
Robotics and Autonomous Systems 163 (2023) 104387

f
n
s
s
i
t
t
a
w
i
e
c
b

d
(

h
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Specification, stochasticmodeling and analysis of interactive service
robotic applications
Livia Lestingi a,∗, Davide Zerla a, Marcello M. Bersani a, Matteo Rossi b
a Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
b Dipartimento di Meccanica, Politecnico di Milano, Via Privata Giuseppe La Masa 1, 20156 Milan, Italy

a r t i c l e i n f o

Article history:
Available online 24 February 2023

Keywords:
Service robotics
Human–robot interaction
Formal methods for robotics
Statistical model-checking
Model-driven engineering
Domain-specific languages for robotics
Stochastic hybrid automata
Models of human behavior

a b s t r a c t

Assistive robotic systems are quickly becoming a core technology for the service sector as they are
understood capable of supporting people in need of assistance in a wide variety of tasks. This step
poses a number of ethical and technological questions. The research community is wondering how
service robotics can be a step forward in human care and aid, and how robotics applications can
be realized in order to put the human role at the forefront. Therefore, there is a growing demand
for frameworks supporting robotic application designers in a ‘‘human-aware’’ development process.
This paper presents a model-driven framework for analyzing and developing human–robot interactive
scenarios in non-industrial settings with significant sources of uncertainty. The framework’s core is a
formal model of the agents at play – the humans and the robot – and the robot’s mission, which is
then put through verification to estimate the probability of completing the mission. The model captures
non-trivial features related to human behavior, specifically the unpredictability of human choices and
physiological aspects tied to their state of health. To foster the framework’s accessibility, we present a
verification tool-agnostic Domain-Specific Language that allows designers lacking expertise in formal
modeling to configure the interactive scenarios in a user-friendly manner. We compare the formal
analysis outputs with results obtained by deploying benchmark scenarios in the physical environment
with a real mobile robot to assess whether the formal model adheres to reality and whether the
verification results are accurate. The entire development pipeline is then tested on several scenarios
from the healthcare setting to assess its flexibility and effectiveness in the application design process.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(

S

1. Introduction

Breakthrough technological advancements are shaping the
uture of the service sector. Innovations brought by the phe-
omenon known as Industry 4.0, such as IoT, pervasive sen-
orization, Cloud Computing, and Collaborative Robotics, are now
preading to non-industrial settings with significant projected
mpacts on our everyday lives. Most importantly, highly sophis-
icated robotic systems under development today are bound to
ransform the job market once they become commercially avail-
ble. The uptake of such solutions poses a number of problems
hich range from technological challenges to ethical and societal

mplications. A recent study on the future of employment indeed
stimates that specific jobs, such as receptionists, information
lerks, healthcare support workers, and personal care aides, may
e – at least partially – entrusted to robots with probabilities

∗ Corresponding author.
E-mail addresses: livia.lestingi@polimi.it (L. Lestingi),

avide.zerla@mail.polimi.it (D. Zerla), marcellomaria.bersani@polimi.it
M.M. Bersani), matteo.rossi@polimi.it (M. Rossi).
 G

ttps://doi.org/10.1016/j.robot.2023.104387
921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
ranging from 60% to 90% [1]. In addition, the presence of robots
in healthcare has increased in recent years and shows an acceler-
ating trend [2,3]. The use and penetration of robotics for human
care and aid is evidenced by the presence of European calls and
projects,1 technology companies,2 and market analysis reports.3
Although robots cannot replace humans completely, these initia-
tives and companies agree that their use in care can increase the
quality of services provided and assist human workers’ actions.
For instance, a study by the American Nurses Association [4]
showed that robots can support and augment nursing care deliv-
ery, improve nurse productivity, increase time with patients, and
encourage positive emotional responses. Despite these evidences,
the extent of such a technological and societal shift is still under
investigation [5]. This work attempts to answer the question on

1 Examples are the Harmony (https://harmony-eu.org) and the EnrichME
https://cordis.europa.eu/project/id/643691) projects.
2 Examples are Kompai Robotics (https://kompairobotics.com) and Labrador
ystems (https://labradorsystems.com).
3 See the reports by the Association for Advancing Automation and
lobeNewswire.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.robot.2023.104387
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104387&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:livia.lestingi@polimi.it
mailto:davide.zerla@mail.polimi.it
mailto:marcellomaria.bersani@polimi.it
mailto:matteo.rossi@polimi.it
https://harmony-eu.org
https://cordis.europa.eu/project/id/643691
https://kompairobotics.com
https://labradorsystems.com
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.automate.org/industry-insights/robots-and-healthcare-saving-lives-together
https://www.globenewswire.com/news-release/2021/09/24/2303007/0/en/Global-Healthcare-Assistive-Robot-Market-Expected-19-CAGR-Will-Reach-USD-1-2-Billion-by-2026-Facts-Factors.html
https://doi.org/10.1016/j.robot.2023.104387
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t
s
o
h

