutation relations
(CCRs):

[dj(t), di(s)] = 0, [dj(t), d
†
i (s)] = δijδ(t− s). (B2)

In particular we have the key relation

d†j(s)dj(s)d
†
i (t)di(t) = δijδ(t− s) + d†j(s)d

†
i (t)dj(s)di(t)

= δijδ(t− s) + d†i (t)d
†
j(s)dj(s)di(t). (B3)

By using this relation inside the expression of the covariance
(20), we obtain immediately (21).
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1. The dj-field expressions of the spectra

Firstly, we have∫ T

0

eiµt

√
T
Îj(t)dt =

cκ√
T

∫ T

0

dΛDjj(r) eκr
∫ T

r

dt e(iµ−κ)t

=
cκ

(iµ− κ)
√
T

∫ T

0

dΛDjj(t)
[
eiµT−κ(T−t) − eiµt

]
.

Then, we introduce the field densities and we apply (B3):

1

T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)Îi(t)Îj(s) =
c2κ2

(µ2 + κ2)T

×
{
δij

∫ T

0

dt
∣∣∣e−κ(T−t) − e−iµ(T−t)

∣∣∣2 d†j(t)dj(t)
+

∫ T

0

dt

∫ T

0

ds
[
e−κ(T−t) − e−iµ(T−t)

]
×
[
e−κ(T−s) − eiµ(T−s)

]
d†j(t)d

†
i (s)di(s)dj(t)

}
.

Now we take the quantum expectation of the expres-
sion above, we subtract and add the term 〈d†j(t)dj(t)〉T
×〈d†i (s)di(s)〉T inside the second integral, and use
〈d†j(t)dj(t)〉T ' nj , which holds for t large. In this
way we get

1

T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)〈Îi(t)Îj(s)〉T

' c2κ2

(µ2 + κ2)T

{
δijnj

∫ T

0

dt
∣∣∣e−κ(T−t) − e−iµ(T−t)

∣∣∣2
+ ninj

∣∣∣∣∫ T

0

dt
[
e−κ(T−t) − e−iµ(T−t)

]∣∣∣∣2
+ Re

∫ T

0

dt

∫ T

0

ds
[
e−κ(T−t) − e−iµ(T−t)

]
×
[
e−κ(T−s) − eiµ(T−s)

] (
〈d†j(t)d

†
i (s)di(s)dj(t)〉T

− 〈d†j(t)dj(t)〉T 〈d
†
i (s)di(s)〉T

)}
.

By taking the limit for T → +∞ we obtain the equations
(28), (29).

2. The dependence on the output c1-field

To compute the covariance matrix (21) and the spectra (29),
we have to elaborate the quantity

〈d†j(t)d
†
i (s)di(s)dj(t)〉T − 〈d

†
i (s)di(s)〉T 〈d

†
j(t)dj(t)〉T .

Let us take t < T , s < T ; from (16) we get

di(s)dj(t) ρ
T
em =

ii+j−2

2

[
c1(s)c1(t)

+(−1)jeiψ
√

1− η f(t)c1(s) + (−1)ieiψ
√

1− η f(s)c1(t)

+ (−1)i+je2iψ (1− η) f(s)f(t)
]
ρTem.

By this we obtain

〈d†j(t)d
†
i (s)di(s)dj(t)〉T − 〈d

†
j(t)dj(t)〉T 〈d

†
i (s)di(s)〉T

=
1

4

{
〈c†1(t)c†1(s)c1(s)c1(t)〉T − 〈c†1(t)c1(t)〉T 〈c†1(s)c1(s)〉T

+
[
(−1)jeiψ

√
1− ηf(t)

(
〈c†1(t)c†1(s)c1(s)〉T

− 〈c†1(t)〉T 〈c†1(s)c1(s)〉T
)

+ (−1)ieiψ
√

1− ηf(s)

×
(
〈c†1(t)c†1(s)c1(t)〉T − 〈c†1(s)〉T 〈c†1(t)c1(t)〉T

)
+ (−1)i+je2iψ (1− η) f(s)f(t)

(
〈c†1(t)c†1(s)〉T

− 〈c†1(s)〉T 〈c†1(t)〉T
)

+ (−1)i+j (1− η) f(s)f(t)

×
(
〈c†1(s)c1(t)〉T − 〈c†1(s)〉T 〈c1(t)〉T

)
+ c.c.

