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Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of

these technologies is increased when combined with microfluidics, fluorescence markers, and machine

learning. However, this quest faces several challenges. One of these is the effect of the sample flow

velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition

by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how

these visual distortions impact the final classification task in a real-world use-case of cancer cell screening,

using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate,

by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high

accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the

acquired 3D volumes, by relying on their 2D sum z-projection transformation, to reach an efficient real

time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning

from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic

dataset and to investigate the effect of flow speed on cell classification for any biological samples and a

large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP).

1 Introduction

Cell cytometry is rapidly evolving thanks to recent
technological advances.1,2 With microfluidics, single cells can
now be automatically handled one by one and precisely
positioned in front of a detector, opening brand-new
possibilities for high-throughput imaging and screening.3–6

These advances on microfluidics enable analysis of cells
based not only on the traditional one-dimensional

spectrometric signatures, as in classical flow cytometry,7,8 but
also on their individual spatial characteristics such as shape,
texture, size, etc., accessible via fluorescence imaging.9–11 This
new approach for cell sorting has also benefited from recent
advances in machine and deep learning.12–15 Demonstrations
of cell sorting in microscopy coupled with microfluidics and
machine learning have been provided for several research
and commercial imaging flow cytometry applications.16 For
instance, it has been used for cell sorting and cancer cell
classification based on time-stretch imaging and a deep
learning convolutional neural network in ref. 17, for drug-
treated and untreated cell classification based on a linear
support vector machine (SVM) and convolutional neural
networks (CNNs) in ref. 18 and in many other similar cell
sorting applications.13–15,19–21 However in these studies, the
impact of sample velocity on cell sorting has not
systematically been studied. Flow speed is indeed an
important parameter, as it influences both the throughput of
the entire process and its performance. Too low a velocity
reduces the throughput, while too high a velocity may cause
an undesired motion blur effect, as well as a decrease in the
number of acquired frames for each cell that may impact the
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cell classification performance. In this article, we propose to
investigate the effect of cell flow speed on cell classification
via on-chip fluorescence microscopy.

As a proof of concept, we selected cancer cell classification
based on images acquired on a standard 3D light-sheet
fluorescence imaging system coupled with microfluidics.22,23

This microscopy technique has gained remarkable interest in
such applications24–26 due to its ability to rapidly scan large
3D samples with reduced phototoxicity.27 We use this system
to study the effect of motion blur and of the variable number
of image frames per sample. First, we tested this system for a
range of cell flow speed values using simulations provided by
the open-source MicroVIP simulation platform28 developed
on purpose, and then we compared the results with real
datasets. As a disclaimer, let us stress that the
instrumentation system is chosen for illustration while the
methodology is of generic impact and transposable to more
advanced microscopes, higher-throughput microfluidic
systems or other biological classification tasks.

This article is organized as follows. The optofluidic
configuration and the acquisition of the real images of
healthy, cancerous, and metastatic cells with the light sheet
microfluidic microscope are first shown. Then, the
simulation of the images and the classification methods used
in the study are presented. Finally, the impact of cell flow
speed on the classification performance of the simulated and
real images is discussed.

2 Methods
2.1 Optofluidic setup

The setup consists of an optofluidic device interfaced with a
standard inverted microscopy setup, as in ref. 23. The chip
contains a single microchannel, used to continuously deliver
single cells in suspension to the field of view (FOV) of the
microscope, and an embedded cylindrical lens used to
generate a plane of light across the channel, corresponding
to the microscope objective focal plane. The cells, flowed in
the microchannel, cross the plane of light orthogonally
during their motion. At the same time, a fluorescence signal

is excited by the light-sheet and it is collected by the
microscope objective. As the cell flows through the detection
plane, the whole volume is collected, plane-by-plane. Since
the channel and the lens are realized on the same substrate,
no alignment between the two is needed. Furthermore,
benefiting from the microfluidic sample delivery, it is
possible to perform light sheet fluorescence microscopy
(LSFM) of multiple samples in an automated fashion, as in
standard cytofluorimetry, guaranteeing a high number of 3D
images with a high information content.