l
p
e
d
s
s
r
l
t
s

a
s
v
c
a
o
u
i
a
r
s
t
t

1

v
c
i
l
d
t
s
t
d
t
w
i
r
a
a
c
t
b
c
a
d

h
r
p
t
p
o
a
h
s

o

he feasibility of such a step by addressing the analysis from the
oftware engineering standpoint and, in particular, sheds light
n the development of collaborative service robot applications in
ealthcare.
State-of-the-art technologies dealing with sensing, manipu-

ation, and reasoning capabilities make it feasible for robots to
erform complex jobs. Nowadays, a robot may be adequately
quipped to sense multiple aspects of its surroundings, efficiently
etect obstacles, grasp and manipulate fragile objects, perform
urgery, and make decisions in delicate situations. However, these
kills usually constitute silos of software, whose integration and
euse are challenging tasks. The EFFIROB project [6], which ana-
yzed the profitability of developing a new service robot applica-
ion, has estimated that up to 80% of the total cost comes from
oftware development and maintenance.
More generally, software engineering techniques for robotics

re not mature yet to handle the complexity and changeability of
ervice settings [7]. Service robots operate in unconstrained en-
ironments where humans, whom they frequently interact with,
onstitute a significant source of uncertainty. Decisions made at
n early design stage of the application determine up to 90%
f the overall life-cycle costs [8], and considerable sources of
ncertainty can hinder their validity. Therefore, it is of paramount
mportance to provide designers with frameworks to develop
pplications that are simultaneously reliable and flexible with
espect to the variability of the environment [9]. Frameworks
hould also limit the gap between the developer’s knowledge and
he prerequisites needed to access them, removing the barriers
hat are due to the lack of specialized skills in the developers.

.1. Model-driven framework

Designing robotic applications to be deployed in delicate en-
ironments where robots will closely interact with humans is a
hallenging task, requiring a strong technical background both
n robotics and software design. Our work contributes to this
ine of research by proposing a model-driven framework to
evelop interactive service robot applications. Target users of
he framework, called hereafter robotic application designers (or,
imply, application designers), are professional figures managing
he logistics of service facilities where robotic applications will be
eployed, such as clinical workflow analysts [10]. The framework
argets robotic applications set in known layouts, featuring a
heeled mobile robot and one (or multiple) humans request-

ng a service that requires interaction or coordination with the
obot. While the geometry of the layout is known, humans are
source of uncertainty as they may make unpredictable choices
nd stray from the plan while interacting with the robot. Appli-
ations eligible for analysis come, though not exclusively, from
he healthcare and assisted living settings, where people might
e in pain or discomfort. Therefore, the development process en-
ompasses features of human physiological (i.e., physical fatigue)
nd behavioral aspects, such as the unpredictability of the human
ecision-making process.
Within the scope of the framework, interactions between a

uman and a robot conform to high-level ‘‘patterns’’ identifying
ecurring contingencies in assistive applications. Throughout the
aper, we use the term ‘‘action’’ to indicate an ‘‘atomic behavior
hat is executed by any actor in a scene’’ [11]. Each interaction
attern is a sequence of actions (e.g., move until a certain event
ccurs, stop, wait for the human to be close) and – paired with
‘‘target ’’ location (e.g., where the robot should accompany the
uman) – defines a robot-provided ‘‘service’’. Although there is no
tandard definition of robotic ‘‘mission’’, with this term we refer
to a sequence of services identifying the desired behavior of the
robot [12] performed in a specific layout. A sequence of missions
 p

2

constitutes a Human–Robot Interaction (HRI) ‘‘scenario’’. Hence, in
the scope of this work, we understand a robotic application as the
realization of a scenario through real or virtual agents. The frame-
work exploits formal analysis to provide the robotic application
designer with reliable insights into the outcome of each mission
(each analyzed individually) constituting the scenario. Given the
initial configuration of a scenario (e.g., positions of the agents,
battery charge), the application designer receives an estimation
of how likely the associated missions are to end in success (dually,
in failure) and the physical effort each mission imposes on human
subjects.

Example. Fig. 1 shows the setup of a possible scenario. The lay-
out is a T-shaped corridor made up of two rectangular areas
(see Fig. 1(b)): a horizontal one and a perpendicular vertical
one, whose intersection is centered in point (45.0, 12.5). The
corridor features four Points Of Interest (POIs), i.e., significant
locations within the layout, also represented in Fig. 1(a): the
robot’s recharge station (RC), two cupboards containing medical
kits (referred to as KIT1 and KIT2), and the door leading to the
waiting room (WR). There are four agents in the scenario: two
humans (HUM1 and HUM2) and two robots (ROB1 and ROB2).
Robot ROB1 is a Tiago4 with initial battery charge equal to 40%
f the total capacity and ROB2 is a Turtlebot3 WafflePi5 with

90% of the total capacity. HUM1 is a young patient with average
walking speed 80 cm/s while HUM2 is a healthy elderly doctor
with average walking speed 100 cm/s. The designer assesses two
alternative missions to determine which one is most likely to
succeed within a given time bound: the first mission features
ROB1 leading HUM1 to the waiting room, then delivering KIT2
to HUM2. The second mission features ROB2 following HUM2 to
fetch KIT1, then leading HUM1 to the waiting room.