]}
.

In this expression the following quantities appear:

∆+(t, s;T ) := 〈c†1(t)c†1(s)c1(s)c1(t)〉T
− 〈c†1(t)c1(t)〉T 〈c†1(s)c1(s)〉T , (B4a)

∆0(t, s;T ) := f(t)eiψ
(
〈c†1(t)c†1(s)c1(s)〉T

− 〈c†1(t)〉T 〈c†1(s)c1(s)〉T
)

+ c.c., (B4b)

∆−(t, s;T ) := e2iψf(s)f(t)
(
〈c†1(t)c†1(s)〉T

− 〈c†1(s)〉T 〈c†1(t)〉T
)

+ f(s)f(t)

×
(
〈c†1(s)c1(t)〉T − 〈c†1(s)〉T 〈c1(t)〉T

)
+ c.c.. (B4c)

Note that ∆+(t, s;T ) and ∆−(t, s;T ) are invariant for the
exchange of t and s. By using these quantites we get

〈d†j(t)d
†
i (s)di(s)dj(t)〉T − 〈d

†
j(t)dj(t)〉T 〈d

†
i (s)di(s)〉T

=
1

4

[
∆+(t, s;T ) + (−1)j∆0(t, s;T )

+ (−1)i∆0(s, t;T ) + (−1)i+j∆−(t, s;T )
]
. (B5)

Now we introduce the three quantities

Σ±(µ) := lim
T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)∆±(t, s;T ),

(B6a)

Σ0(µ) := lim
T→+∞

1

|λ|2 T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)

× [∆0(t, s;T ) + ∆0(s, t;T )] . (B6b)

By the symmetry of the Delta-arguments and the fact that they
are real, these quantities are real; then, also symmetric for
µ↔ −µ. The explicit forms in terms of c1 are recalled in the
main text, see (32).

By inserting (B5) into Σji(µ) (29) we get (34).



21

Appendix C: Position and momentum fluctuations

By direct computations of 〈q(T )2〉T and 〈p(T )2〉T from
(71), (72) and the properties of the field state, we get, in the
limit T → +∞,

〈q2〉eq − q2
∞ =

η |λ|2 v2

2γm
+

Ω 2
m

4ω 2
m

(
|x|2 + |y|2

γm
+ Re

iτ3xy

2Ωm

)

+

∫
R

dν
Ω 2

mN(ν)

4ω 2
mπ

(
|x|2

γ 2
m

4 + (ωm + ν)
2

+
|y|2

γ 2
m

4 + (ωm − ν)
2

− 2 Re
τ2xy[

γm
2 + i (ωm + ν)

] [
γm
2 + i (ωm − ν)

]), (C1)

〈p2〉eq =
η |λ|2 v2

2γm
+

Ω 2
m

4ω 2
m

(
|x|2 + |y|2

γm
− Re

iτxy

2Ωm

)

+

∫
R

dν
Ω 2

mN(ν)

4ω 2
mπ

(
|x|2

γ 2
m

4 + (ωm + ν)
2

+
|y|2

γ 2
m

4 + (ωm − ν)
2

+ 2 Re
xy[

γm
2 + i (ωm + ν)

] [
γm
2 + i (ωm − ν)

]), (C2)

x := τα+ iβ, y := τα+ iβ.

To get the equality of (C1) with (C2) when N(ν) is arbi-
trary, we need the equality of the integrands. As τ2 6= −1, we
must have xy = 0. By the conditions (62c), we have y 6= 0.

Thus, we obtain x = 0, which implies (76) and y =
√

2γmωm

Ωm
.

By inserting these results into (C1), (C2) we get (77), with
Neff defined in (79); then, again by direct computations, we
get (78).