A picture and a scheme of the device are reported in
Fig. 1. The whole device is realized in fused silica glass, by
femtosecond laser micromachining followed by chemical
etching.29 This is a 3D fabrication technique that allows the
realization of both the microfluidic channel and micro-optics
inside the same glass substrate. The microchannel consists
of a top part with a cross-section of 60 × 90 μm2,
corresponding to the detection area, and a bottom part that
enlarges in a conical shape. This last design was chosen to
match the numerical aperture of the detection objective (60×
1.1 NA water immersion objective) and avoid in this way
optical aberrations introduced by the microchannel edges.
The chip is realized with an open-channel configuration that
is sealed afterwards with a cover glass, 170 μm thick. In this
way it is possible to use it in combination with coverslip-
corrected detection objectives, to reduce the imaging optical
aberrations to the minimum. The cylindrical micro-lens is
realized as an air-filled cavity inside the glass substrate, as it
has an aspherical engineered profile that generates a light-
sheet with a FWHM thickness of 2 μm. The fluidic channel is
connected to the external system with some biocompatible
PEEK capillaries and to the laser light source with an optical
fiber, pigtailed to the device, in front of the micro-lens.

The micro-channel presents a cross-section of
approximately 60 × 90 μm2 that matches the FOV. The
channel is imaged using a 60× 1.1 NA water immersion
objective (Olympus LUMFLN60XW) so that the FOV is
mapped onto the camera sensor with a conversion factor of
0.11 μm per pixel. The sample is flowed at a given speed
across the light-sheet, defined as the standard cell flow speed

Fig. 1 Optofluidic setup. (a) Original setup image (in comparison with a 1 € cent coin). (b) Scheme of the setup and 3D single cell image
acquisition.
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of 50 nl min−1 or the fast cell flow speed of 140 nl min−1,
measured and kept constant with an inline flow-meter (MS1
Elveflow), while the detection camera runs in continuous
acquisition mode. These flow rates correspond to an average
velocity of 0.14 mm s−1 and 0.39 mm s−1 respectively. The
speed is controlled using an external pressure pump (OB1
Elveflow). When a cell passes through the light sheet,
custom-made software selects the sub-region of interest and
combines the acquired camera frames into a 3D matrix with
lateral dimensions of 200 × 200 pixels and a variable number
of z-slices that depends on the cell size and cell flow speed.
Following this operation mode, the distance between each
z-plane is given by

dz ¼ Q
A

1
frame rate

; (1)

where Q represents the measured flow rate, A is the
micro-channel cross-section (5646 μm2) and the frame rate
used is the maximum operable camera acquisition
frequency (200 Hz). Following this setup, the cell rate
visualization is about 2 cells per s and 5 cells per s for
standard and fast cell velocities, respectively. It is
important to notice that these throughputs are far from
the fastest system found in the state-of-the-art for cell
sorting, but comparable with the performances of devices
exploiting LSFM and microfluidics to achieve 3D
reconstruction.30,31 Yet, as explained in the next section
this range enables a full range of distortion to be
investigated due to cell displacement.

2.2 Sample preparation and image acquisition

The cells used to study the impact of cell flow speed on
cell classification are hTERT-immortalized human
mammary epithelial cells (IMEC WT), xenograft-derived
primary tumor cells (XD), and lung metastasis-derived cells
(MD). All cell lines were transduced with the PGK-H2B
mCherry lentiviral vector (central emission wavelength λem
= 610 nm), and as a result the cells expressed the mCherry
H2B recombinant protein in the nucleus. Furthermore, the
XD and MD cell lines were obtained by injecting
orthotopically IMEC cells overexpressing MYC carrying also
the PIK3CA H1047R mutation in NOD/SCID mice as
previously described in ref. 32. Before image acquisition,
the cells were fixed in 4% PFA for 10 minutes at room
temperature. Finally, to avoid cell aggregation and possible
clogging of the microfluidic system, ethylenediamine tetra-
acetic acid (EDTA) at a concentration of 5 mmol was added
to the samples.

The used cells have a typical nucleus diameter of 10–15
μm. Considering these dimensions and a target number of
slices per cell ranging from 2 to 25 slices, we chose a flow
regime in the interval of 50 to 140 nl min−1, well below the
Reynolds number threshold for laminar flow. We limited
ourselves to this maximal speed with our system as we are
interested in investigating the influence of the number of
slices per cell. Two slices is therefore the upper limit

independent of the microfluidic-imaging system used. This
particular flow regime should ensure the absence of vortexes
in the suspension liquid, which means, in first
approximation, a rigid translation of the cell along the
channel, i.e. across the direction perpendicular to the light
sheet and to the detection plane. Nevertheless, perturbations
in the medium induced by the presence of the lateral walls
or by imperfections in the channel cross-section, as well as
Brownian motions can still take place. The description of the
WT, XD and MD real cell images acquired with both standard
and fast speeds is shown in Table 1. From the 3D stacks of
images acquired for each cell, 2D z projections corresponding
to the sum of each slice of the 3D stacks are produced. In
this article we will investigate the classification of the cells
both on 3D stacks and 2D projections.