The framework’s workflow (shown in Fig. 2) is structured into
three phases:

(1) design-time analysis: the robotic application designer
configures the scenario through a specification language.
Starting from the configuration, a formal model of the
scenario is automatically generated together with a set
of properties. Such properties are subject to verification
to estimate quality measures of the scenario (e.g., the
probability of success);

(2) deployment: when the design-time results are deemed
acceptable, the application designer deploys the scenario
either in a physical environment or simulated environ-
ment; to enable deployment, the formal model is converted
into executable code communicating with the deployment
environment through a middleware layer;

(3) reconfiguration: the application designer examines qual-
ity metrics of the scenario estimated from data collected
during deployment and applies reconfiguration measures,
if necessary (e.g., in the first mission of the example, ROB2
might be deployed instead of ROB1 because of the higher
charge level).

1.2. Contributions

This paper builds upon the results presented in [13–16] by
presenting:

1. A custom Domain-Specific Language (DSL) for scenario
configuration. Since application designers possibly lack a

4 Technical specifications available at: https://pal-robotics.com/robots/tiago/.
5 Technical specifications available at: https://emanual.robotis.com/docs/en/
latform/turtlebot3/overview/.

https://pal-robotics.com/robots/tiago/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

a
o

Fig. 1. Graphical representation of the example scenario configuration.
Fig. 2. Diagram representing the model-driven framework operational workflow. Yellow circles mark actions performed by the user (i.e., the application designer)
nd green circles correspond to the automated tasks. The beginning of each phase of the framework is marked in blue and numbered according to the execution
rder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
-

strong background in software development, formal mod-
eling, or formal analysis, the DSL, which is a lightweight
textual notation, provides a friendly interface to the con-
figuration phase.

2. A modeling pattern to incorporate a stochastic characteri-
zation of fatigue into the formal model of human behavior.
In [13,14], we presented an early version of the model
formalizing an interactive robotic scenario as a Network
of Hybrid Automata, with probabilistic edges capturing
human choices made out of free will. This paper details
the refined version of the formal model as a Network of
Stochastic Hybrid Automata (SHA). Specifically, automata
capturing human agents are endowed with probability
distributions characterizing random parameters of the fa-
tigue phenomenon, incorporating into the formal analysis
the physiological variability between individuals belonging
to different age groups or in different states of health.
This source of variability, in addition to the probabilistic
characterization of human behavior, is accounted for by the
formal analysis performed through Statistical Model Check
ing (SMC) via the Uppaal tool [17]. The introduction of
probability distributions for fatigue and recovery rates is
only briefly mentioned in [16], without detailing how such
distributions are exploited by the automata, whereas the
3

impact of modeling fatigue and recovery rates as random
variates is fully described in this paper for the first time.

3. A model of the robot’s battery charge and discharge dy-
namics refined (compared to [13,14]) to fit the behavior
of the robotic agent used for the experimental validation.
The model fitting procedure increases the accuracy of the
SHA modeling the battery when compared against field
observations.

4. An extensive experimental validation to assess whether
the developed formal model adheres to reality. Experi-
mental scenarios are built by using elements that recur
in 24 real-world exemplars existing in the literature and
addressing service robotics in healthcare. Design-time es-
timations are compared with data collected by deploying
benchmark applications implementing a Digital-Twin ar-
chitecture. The validation activity aimed at assessing the
accuracy of the formal model and the SMC results when
deploying the application in a physical environment with
a real robotic platform and, if necessary, with virtual hu-
man agents controlled by a real operator. We exploit a
statistical technique based on Clopper–Pearson confidence
intervals [18] to estimate the mission success probability
range observed in reality and critically compare such re-

sults with those obtained by performing SMC experiments.

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t
d
d
t
i
f
v
t
r
s
i

2

c
a
i
[
a
n
c
t
e

E

t
d
s
t
i
T
n
T
s
i
o
h
d
F
t
t
t
e
a

i
e

d

Furthermore, we illustrate the application of the whole
model-driven development framework to case studies cap-
turing assistive tasks in a healthcare setting to assess how
it supports the application designer from early design to
reconfiguration.

The paper is structured as follows: Section 2 illustrates the
heoretical background of the work; Section 3 illustrates the
esign-time analysis phase of the framework, specifically intro-
ucing the conceptual model of the framework’s domain and
he DSL; Section 4 presents the refined SHA Network; Section 5
llustrates the deployment and reconfiguration phases of the
ramework; Section 6 presents and discusses the experimental
alidation results; Section 7 surveys related works in the litera-
ure; Section 8 concludes. For the interested reader, Appendix A
eports a detailed presentation of SHA semantics, while DSL
pecifications used for the experimental validation are reported
n Appendix B.