Appendix D: Proof of Proposition 1

By using the decomposition (87) and the composition rules
of the Weyl operators (A2) we get

eivq(t)e±ivq(s) = e±i Im 〈`s|`t〉S0(t)S0(s)±

×W1(V ±s Vt)W3(`t ± `s), (D1a)

e±ivq(s)eivq(t) = e∓i Im 〈`s|`t〉S0(s)±S0(t)

×W1(V ±s Vt)W3(`t ± `s). (D1b)

We have c1(s)c1(t) = c1(t)c1(s), VtVs = VsVt. By using
(87) and (A1) we obtain

c1(t)c1(s)eB1 (f1)⊗ eA3 (f3) = eivq(t)+iφb1(t)eivq(s)+iφb1(s)

× eB1 (f1)⊗ eA3 (f3) = eivq(t)+2iφb1(t)S0(s)e−i Im 〈`s|f3〉

× f1(s)eB1 (Vsf1)⊗ eA3 (f3 + `s) = e2iφf1(s)e−i Im 〈`s|f3〉

× S0(t)S0(s)Vs(t)f1(t)e−i Im 〈`t|f3+`s〉eB1 (VtVsf1)

⊗ eA3 (f3 + `s + `t) = e−i Im 〈`t|`s〉Vs(t)S0(t)S0(s)f1(t)

× f1(s)e2iφ−i Im 〈`t+`s|f3〉eB1 (VtVsf1)⊗ eA3 (f3 + `s + `t),

c1(s)c1(t)eB1 (f1)⊗ eA3 (f3) = e−i Im 〈`s|`t〉Vt(s)

× S0(s)S0(t)f1(t)f1(s)e2iφ−i Im 〈`t+`s|f3〉

× eB1 (VtVsf1)⊗ eA3 (f3 + `s + `t).

By the arbitrariness of the coherent state one has (91). By us-
ing (D1) and (91) we get (92). Eq. (93) follows trivially from
(92). Equality (94) is proved by using the factorization and
applying the operators in the two sides to a generic coherent
vector.

Appendix E: Detected fields and scattering operator

By inserting the expression (82) into (31) and (B4), we get
immediately

nj = lim
t→+∞

lim
T→+∞

1

2

[
|λ|2 + (−1)jχRe ei(φ−ψ)〈eivq(t)〉T

]
,

(E1)

∆+(t, s;T ) = 0 ⇒ Σ+(µ) = 0, (E2)

∆0(t, s;T ) = ei(ψ−φ)η |λ|2
(
f(s)〈e−ivq(t)b†1(s)〉T

− |λ|2√η〈e−ivq(t)〉T
)

+ c.c.,

∆−(t, s;T ) = |λ|2 e2i(ψ−φ)

×
(
f(s)
√
η〈e−ivq(t)b†1(s)e−ivq(s)〉T

− η |λ|2 〈e−ivq(s)〉T 〈e−ivq(t)〉T
)

+ η |λ|4

×
(
〈e−ivq(s)eivq(t)〉T − 〈e−ivq(s)〉T 〈eivq(t)〉T

)
+ c.c..

Then, by using (94) and its adjoint, we get

∆0(t, s;T ) = ei(φ−ψ) |λ|4 η3/2 (Vt(s)− 1) 〈eivq(t)〉T + c.c.,

∆−(t, s;T ) = η |λ|4
[
e2i(φ−ψ)

(
Vt(s)〈eivq(s)eivq(t)〉T

− 〈eivq(s)〉T 〈eivq(t)〉T
)

+ 〈e−ivq(s)eivq(t)〉T − 〈e−ivq(s)〉T 〈eivq(t)〉T
]

+ c.c..

Finally, by using also (84), the reduced spectra (B6) become

Σ0(µ) = lim
T→+∞

2η3/2 |λ|2

T
Re

∫ T

0

dt

∫ t

0

ds eiµs

×
{

ei(φ−ψ)
(

e2ih(s) − 1
)
〈eivq(t)〉T + c.c.