It is important to highlight that fast cell flow speed
datasets present a very low z-axis sampling (i.e. a small
number of z-slices), almost one third of the standard speed
counterpart (see Fig. 2). An illustration of the max z and x
projections (XY and YZ planes) of the WT cell real images is
shown in Fig. 2. Also, as shown in the YZ planes of the cells,
it is visible that the level of motion blur increases with the
cell speed. Hence, it is interesting to explore the effect of
these distortions on the cell classification performance.

2.3 Microfluidic microscopy single cell image simulation

We performed simulations of the possible output of various
experimental variables. The light-sheet microscopy image sets
can be modeled by

ILSFM = {(PC*PSF)*η(σm, θm)} + β, (2)

where * denotes mathematical convolution, ILSFM is the
synthetic 3D microscopy image, Pc is the 3D point cloud of
fluorescent markers, and PSF is the experimental point
spread function of a light-sheet fluorescence microscope.
Microfluidic artifacts were simulated as a convolutional
motion blur kernel (η) of size σm that depends on the cell
flow speed and orientation θm. β = {G, P} is the camera noise
module. G is an additive Gaussian noise simulating the
thermal and read-out noises and P is a multiplicative Poisson
noise simulating the shot noise. Fig. 3 shows a graphical
summary of the simulation. The elements of eqn (2) are
detailed in the following. This simulation scheme is available
as a web-platform (https://www.creatis.insa-lyon.fr/site7/en/
MicroVIP).

Table 1 Description of the real image datasets used in the study for
standard (50 nl min−1) and fast (140 nl min−1) cell velocities: the number
of images for each cell type, the range of z-slices ([min max]) and
z-spacing (dz) (in μm)

Cell
velocities

# cell images # z-slices dz

WT XD MD [min max] (μm)

Standard 1450 1606 2085 [5 25] 0.74
Fast 1380 2236 1890 [2 9] 2.1
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2.3.1 3D point cloud of fluorescent markers. The 3D point
cloud of fluorescent markers was simulated following two
steps: (i) modeling 3D chromatin chains and (ii) generation
of protein particles. Several types of 3D chromatin chain
configuration simulators have been developed in the
literature.33–39 In this work, 3D chromatin chains were
modeled according to ref. 36. This method can generate 16
realistic chromatin chains with 100 different configurations
for each chain. It is based on a chromosome conformation
capture technique (3C-data) and relies on Bayesian inference
to derive the 3D architecture of chromatin. The chromatin
chains were then interpolated in the x, y, and z directions to
simulate several spherical shapes of cells with dimensions
ranging from 6 × 6 × 10 to 12 × 12 × 15 μm3. We used these
3D chains as structures along which the fluorescent markers
are distributed. The distance between two successive
fluorescent markers along these chains was chosen to follow
a uniform (U) distribution. The addition of this last step
generates a 3D point cloud of fluorescent markers simulating
the protein in the cell volume that is later convolved with the
3D real experimental PSF as shown in Fig. 3(a).

2.3.2 3D experimental point spread function. We used an
experimental 3D PSF of a microfluidic light-sheet
fluorescence microscope23 in the simulation of eqn (2). The
experimental PSF of 4 × 4 × 9.2 μm3 was obtained with a
water immersion (refractive index n = 1.33) 60× 1.1 NA
objective lens using a fluorescent point-like nanoparticle with
a central emission wavelength of λ = 580 nm. To determine
the lateral and axial resolutions of the microscope, the 3D
PSF was fitted with a Gaussian function in the xy and z
directions (see Fig. 3(b)) and the full width at half maximum
in the lateral (FWHMr) and axial (FWHMz) directions was
estimated as follows

FWHMr,z = 2.335σr,z, (3)

where σr,z denotes the lateral and axial Gaussian widths fitted
with the experimental PSF profiles. The estimated lateral and
axial resolutions are found to be FWHMr = 0.521 μm and FWHMz

= 2.415 μm, respectively. This PSF was convolved with the 3D
point cloud to generate the synthetic single-cell image volumes.