. Background

This section illustrates the pre-existing theoretical concepts
onstituting the foundation of our work. Specifically, we provide
formal definition of Stochastic Hybrid Automata (SHA) and

llustrate their features through a running example inspired by
17, Section 4]. We adopt SHA to model the robotic application,
s SHA can capture complex temporal dynamics of physical phe-
omena, such as the fatigue of human agents and the battery
harge/discharge for the robots, but also the digital aspects of
he application, such as its operating state and logical behavior
volving over time.

xample 2.1. The example captures a system composed by a
room with a heating system, whose model is shown in Fig. 3(a),
and the thermostat controlling its temperature, shown in
Fig. 3(b). The room temperature is the main physical phenomenon
of the system, which is modeled by real variable T in the au-
omaton in Fig. 3(a). The thermostat is modeled through two
ifferent operating states on and off , and it evolves by alternating
tates on, which makes the room warmer, and off , thus, letting
he room temperature decrease naturally. When the thermostat
s off , as soon as temperature T decreases below a threshold
th1 , hence the condition T ≥ Tth1 labeling location off does
ot hold (resp., exceeds a threshold Tth2 , hence the condition
≤ Tth2 labeling location on does not hold), the thermostat

witches the heating on (resp., off). The triggering of the event,
ndicated with symbol on!, makes the thermostat modify its
perating state, hence moving to on (resp., deactivate the heating,
ence moving to off). The room temperature is modeled in three
ifferent situations, that are represented by the automaton in
ig. 3(a): the one for which the temperature decreases due to
he absence of heating, i.e., cool, and two situations for which the
emperature increases at different rates, i.e., high and low, when
he heating is on. Temperature increases according to differential
quation Ṫ = θ − T

R when the thermostat is on and decreases
ccording to Ṫ = − T

R when it is off, where R is a constant and
θ is a randomly distributed parameter, i.e., whose value depends
on a probability distribution. At the onset of the system, the
thermostat is off, hence the room is cooling down, and the
temperature is conventionally initialized with value Tth1 . This
value allows the thermostat to spend a non null amount of time
in location cool, where constraint T ≥ Tth1 limits the temperature
nferiorly. The initialization of T is realized by the update on the
dge entering location cool. When event on! (resp., off!) is fired

by the thermostat, the room simultaneously reacts to it; hence,
both the thermostat and the room modify their state at the same
4

time, i.e., they synchronize. Reacting to the event, indicated with
symbol on? (resp., off?), causes the room temperature to rise
and the automaton to change location to either high or low (resp.,
the room temperature to decrease and the automaton to move
to cool). The room can be heated at a high or low rate (e.g., if
a window is closed or open, respectively): the choice is made
probabilistically when the automaton synchronizes with event
on!. The probability weights are known and amount to pH and pL,
respectively. Parameter θ in Fig. 3(a) is a realization of a Normal
distribution with mean µH and standard deviation σH (indicated
as N(µH, σ

2
H)) when the room is heating quickly because the

window is closed (the subscript ‘‘H’’ stands for ‘‘high’’ rate of
heating). Conversely, when the room is heating slowly because
the window is open, the probability distribution is N(µL, σ

2
L)

(subscript ‘‘L’’ stands for ‘‘low’’ rate of heating). Throughout the
paper, we express that a random parameter θ is a realization
of random variable Θ governed by distribution N (µ, σ) through
notation θ ∼ N (µ, σ).

Thorough investigation on SHA is given in the following [19–
21]. Let Z be a set of symbols; we indicate with Γ (Z) the set
of conjunctions of constraints of the form χ1 ∼ χ2, where ∼ is
a relation in {<,=} and χi (i ∈ {1, 2}) is an arithmetical term
efined by the sum of the elements in Z and N (e.g., z1 + z2 + 3,

with z1, z2 ∈ Z). By definition, Γ (Z) includes the logical constants
true and false, defined as trivially true formulae (e.g., 0 = 0)
or trivially false formulae (e.g., 0 = 1). We indicate with Ξ (Z) the
set of updates on elements of Z . An update in Ξ (Z) (for example,
z ′ = z + 2) is a constraint where free variables are elements of Z
(e.g., z ∈ Z) and of its primed version Z ′ (e.g., z ′ ∈ Z ′). We indicate
the set of non-negative real numbers with R+ and, with RZ , the
set of assignments to variables of Z (i.e., valuations).