}
, (E3)



22

Σ−(µ) = lim
T→+∞

η |λ|2

T

∫ T

0

dt

∫ T

0

ds eiµ(t−s)
{

e2i(φ−ψ)

×
[
Vt(s)〈eivq(s)eivq(t)〉T − 〈eivq(s)〉T 〈eivq(t)〉T

]
+〈e−ivq(s)eivq(t)〉T − 〈e−ivq(s)〉T 〈eivq(t)〉T + c.c.

}
= lim
T→+∞

2η |λ|2

T
Re

∫ T

0

dt

∫ t

0

ds eiµs
{

e2i(φ−ψ)

×
[
e2ih(s)〈eivq(t−s)eivq(t)〉T − 〈eivq(t−s)〉T 〈eivq(t)〉T

]
+ 〈e−ivq(t−s)eivq(t)〉T
− 〈e−ivq(t−s)〉T 〈eivq(t)〉T + c.c.

}
. (E4)

1. Moments of the electromagnetic Weyl operator

Let us consider the Weyl operator W1(Vt) (89) with Vt de-
fined by (84), (86); it involves only the electromagnetic field
B1. Let us take now 0 < s < t ≤ T and let T first and t after
go to +∞; by the definition (A1) and the composition rule for
Weyl operators (A2) we get

〈W1(Vt)〉T = exp

{
η |λ|2

∫ t

0

ds
(

e2ih(s) − 1
)}

(E5a)

' exp

{
η |λ|2

∫ +∞

0

ds
(

e2ih(s) − 1
)}

= e−M+iθ,

〈W1(V †t )〉T ' e−M−iθ; (E5b)

the quantities M and θ are defined in (97), (98). Then, we
have also

〈W1(Vt−sVt)〉T = exp {η〈fT | (Vt−sVt − 11) fT 〉}
= exp {η〈fT | (Vt−s − 11) (Vt − 11) fT 〉+ η〈fT | (Vt−s − 11) fT 〉+ η〈fT | (Vt − 11) fT 〉}

= exp

{
η |λ|2

∫ t−s

0

du
(

e2ih(t−s−u) − 1
)(

e2ih(t−u) − 1
)}
〈W1(Vt−s)〉T 〈W1(Vt)〉T

= exp

{
η |λ|2

∫ t−s

0

du
(

e2ih(u) − 1
)(

e2ih(s+u) − 1
)}
〈W1(Vt−s)〉T 〈W1(Vt)〉T

' exp

{
η |λ|2

∫ +∞

0

du
(

e2ih(u) − 1
)(

e2ih(s+u) − 1
)}

e−2M+2iθ, (E6)

〈W1(V †t−s)W1(Vt)〉T = exp

{
η |λ|2

∫ t−s

0

du
(

e−2ih(u) − 1
)(

e2ih(s+u) − 1
)}
〈W1(V †t−s)〉T 〈W1(Vt)〉T

' exp

{
η |λ|2

∫ +∞

0

du
(

e−2ih(u) − 1
)(

e2ih(s+u) − 1
)}

e−2M . (E7)

2. Moments of the thermal Weyl operator

Let us consider now the thermal Weyl operator W3(`t) (90), with `t defined in (83); recall that the thermal state (74) is a
mixture of the coherent states e3(uT ). Then, we have

〈e3(uT )|W3(`t)|e3(uT )〉 = ei Im 〈uT |`t〉〈e3(uT )|e3(uT + `t)〉

= exp

{
i Im 〈uT |`t〉 −

1

2
‖uT ‖2 −

1

2
‖uT + `t‖2 + 〈uT |uT + `t〉

}
= exp

{
〈uT |`t〉 − 〈`t|uT 〉 −

1

2
‖`t‖2

}
.