2.3.3 Microfluidic artefact simulation. Microfluidic
artefacts were simulated as a convolutional motion blur
kernel η(σm, θm) applied on the YZ planes of the 3D generated
images (Fig. 3(c)). The size σm of the motion blur depends on
the cell flow speed (titQ) inside the micro-channel and the
camera characteristics, like the frame rate and shutter speed.
The kernel size in the micro-channel space (in μm) is
computed as follows

σm = Q × shutter speed. (4)

The kernel size in the image space (in pixels) could be

derived by
σm

dz
, where dz is the z-spacing (see eqn (1)).

According to this simulation, the motion blur kernel size (σm)
and the number of z-slices of the simulated images are
proportional and inversely proportional to the cell flow
speed, respectively. In our simulation, the camera frame rate

was set to 200 Hz and the shutter speed to
1

frame rate
, same

as those used in the real experiment described in section 2.1.
The orientation θm of the motion blur kernel was set to zero
by considering the cell rotation inside the micro-fluidic
device as negligible.

2.3.4 Simulation of camera noise. We have included in the
simulation pipeline a camera noise module, with additive
thermal and read-out noises modeled as Gaussian noise
G(μn, σn) and shot camera noise taken as multiplicative
Poisson noise PĲλp) (Fig. 3(c)). Gaussian noise parameters
were computed by fitting the background intensity

Fig. 2 Illustration of the XY and YZ planes of the microfluidic light-sheet microscopy images of WT cells. (a) The cell was acquired with a standard
cell flow speed of 50 nl min−1. (b) The cell was acquired with a fast cell flow speed of 140 nl min−1. The XY size of the images is 200 × 200 pixels
(22 × 22 μm) and the z-spacing is 0.74 μm for (a) and 2.1 μm for (b). The cells in (a) and (b) are of similar size. The microfluidic effect on the number
of acquired z-slices and the blurring effect level are visible in the XY and YZ planes of the (a) and (b) panels.
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distribution of the real images. The mean μn was found to be
in the range of (110, 140) gray levels over a full dynamic of
65 536 (16-bit full range) and the standard deviation (σn) in
the range of (5, 15). The frequency λn of the Poisson noise
parameter, generally proportional to the number of collected
photons, was set empirically to 100.

2.3.5 Simulated single cell images. The results of the
simulation scheme of eqn (2) are the 3D light-sheet
fluorescence microscopy images (ILSFM) reported in Fig. 3(d).
The images were simulated with a size of 200 × 200 pixels
corresponding to 22 × 22 μm2 for an xy pixel resolution of
0.11 μm, while the number of z-slices was computed
depending on the sample flow rate ranging from 20 to 140 nl
min−1. For this range of cell velocities and cell volumes (from
6 × 6 × 10 to 12 × 12 × 15 μm3), the retrieved z-spacing dz
values are between 0.29 and 2.1 μm. This leads to simulated
3D images with a z-slice number in the range of [20 50] slices
for a cell flow speed of 20 nl min−1 and [3 7] slices for 140 nl
min−1. This z-slice number is computed as

min cell size
dz

;
max cell size

dz

� �
(e.g.,

6
0:29

≈ 20;
15
0:29

≈ 50
� �

).

Examples of the simulated images for each cell flow speed are
shown in ESI† Fig. S4. Finally, to simulate the 2D images, a
z-projection transformation based on the sum of the 3D slices
was applied to the 3D simulated microscopy images.

2.3.6 Cell class generation. Diseases like tumors or
metastases may be characterized by specific protein spatial
redistribution in the chromatin domain.40,41 For this reason,
we based the difference between healthy and unhealthy
simulated cells on the density of the fluorescent markers
characterising them. Variations in the density were created
by changing the parameters of the uniform distribution, such
as Uh(0, 20) and Uunh(0, 30) for healthy and unhealthy cells,
respectively. According to this, we generated a set of 4000 cell
images, with 2000 healthy and 2000 unhealthy cells, for each
tested cell flow speed ranging from 20 to 140 nl min−1. These
generated image classes have been used to study the effects
of cell flow speed on cell classification (see Fig. 3(e)).