Definition 1. A Stochastic Hybrid Automaton is a tuple
⟨L,W ,F,D, I, C, E, µ,P, lini⟩, where:

1. L is the set of locations and lini ∈ L is the initial location;
2. W is the set of real-valued variables of which clocks

X ⊆ W , dense-counter variables Vdc ⊆ W , and constants
K ⊆ W are subsets;

3. F : L→ {(R+ ∪ (R+ × R))→ RW
} is the function assign-

ing a set of flow conditions to each location, where flow
conditions are (continuous) functions with one or two pa-
rameters, which assign a valuation to every time instant in
R+ or to every pair constituted by a time instant in R+ and
a constant value in R, depending on the location;

4. D : L ⇀ {R → [0, 1]} is the partial function assigning
a probability distribution from {R→ [0, 1]} to locations
which feature flow conditions with two parameters;

5. I : L→ Γ (W) is the function assigning a (possibly empty)
set of invariants to each location;

6. C is the set of channels, including the internal action ϵ;
7. E ⊂ L × C!? × Γ (W) × ℘(Ξ (W)) × L is the set of edges,

where C!? = {c! | c ∈ C} ∪ {c? | c ∈ C} is the set of events
involving channels in C . Given an edge (l, c, γ , ξ , l′) ∈ E ,
l (resp. l′) is the outgoing (resp. ingoing) location, c is the
edge event, γ is the edge condition and ξ is the edge update.
For each l ∈ L, E(l) ⊆ C!? ×Γ (W)×℘(Ξ (W))× L is the set
of edges outgoing from l (for each (c, γ , ξ , l′) ∈ E(l) then
(l, c, γ , ξ , l′) ∈ E and viceversa);

8. µ : (L × RW)→ {R+ → [0, 1]} is the function assigning a
probability distribution from {R+ → [0, 1]} to each con-
figuration of the SHA, where configurations are (l, vvar) pairs
constituted by a location l ∈ L and a valuation vvar ∈ RW ;

9. P : L⇀ {(C!?×Γ (W)×℘(Ξ (W))×L)⇀ [0, 1]} is the partial
function assigning a discrete probability distribution from
{(C × Γ (W) × ℘(Ξ (W)) × L) ⇀ [0, 1]} to locations such
!?

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

1
t

c
t
e
O
s
i
o
w

Fig. 3. Example of SHA network. Dashed arrows model probabilistic transitions with weights (in brown) pH and pL and solid arrows represent transitions with weight
. Flow conditions, probability distributions, and exponential rates are in purple, channels in red, and edge conditions in green, respectively. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
p
w
d
e
b
s
m
t
v
a
v
e
m
o
b
e
t
f
i
t
s
t
m
t
t
o
E
c

3

1
w
s

g
‘
p
a
c
r
m

that, for each l ∈ L, P(l) is defined if, and only if, E(l) is non-
empty; also, the domain of the distribution is E(l) (hence,∑

α=(c!,γ ,ξ ,l′)∈E(l)
c∈C

P(l)(α) = 1 holds).

In SHA, real-valued variables (i.e., a generalization of clocks)
an evolve in time according to generic expressions referred
o as flow conditions [19]. The flow conditions constraining the
volution over time of variables in W are defined through sets of
rdinary Differential Equations (ODEs). This feature makes SHA a
uitable formalism to model systems with complex dynamics, as
t is possible to model through flow conditions, for example, laws
f physics or biochemical processes. ODEs constraining clocks (for
hich ẋ = 1 holds for all x ∈ X), dense-counter variables, and

constants (where v̇ = 0 holds for all v ∈ Vdc ∪ K) are special cases
of flow conditions.

If a variable θ ∈ Vdc is an independent term for a flow
condition f ∈ F(l) on location l ∈ L, i.e., f = f (t, θ), and θ is inter-
preted as a randomly distributed parameter, then f is a stochastic
process [22]. We limit the analysis to flow conditions depending
on at most one random parameter, as per Definition 1, which is
enough to model human-robot interaction within the scope of
our work. For example, in the SHA shown in Fig. 3(a) the room
temperature is modeled by real-valued variable T ∈ W . When
temperature is decreasing, it is constrained by the flow condition
Ṫ (t) = −T (t)/R, where function Ṫ (t) ∈ F(cool) depends on time
only and has solutions in R. When temperature is increasing,
it evolves according to flow condition Ṫ (t, θ) = θ − T (t, θ)/R,
depending both on time and random parameter θ . The domain of
Ṫ (t, θ) is, thus, R+ × R and its solutions belong to R. Interested
readers are referred to Appendix A for a detailed presentation of
SHA semantics.

SHA are eligible for Statistical Model Checking (SMC) [23].
SMC requires a model M with stochastic features (the SHA net-
work), and a property ψ expressed, in our case, in Metric Interval
Temporal Logic (MITL) over atomic propositions, belonging to set
AP [24], which represent, for instance, constraints over set W
(e.g., w < 10), or automata locations (e.g., cool in Fig. 3(a)).
SMC experiments are carried out with the Uppaal tool. Unlike
exhaustive model-checking, SMC does not explore the state space
but it applies statistical techniques to a set of traces entailed
by the formal model to estimate the probability of the desired
property holding. More specifically, we compute the value of
expression PM (ψ) to estimate the probability of ψ holding for
M [17]. Property ψ , in our framework, is of the form ⋄≤τap,
where ⋄ is the metric ‘‘eventually’’ operator and ap ∈ AP. Formula
⋄≤τap is true if ap holds within τ time units from time instant 0,
i.e., the onset of the system. If the value of PM (ψ) is compared
against a threshold ϑ ∈ [0, 1], i.e., formula PM (ψ) ∼ ϑ is
evaluated, where ∼∈ {≤,≥}, the result of the SMC experiment is
a Boolean value indicating whether the probability of ψ holding
5