Being uT a Gaussian process with moments (73), we have

〈W3(`t)〉T = exp

{
−1

2
‖`t‖2 −

∫ T

0

ds

∫ T

0

dr `t(s)F (s− r) `t(r)

}

= exp

−Ωmv
2

4ωm

(
1− e−γmt

)
− 1

2π

∫ +∞

−∞
dν N(ν)

∣∣∣∣∣
∫ T

0

ds `t(s)e
iνs

∣∣∣∣∣
2


= exp

{
− Ωmv

2

4ωm

(
1− e−γmt

)
− γmΩmv

2

4πωm

∫ +∞

−∞
dν

N(ν)

(ν − ωm)2 + γm2

4

∣∣∣ei(ν−ωm)t − e−
γm
2 t
∣∣∣2},
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〈W3(`t)〉T ' exp

{
−Ωmv

2

2ωm

(
Neff +

1

2

)}
= e−K , (E8)

where K is defined by (96), (79). In a similar way we get∣∣∣∣∣
∫ T

0

du (`t(u)± `t−s(u)) eiνu

∣∣∣∣∣
2

=
Ωmγmv

2

2ωm

∣∣∣∣∫ t

0

du e(iωm− γm2 )(t−u)+iνu ±
∫ t−s

0

du e(iωm− γm2 )(t−s−u)+iνu

∣∣∣∣2
' Ωmγmv

2

2ωm

[
(ν − ωm)

2
+

γ 2
m

4

] ∣∣∣eiνt ± eiν(t−s)
∣∣∣2 =

Ωmγmv
2

ωm

[
(ν − ωm)

2
+

γ 2
m

4

] [1± cos νs] ,

〈W3(`t ± `t−s)〉T = exp

{
−1

2
‖`t ± `t−s‖2 −

1

2π

∫ +∞

−∞
dν N(ν)

∣∣∣∣∣
∫ T

0

du (`t(u)± `t−s(u)) eiνu

∣∣∣∣∣
2}

' exp

{
−v

2Ωm

2ωm

[
1± e−

γm
2 s cosωms+

∫
R

dν
γmN(ν) [1± cos νs]

π
[
(ν − ωm)

2
+ γm

2/4
]]} ' exp {−2K ∓ g(s)} ; (E9)

g(s) is defined in (99).

3. Moments of the scattering operator

For s and/or t large, we get Im 〈`s|`t〉 ' h(t− s) and

e±ivq(s)eivq(t) ' e∓ih(t−s)W1(V ±s Vt)W3(`t ± `s). (E10)

In the following we take 0 < s < t ≤ T , and we consider T and t large. Firstly we have

〈eivq(t)〉T ' e−(K+M)+iθ. (E11)

By inserting this expression into (E3) we get the reduced spectrum (102c). By (E10), (E6), (E7), (E9), we obtain

〈e±ivq(t−s)eivq(t)〉T ' e∓ih(s)〈W1(V ±t−sVt)W3(`t ± `t−s)〉T

' e−2(K+M)∓g(s)∓ih(s) ei(θ±θ) exp

{
η |λ|2

∫ +∞

0

du
(

e±2ih(u) − 1
)(

e2ih(s+u) − 1
)}

,

〈e−ivq(t−s)eivq(t)〉T−〈e−ivq(t−s)〉T 〈eivq(t)〉T

' e−2(K+M)

[
exp
{
g(s) + ih(s) + η |λ|2

∫ +∞

0

du
(

e−2ih(u) − 1
)(

e2ih(s+u) − 1
)}
− 1

]
,

〈e−ivq(t−s)eivq(t)〉T−〈e−ivq(t−s)〉T 〈eivq(t)〉T + e2i(φ−ψ)
(

e2ih(s)〈eivq(t−s)eivq(t)〉T − 〈eivq(t−s)〉T 〈eivq(t)〉T
)

' e−2(K+M)

([
exp
{
g(s) + ih(s) + η |λ|2

∫ +∞

0

du
(

e−2ih(u) − 1
)(

e2ih(s+u) − 1
)}
− 1

]
+ e−2iα

[
exp
{

+η |λ|2
∫ +∞

0

du
(

e2ih(u) − 1
)(

e2ih(s+u) − 1
)
− g(s) + ih(s)

}
− 1

])
, (E12)

with α defined in (96). By inserting this expression into (E4) we get (102a), (102b).

Appendix F: Computations of the approximated expressions for the reduced spectra

By (85) and the assumptions (113), we obtain

η |λ|2 Re

∫ +∞

0

du
(

e∓2ih(u) − 1
)(

e2ih(s+u) − 1
)

' ±η |λ|2
∫ +∞

0

du 4h(u)h(s+ u) = ±η |λ|
2
v4Ωm

4γmωm

[
τe(iωm− γm2 )s + c.c.