Fig. 3 The overall pipeline of the simulation process. (a) Simulation of 3D chromatin chains with several spatial configurations. The fluorescent
markers are generated randomly using a uniform distribution on the chains forming a 3D point cloud. Then, the convolution step is applied with a
3D light-sheet experimental PSF. (b) Lateral and axial profiles of the used experimental PSF. (c) Microfluidic effects simulated as a motion blur
kernel are convolved with the 3D synthetic images. A camera noise module was then added to the simulation pipeline (d) to generate the final 3D
synthetic light-sheet single-cell images mimicking cells acquired with various cell velocities. 2D images were simulated by applying a sum
z-projection transformation to the 3D synthetic microscopy images. Yellow scale bar = 5 μm. (e) Textural features were extracted from 3D and 2D
images and were then used to classify healthy/unhealthy cells.
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2.4 Classification methods

To study the effects of cell flow speed on healthy and
unhealthy cell classification, we propose to perform the
classification of 2D/3D simulated and real images on classical
textural feature spaces followed by a SVM classifier with a
cubic kernel.42 We also added a deep learning based
convolutional neural network (CNN)43 for the classification of
only 2D images. The CNN was not applied on 3D images due
to the variability of the number of z-slices. The used methods
and tested classification strategies are described in the
following.

2.4.1 Textural feature extraction and classification. A
variety of planar and volumetric textural approach models
were proposed in the literature. For illustrative purposes in
this study, and without any claim of optimality, we
considered the following feature extraction methods:

2.4.1.1 Local binary patterns. We used the mono-scale
classical local binary pattern (LBP)44 for 2D images and the
local binary pattern from three orthogonal planes (LBP-
TOP)45 for 3D images (see ESI† Section S1 for a detailed
description). We denote the LBP-TOP parameters by LBP-
TOPPXY,PXY,PYZ,RX,RY,RZ where the P parameters denote the
neighborhood size for each of the three orthogonal planes,
while the R parameters denote the radii along the X, Y and Z
dimensions of the descriptor. For the present study, the
neighborhood size P, for both the LBP and LBP-TOP, was
optimized empirically and found to be optimal at P = 16,
while the radii were empirically optimized and set to RX = RY
= RZ = 2. The size of the feature vectors at the output of the
LBP-TOP is massive (around 191 000), the reason why a
principal component analysis was applied to reduce it to
1000 features, the number of components required to explain
at least 99% of variability (see ESI† Fig. S5).

2.4.1.2 Gray level co-occurrence matrix. We also considered
the mono-scale classical gray-level co-occurrence matrix
(GLCM) method for both 2D and 3D images.46,47 For 2D
images, we computed the GLCMs using the neighbor
distance parameter d = 16 pixels as set to the LBP method
and used four directions Θ which are: 0°, 45°, 90° and 135°.
A set of 14 Haralick coefficients48 summarizing the GLCM
was then computed from 2D microscopy images (see ESI†
Section S2). However, for 3D images, we used 13 directions
that are defined by the pair (Θ, Φ) with Θ being the angle in
the XY-plane and Φ being the angle in the Z-plane. These 13
directions are: (0°, 0°), (45°, 0°), (90°, 0°), (135°, 0°), (0°, 45°),
(0°, 90°), (0°, 135°), (90°, 45°), (90°, 135°), (45°, 45°), (45°,
135°), (135°, 45°) and (135°, 135°). We set also the
neighborhood values dx = dy = dz = 16 pixels. The Haralick
features were then computed for each of the 13 directions
and concatenated together for each 3D microscopy image.

2.4.1.3 Scattering transform. In addition, we included a
deep feature method based on multi-scale scattering
transform (SCATNET) convolution networks applied to
images31,49–51 (see ESI† Section S3 for more details). For the
classification of microscopy images, we used the Gabor filter

as the mother wavelet with the diffusion transform
parameters that were optimized in an empirical way with 3
layers for 4 scales and 8 orientations of the filters (see ESI†
Fig. S3). The scattering transform was applied to the 2D
images and the three orthogonal planes (XY, YZ, and XZ) of
the 3D images computed as the sum z, x, and y projection,
respectively.

2.4.1.4 ALL features. As an additional configuration for the
cell classification, we combined the mono-scale and multi-
scale feature extraction methods by concatenating the
features from the LBP, GLCM and SCATNET. We denoted this
step by ALL features in this article.