for M is ∼ than ϑ (thus, true) or not (yielding false), which
is calculated through hypothesis testing. Otherwise, the SMC ex-
periment returns a confidence interval [pmin, pmax] of property
ψ holding for M , with pmin, pmax ∈ [0, 1], which is calculated
according to the Clopper-Pearson method [18]. To determine
when the generated set of traces is sufficient to conclude the
experiment, Uppaal checks the length of interval ϵ = (pmax −

min)/2. Uppaal stops generating new traces when ϵ ≤ ϵth holds,
here ϵth is an experimental parameter indicating the maximum
esired estimation error. The smaller ϵth, the more accurate the
stimation must be and, thus, more traces are required. Similarly,
y applying the same Monte Carlo-based simulation, it is pos-
ible to calculate the expected value of distributions defined by
eans of functions max (maximum) and min (minimum) when

hey are applied to stochastic processes, such as expressions of
ariables in W . Given an upper bound τ , formulae EM,τ [max(v)]
nd EM,τ [min(v)], with v ∈ W , indicate respectively the expected
alue of the maximum and minimum value of variable v along
xecutions that last at most τ time units. For example, with the
odel of Fig. 3, we can compute the probability of getting to
perational state high within 10 s since the onset of the system
y evaluating the formula PM (⋄≤τhigh) with τ = 10 and the
xpected value of the maximum and minimum temperature in
he room by computing EM,τ [max(T)] and EM,τ [min(T)]. In our
ramework, the SHA network M modeling an interactive scenario
s put through SMC (without specifying a probability bound ϑ)
o estimate the probability of success (corresponding to expres-
ion PM(⋄≤τ scs), where Boolean variable scs becomes true when
he mission is completed), and to estimate the (average of the)
aximum value of the fatigue of human agents (corresponding

o formula EM,τ [max(F)], where F is a real-value variable for
he human fatigue) and of the average minimum battery charge
f the robot serving in a scenario (corresponding to formula
M,τ [min(C)], where C is a real-value variable for the battery
harge).

. Design-time analysis of HRI scenarios

This section illustrates the design-time analysis phase (phase
in Fig. 2), introducing the conceptual model of the scenarios
hich underpins the DSL and the DSL developed to specify HRI
cenarios.
As represented in Fig. 2, the design-time analysis phase be-

ins by configuring the scenario through a custom DSL (task
‘Scenario Configuration’’ in Fig. 2). The DSL file is automatically
rocessed to generate the SHA network and set of properties
ccording to the user’s specifications. The designer specifies the
haracteristics of the robots, the involved humans, the geomet-
ical representation of the environment layout, and the robotic
issions.

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

f
o
s
t
t
p
i
w

n

T
p
d
w
p
o
a
e
I
d

3

s
k
e
s
r
C
a
d
t
m
f
O

s
o
i
o
s
t
r
t

p
t

Our framework features a predefined (yet extensible) set of
high-level patterns identifying recurring interaction contingen-
cies in assistive applications (e.g., a robot which follows a human).
A service corresponds to an interaction pattern; therefore, for
each service, the robot must perform the actions implied by the
associated pattern (e.g., retrieve an object and deliver it back to
the human). For each mission, the robot must provide services
requested by the human in the order specified by the designer.
Since the framework is not tied to a specific robot manufacturer
or model, robotic platforms available in the fleet may not be
pre-programmed to perform all required tasks. Therefore, the
framework envisages an ad-hoc robot controller, hereinafter re-
erred to as ‘‘orchestrator ’’, in charge of monitoring the state
f the system and sending commands to the robotic agent and
uggestions to human subjects in conformity with the interac-
ion patterns. Moreover, it is paramount to take into account
he robot’s level of charge and charge/discharge cycles (whose
arameters vary between different battery models), which may
mpact the duration of the mission (thus, its probability of success
ithin a certain time range).
Under these premises, each mission is modeled by a SHA

etwork featuring the following automata:

A. Ahi with i ∈ [0,Nh − 1] modeling the Nh humans involved
in the scenario;

B. Ar modeling the mobile robot;
C. Ab modeling the robot’s battery;
D. Ao modeling the orchestrator.

he tool then automatically verifies through Uppaal the specified
roperties. At the end of the design-time analysis phase, the
esigner manually examines the verification results and assesses
hether they satisfy their quality criteria, for example if the
robability of success is sufficiently high or the expected value
f fatigue is not excessive for any human. If results are not
cceptable, the designer modifies the scenario (e.g., missions,
nvironment layout, fatigue profiles) and repeats the analysis.
f results are acceptable, the application can move forward to
eployment or simulation.