]
.
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Then, from (102a), we get

Σ0
−(µ) ' 2 |λ|2 ηe−2(K+M) Re

∫ +∞

0

ds eiµs

{
g(s) + ih(s) +

η |λ|2 v4Ωm

4γmωm

[
τe(iωm− γm2 )s + c.c.

]
+ c.c.

}
= 2 |λ|2 ηe−2(K+M) v

2Ωm

2ωm
Re

{
2N(ωm) + 1

γm
2 − i (µ+ ωm)

+
2N(ωm) + 1

γm
2 − i (µ− ωm)

+
η |λ|2 v2

γm

[ τ
γm
2 − i (µ+ ωm)

+
τ

γm
2 − i (µ− ωm)

]}
= 2 |λ|2 ηe−2(K+M) v

2Ωm

2ωm

{
γm

2

(
2N(ωm) + 1

γ 2
m

4 + (µ+ ωm)
2

+
2N(ωm) + 1

γ 2
m

4 + (µ− ωm)
2

)
+
η |λ|2 v2

2Ωm

×
[ 2ωm + µ
γ 2
m

4 + (µ+ ωm)
2

+
2ωm − µ

γ 2
m

4 + (µ− ωm)
2

]}
= η |λ|2 v2Ωme−2(K+M)

γm
ωm

(2N(ωm) + 1)
(
Ω 2

m + µ2
)

+ 2η |λ|2 v2Ωm[
γ 2
m

4 + (µ+ ωm)
2
] [

γ 2
m

4 + (µ− ωm)
2
] .

Similarly, from (102b), we get

Σψ−(µ) ' 2 |λ|2 ηe−2(K+M) Re

∫ +∞

0

ds eiµs
{

e−2iα
[
−g(s) + ih(s)− η |λ|2 v4Ωm

4γmωm

(
τe(iωm− γm2 )s + c.c.

)]
+ c.c.

}
= −|λ|

2
ηv2Ωm

ωm
e−2(K+M) Re

{
1

γm
2 − i (µ− ωm)

[
N(ωm)e2iα + (N(ωm) + 1) e−2iα +

η |λ|2 v2

γm
τ cos 2α

]
+

1
γm
2 − i (µ+ ωm)

[
N(ωm)e−2iα + (N(ωm) + 1) e2iα +

η |λ|2 v2

γm
τ cos 2α

]}
= −|λ|

2
ηv2Ωm

ωm
e−2(K+M)

×
{

1
γ 2
m

4 + (µ− ωm)
2

[
γm

2

(
2N(ωm) + 1 +

η |λ|2 v2ωm

γmΩm

)
cos 2α+ (µ− ωm)

(
sin 2α− η |λ|2 v2

2Ωm
cos 2α

)]

+
1

γ 2
m

4 + (µ+ ωm)
2

[
γm

2

(
2N(ωm) + 1 +

η |λ|2 v2ωm

γmΩm

)
cos 2α− (µ+ ωm)

(
sin 2α− η |λ|2 v2

2Ωm
cos 2α

)]}

= η |λ|2 v2Ωme−2(K+M)
2
(
Ω 2

m − µ2
)

sin 2α−
(

2η |λ|2 v2Ωm + γm
ωm

(2N(ωm) + 1)
(
Ω 2

m + µ2
))

cos 2α[
γ 2
m

4 + (µ+ ωm)
2
] [

γ 2
m

4 + (µ− ωm)
2
] .

By summing up these two results and taking into account e−(K+M) ' 1, (114) follows. Finally, from (102c), we have

Σ0(µ) ' 2e−(K+M)η3/2 |λ|2 Re

∫ +∞

0

dt eiµt
[
e−iα2ih(t) + c.c.

]
= e−(K+M) η

3/2 |λ|2 v2Ωm

ωm
Re

[(
1

γm
2 − i (µ− ωm)

− 1
γm
2 − i (µ+ ωm)

)
2i sinα

]
,

from which we get (116).
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