This feature extraction and classification pipeline has
been applied for each cell flow speed dataset to both
simulated and real images. In order to deal with the class
imbalance of real images, we used the stratified 10-fold
cross-validation method to quantify the classification
accuracy of the single cells and to study the effect of the
microfluidics. The final accuracy performance was computed
as the average of the measured 10-fold accuracies for each
method.

2.4.2 Convolutional neural network (CNN) architecture
2.4.2.1 Training from scratch. Beside the classical

approaches, we applied a CNN architecture. We used here a
VGG16 architecture (ref. 52) for the classification of the 2D
images trained with a Tesla V100-DGXS-32GB GPU. Briefly, a
VGG16 architecture consists of 13 convolution layers divided
to 5 convolution blocks and 3 fully connected layers with
(4096, 4096, nc) neurons, respectively, with nc being the
number of classes equal to 2 for simulated data and 3 for real
data. It has a max pooling layer of size 2 × 2 for each
convolution block. It uses the softmax function as the output
layer and the ReLu activation function is applied to all
hidden layers. We trained a VGG16 model for each synthetic
and real dataset with the following optimized hyper
parameters: filter size = 3 × 3, filter number for the
convolution blocks respectively = (64, 128, 256, 512, 512),
batch size = 32, number of training epochs = 100, learning
rate = 0.0001. In order to provide sufficient amounts of data,
a data augmentation step was used on the training sets of
simulated and real images. The augmentation operation
contained geometrical transformations only such as
horizontal and vertical flipping and a random rotational
transformation between 0 and 359°. Also, a regularisation
step based on early stopping was added during the training
to avoid model over-fitting. We used the categorical cross
entropy (CCE) as a loss function during model training and it
is defined as follows

CCE ¼ −
XJ

c¼1

yi;c log pi;c
� �

; (5)

where J denotes the number of classes, yi,c is a binary
indicator (0 or 1) that indicates whether the class c for the
sample i is correct and pi,c denotes the predicted probability
for that sample.
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2.4.2.2 Transfer learning. Another classification strategy
was tested in this study by transferring knowledge from
simulated images to real datasets. We applied supervised
transfer using classical weight freezing and fine tuning.53

Models trained on simulated data with cell velocities of
50 nl min−1 and 140 nl min−1 were used in this process
by freezing the first 4 convolution blocks and fine tuning
the remaining layers of the VGG architecture with the real
dataset of each cell flow speed. In this strategy, we used
the same hyper parameters and loss function defined
previously.

Similar to what was done for the classical classification
pipeline, we used a stratified 10-fold cross-validation method
to quantify the classification performance of the 2D images
of single cells. In each fold, the datasets were split into
training (80%), validation (10%) and test (10%) sets. For each
deep learning configuration, the final accuracy was computed
as the average of all 10-fold accuracies measured on the test
images.

3 Results and discussion
3.1 Results on simulated cells

The accuracy of classification between simulated populations
of cells with fluorescent marker density differences as a
function of cell flow speed is compared for 2D and 3D
microscopy images for various classification methods in
Fig. 4. Globally, classification performances are found to be
stable even when the cell flow speed increases. This is an
interesting result from simulated data, indicating that there
is no influence of motion blur and the decreased number of
acquired 3D image frames on the cell classification
performance. Regarding the question of image dimensions, it
should be noted that performances between 2D and 3D
spaces vary depending on the used textural features: the shift
is important for the GLCM (4(b)) but very limited when the
LBP, scattering transform or all feature methods
concatenated together are used (4(a), (c) and (d)). Also, it is
important to note that the highest classification

Fig. 4 Classification performances (%) (accuracy) of simulated 2D and 3D microfluidic light-sheet microscopy single-cell images based on density
differences of fluorescent markers as a function of the cell flow speed for the tested textural feature methods. (a) LBP, (b) GLCM, (c) scattering
transform, (d) all features concatenated together and (e) CNN.
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performances of 2D and 3D images for classical approaches
are of 93%. These are found for the fast cell flow speed (140
nl min−1) when concatenating all textural features (4(d)), the
case where the classifier deals with features extracted from
different scales of the cells. Finally, deep learning based CNN
classification overcomes the classical classification
approaches. As shown in the curve of Fig. 4(e), the use of the
CNN yields the best classification results of simulated 2D
images with an accuracy of 99.8% for the fast cell flow speed.
All these results and the limited gap found between 2D and
3D classification performances validate the possibility of
using 2D rather than 3D images by selecting an optimal
classification strategy, such as the CNN in our case, thus
reducing in this way the effect of slice variability and
computational time while maintaining an efficient cell
classification. These results from simulated data have been
validated with the real datasets and the results are discussed
in the following.