.1. Conceptual model of HRI scenarios

The framework covers human–robot interaction scenarios with
pecific characteristics. Mainly, scenarios must take place in a
nown layout (thus, robotic missions carried out in unknown
nvironments do not fall within the scope of this work) and the
ervice sequence does not change when the application is already
unning. Fig. 4 shows the conceptual model (represented as a
lass Diagram) for the scenarios capturing the main entities they
re composed of and their relations. The diagram, described in
etail in the following, constitutes the conceptual foundation of
he DSL and the working assumptions that underlie the formal
odel. Configuring a specific scenario through the DSL to be

ormally verified is equivalent to defining an instance (i.e., an
bject Diagram) of the conceptual model.
A Scenario comprises at least one robotic mission. Each Mis-

ion is set in a known Layout, which we represent as a composition
f one or multiple two-dimensional rectangular areas. Each Area
s a composition of four corner Points, each characterized by a pair
f Cartesian coordinates x and y. A Layout also includes a relevant
ubset of points, called Points Of Interest (POI), that can be the
arget of an action, such as room entrances, cupboards, and the
obot’s recharge station. Missions, areas and POIs are identified
hrough attribute name.

A mission is a sequence of services requested by a human and
rovided by a robot (specifically, humans are served according
o their id). Each Service conforms to an interaction pattern
6

(attribute ptrn) and has a target POI. Patterns (i.e., the items of
enumeration InteractionPattern) group common interaction con-
tingencies and are listed in the following:

P1. HumanFollower: the human follows the robot to a spe-
cific destination (attribute target in Service) of which they
do not know the precise location. For example, a patient
looking for the waiting room or a doctor’s office conforms
to this pattern. The human follows the robot but, if they
decide to stop walking, the robot also stops and waits for
the human to get closer again. The robot signals that the
service has been completed when both the robot and the
human are close to the destination.

P2. HumanLeader: the human has to lead the robot to a specific
destination of which they know the precise location (at-
tribute target in Service), for example a nurse requiring the
robot to escort them while carrying tools or medications.
The human can decide when to start or stop walking and
the robot follows accordingly. The human is in charge of
signaling when the service has been completed when both
the human and the robot have reached the destination.

P3. HumanRecipient: the human waits for the robot to fetch an
item from a specific location (attribute target in Service)
and bring it back to the human, for example a doctor
requiring the robot to fetch a tool or a medication from a
colleague and bring it back to their office. While the robot
fetches and delivers the object, the human is free to move
around (and the robot adjusts the delivery destination ac-
cordingly). The human is in charge of determining whether
the service has been provided when they have successfully
collected the item from the robot.

P4. HumanCompetitor: the human and the robot compete to
fetch a critical resource (for example, a medical kit dur-
ing an emergency). Both agents move to the location of
the resource (captured by attribute target) to reach it as
quickly as possible. The competition ends when either of
the agents reaches the target location (effectively winning
the competition). The human may autonomously decide to
stop walking at any time.

P5. HumanRescuer: the pattern captures the robot requiring
human intervention to complete a task, such as pressing a
button to call the elevator or opening a closed door. In this
case, the robot will emit audible or visible signals to notify
its need for human support. The human autonomously
decides to support the robot, move to the robot’s cur-
rent location (captured by attribute target), perform the
required action and conclude the interaction.

P6. HumanApplicant: the pattern captures the human requir-
ing the robot’s support in performing a certain task that
implies timely or close-contact interaction, such as feeding
a patient or administering medication. In this case, as soon
as the service starts, the human waits for the robot to
approach their current location (attribute target). When the
robot is sufficiently close, the action requiring synchro-
nization starts. The human may autonomously decide to
interrupt the action and resume at any time.

Attribute r_ptrn expresses the described patterns from the robot’s
viewpoint (i.e., the literals in enumeration RobIntPattern) and is
derived from ptrn through a one-to-one mapping.

Agents enact the mission. Abstract class Agent has a name, id,
and starting position start within the layout. In case of human
agents, the id attribute determines the order in which humans
are served. In case of robotic agents, the id attribute determines
the order in which missions are assigned to robots in the fleet
in case of multi-robot missions [16]. Agents are endowed with
sensors that share a new reading every T instants. Within the
poll

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

i
i

s
o
f
‘
t
l
a

l
t

f
p
t
i

Fig. 4. Class Diagram representing the entities constituting a scenario. Throughout the paper, when referring to a class of the model rather than the abstract concept
t represents, its name is capitalized, uses Sans-Serif font (e.g., ‘‘Scenario’’ rather than ‘‘scenario’’), and italicized for abstract classes (e.g., ‘‘Agent ’’). Attributes whose
dentifier has a subscript are reported in the diagram with an underscore for visualization purposes.
t
t
r
i
t
t
d
t

cope of our framework, there are two possible specializations
f an Agent : humans and robots. For each robot, attribute type
rom enumeration RobotType defines its commercial model (e.g.,
‘TurtleBot3’’ or ‘‘Tiago’’). We assume that a Robot moves with a
rapezoidal velocity profile, whose maximum acceleration amax,
inear velocity vmax, and angular velocity ωr are derived from
ttribute type. Each Robot is powered by a lithium Battery with

initial charge C0. Class Battery’s attribute Cfail corresponds to the
owest voltage under which the device must not move to prevent
he battery pack from being damaged.