3.2 Results on real cells

To validate what was found with simulated images, we
applied the classification task to real cell images acquired
with a cell flow speed of 50 nl min−1 as the standard speed
(acquisition rate: 2 cells per s) and 140 nl min−1 as the fast
speed (acquisition rate: 5 cells per s). The classification
performances concerning the three classes of real cell images
WT, XD, and MD, based on the textural feature spaces and
CNN as a function of cell flow speed are presented in
Table 2.

The results found are similar to what was found for the
simulated images (see Fig. 4). First, for the classical
approaches, the classification performances for standard and
fast cell velocities are very close, with, globally, a similar to
slightly better performance recorded for the fast cell flow
speed images as found with the simulation (see also
confusion matrices in ESI† Fig. S6–S9). This shows that the
degradation of the images caused by the microfluidics has no
effect on the image classification when coupling high feature
dimensions with machine learning algorithms. Better
performance is noticed for the ALL features 3D case when the

images are acquired with a standard speed (accuracy of
98.1%). However, this performance is found to be very close,
or even similar, to the classification performance based on
the same textural method when the speed of the cells is
faster (accuracy of 96.5%). This result is in line with what
was found with the simulation and guarantees the possibility
of operating the microfluidic microscopy platform with the
highest possible speed maintaining efficient high-throughput
cell classification. Second, for the deep learning approaches,
the classification performance of cell images acquired with
the fast cell flow speed (accuracy of 92.5%) outperforms the
accuracy of the classification of images with the standard cell
flow speed (accuracy of 84.1%) (see also confusion matrices
in ESI† Fig. S10). This result proves again that there is no
effect of the microfluidic image degradation on the
classification performances. Moreover, the highest
classification performance was obtained here with the CNN
with the transfer learning classification strategy (CNN with
TL in Table 2). Thanks to the simulation pipeline followed in
this study, transferring knowledge from realistic simulated
data to real datasets leads to an accuracy of classification of
99.4% obtained with the cells acquired with the fast cell flow
speed similar to the accuracy obtained with the standard cell
flow speed with the same classification conditions (see also
confusion matrices in ESI† Fig. S11). These results
outperform the classification accuracy obtained with similar
applications but with very huge datasets (e.g., accuracy of
94% with a dataset of 10 000 in ref. 54, accuracy of 95% with
a dataset of 6700 in ref. 15, accuracy of 92% with a dataset of
240 000 in ref. 18, etc.).

Finally, as we look for real time cell acquisition and
classification, we compared the feature extraction and
classification times of 2D and 3D images for the tested
strategies. These computation times are shown in Table 3
and they were obtained with an Intel Core i7-6700HQ
CPU@2.60 GHz for the classical feature extraction
approaches and with a Tesla V100-DGXS-32GB GPU for CNN
deep learning approaches. Although the classification
efficiency is high for the 3D images with the classical
classification approaches, the results showed a very limited
difference in the classification performance between the 2D
and 3D images confirming the simulation results (see Fig. 4).
However, taking into account the computation time on the
one hand, and the difference between the classification
performances of 2D and 3D images at a fast speed on the
other hand, we found that ALL features in 2D lead to the best
compromise between the computation time and classification
performance for the classical approach. Indeed, the
difference in performance between the 2D and 3D images is
about ≈2% and the computation time for the 2D images is
≈90% less than that for the 3D images. However, the
computation time is still not compatible with a real time
application with a fast cell speed given that the needed time
to extract and classify 5 cells is about 6.5 seconds, i.e. larger
than 1 second needed to acquire them. On the other hand,
for the CNN with TL approach, where the classification of 2D

Table 2 Real data classification performances (% of accuracy) based on
textural feature spaces, CNN and CNN with transfer learning (TL) for both
standard (50 nl min−1) and fast (140 nl min−1) cell velocities. Bold-
formatted table cells are the highest accuracy values of 2D and 3D for
each experiment respectively

Methods

Cell velocities

Standard: 50 nl min−1 Fast: 140 nl min−1

2D 3D 2D 3D

LBP 90.7 ± 1.4% 95.6 ± 0.8% 87.5 ± 1.3% 91 ± 1.6%
GLCM 79.2 ± 1.8% 84.9 ± 1.7% 82.6 ± 1.3% 85.2 ± 1.5%
SCATNET 91.6 ± 0.9% 96 ± 0.9% 92.5 ± 1.3% 95.2 ± 1.2%
ALL features 94.3 ± 0.9% 98.1 ± 0.5% 94.4 ± 0.5% 96.5 ± 0.4%
CNN 84.1 ± 3.3% — 92.5 ± 1.6% —
CNN with TL 99.1 ± 0.2% — 99.4 ± 0.5% —
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images outperforms all the other tested strategies, the
classification time of one cell is very fast (1.6 × 10−3), i.e.
compatible with an application of real time screening of
single cells acquired with a fast speed (time of 8 × 10−3

seconds for the classification of 5 cells less than 1 second the
time needed to acquire them with a fast cell flow speed
configuration).

As a consequence, this comparison allows us to consider
that cell classification based on the 2D CNN with TL method
with a fast cell flow speed of 140 nl min−1 could be suitable
for real time imaging and classification of the cells with no
influence of microfluidic noise on the classification
efficiency.

3.3 Analysis of misclassified cell images

An important step during our study was to analyze the
images of misclassified cells. Fig. 5(a)–(c) show examples of
the misclassified images obtained during the experiments
shown in Table 2. Most of the misclassified images are found
to contain “false cells” such as dust particles, mitotic cells,
misaligned regions of interest, regions of interest containing
multiple cells, etc. These false cells appear to be the main
reason for the classification performance drop more than the
microfluidic noises. Furthermore, they present challenges in
microfluidics and cytometry. Several solutions can be
considered to solve this problem. First, an image pre-
processing step can be used, such as z-directional image
regularization to align the image slices, or machine learning-
based segmentation to select a single region of interest.

However, this solution only solves part of the problem.
Another option would be to add a fourth class for the false
cell images. This would allow solving the different sources of
the false cells, but it could lead to exclusion of a significant
number of the imaged cells from the study. For this, other
solutions related to the design of microfluidic systems and
cell preparation should be investigated to limit these
constraints.

4 Conclusion

This study investigated the effect of distortion on images due
to cell displacement during image acquisition using
fluorescence microscopy coupled to microfluidics for cell
classification. We demonstrated through an illustrative use-
case that it is possible to increase the cell flow speed up to
its highest value without any loss of classification
performances, thanks to the adequate simulation and
machine learning strategies. Furthermore, we showed that
such classification could be done on 2D images instead of 3D
images with very limited loss of classification when coupled
with classical approaches based on textural features. Also, we
demonstrated the advantage of employing the CNN based
deep learning classification method with a transfer learning
strategy. This led to the highest classification accuracy of
99.4% and computational time compatible with a real time
application of cell sorting in microfluidics operated with fast
flow velocity.

The work pipeline presented in this study could be easily
transferred to any other cell types in the framework of

Table 3 Feature extraction and classification computational time (in seconds) per image for both 2D/3D, standard/fast velocity real images. The bold-
formatted table cell is the highest speed value

Parameters

Methods

2D 3D

LBP GLCM SCATNET ALL features CNN LBP GLCM SCATNET ALL features

Nb of features 243 14 417 674 107 × 106 1000 182 1251 2433
Extraction time 0.34 0.06 0.9 1.3 3.2 8.6 1.6 13.4
Classification time 4.6 × 10−5 2.3 × 10−5 6.9 × 10−5 1 × 10−4 1.6 × 10−3 2 × 10−3 5.7 × 10−5 2.3 × 10−4 2 × 10−3

Fig. 5 Illustration of misclassified cell image XY planes collected from various classification experiments of Table 2. (a) WT, (b) XD and (c) MD.
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cytometry application. The machine learning algorithms used
in this study were trained and fine-tuned to perform on the
immortalized cell lines. The same algorithms could be fine-
tuned to classify other cell types. In this work, we used
synthetic data obtained with the MicroVIP software. This
platform allows the simulation of different samples observed
with many microscopy systems. In a future perspective, it
would be interesting to apply this hybrid approach (synthetic
and real data) on other biological samples or use other
imaging conditions. In this work we classified images of cells,
and stressed that the computation time was compatible with
real-time imaging and processing. It would be interesting to
translate the obtained results on a high-throughput platform
and perform cell sorting based on the results of the machine
learning algorithm presented in this study.

Data availability
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