SHA modeling human behavior include a model of physical
atigue. Each Human has a pf attribute determining their fatigue
rofile (see the FatigueProfile enumeration in Fig. 4), which de-
ermines their proneness to fatigue and recovery based on phys-
ological factors. We distinguish subjects by age (Young/Elderly)
and state of health (Healthy/Sick) or whether they are affected by
a severe respiratory syndrome that hinders their ability of deam-
bulation (SARSPatient), obtaining five possible fatigue profiles.
Attribute v specifies the average walking speed. Since human
behavior is unpredictable in a real setting, our model includes a
probabilistic approximation of human haphazard behavior (e.g.,
the possibility to ignore a robot’s instruction or start and stop
freely during the interaction). Therefore, a Human also features
attribute pfw from which attributes obey, FWmax, and FWth de-
termining the probability with which such behavior manifests
itself are derived. The pfw attribute has four possible values (cor-
responding to the elements of the FreeWillProfile enumeration):
Normal, High, Low, or Disabled. The latter results in human free
will being entirely ignored at design-time, which may only be
used for a preliminary test of the scenario setup.

Agents and batteries are equipped with sensors that dur-
ing deployment share data with the orchestrator over dedi-
cated topics handled by the middleware layer (based on ROS,
see Fig. 2) [25]. The SHA network features a model of ROS
7

publisher nodes (i.e., instances of class ROSPubNode in Fig. 4)
mimicking the delay with which messages are processed and
published. These delays are normally distributed with mean lmean

and variance lvar [26].
The Orchestrator monitors the state of the system by subscrib-

ing to sensor readings’ topics of the human’s position, fatigue,
robot’s position and battery charge. The Orchestrator periodically
checks the state of the system against its policies every Tint time
units and processes data for Tproc time units. While processing,
it checks sensor-collected data against a set of thresholds: Dstop

and Drestart determine the human-robot distance that causes the
robot to stop and wait or restart, respectively; Crech and Crestart

correspond to the battery charge levels that cause the robot to
start or stop recharging, respectively; Fstop and Frestart correspond
to the human fatigue levels inducing the human to stop and rest
or resume the action, respectively.

Finally, for each scenario, the analyst is interested in quality
metrics to be computed referred to as ‘‘queries’’. The framework
currently supports three query types (i.e., probability calculation,
expected value calculation, and generation of traces) supported
by Uppaal. However, different queries and tools can easily be
embraced. For each Query, it is necessary to specify its type,
ime bound τ and – optionally – the maximum number of sys-
em traces generated to verify the property, i.e., attribute R. We
emark that R should only be specified to limit performance
ssues during preliminary testing while it is normally advisable
o let the verification tool compute the number of runs necessary
o perform verification with the required confidence level. The
ifferent query types (modeled by enumeration QueryType) allow
he designer to estimate:

Q1. the probability of the mission ending with success (item
P_SCS) within the time bound. Success occurs when all
services have been completed;

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

c
i

Fig. 5. Diagram representing the process that translates a DSL file into Uppaal models. Solid arrows represent operational tasks while dashed arrows represent
onceptual equivalences. Solid arrows are marked to distinguish the actions performed by the user from those performed automatically. Boxes are numbered to
dentify the relations between defined missions and the output files of each phase.
c
b
a

s

p

a
m
r
f

p

Q2. the probability of the mission ending in failure (item
P_FAIL) within the time bound. Failure occurs either when
the robot is fully discharged and cannot move
autonomously or the human is fully fatigued (note that the
mission not ending in success due to an insufficient time
bound does not constitute a failure, thus the results of a
P_FAIL and P_SCS query do not necessarily sum to 1);

Q3. the expected maximum value of fatigue (item E_FTG) for
all humans within the time bound;

Q4. the expected minimum battery charge (item E_CHG) value
within the time bound;

Q5. one or multiple (i.e., specified as parameter R) system
traces to have a more detailed overview of how the system
behaves during the execution of the mission (item SIM).

3.2. Domain-specific language

As represented in Fig. 5, configuring a scenario through the
DSL is semantically equivalent to defining an Object Diagram of
the conceptual model in Fig. 4. Therefore, the developed DSL
features primitives allowing for the creation of instances of con-
crete scenarios that reflect the conceptual model. Each primitive
is presented in the upcoming subsections through an example.

Fig. 5 shows how DSL files are converted into SMC experiment
instances. Each DSL file defines a single scenario, which includes
the layout geometry, the points of interest, the agents, and the
mission, and represents a well-formed DSL model if specific prop-
erties are met (e.g., rooms have non-null area, agents are located
within the boundaries of the environment, etc.). Well-formedness
properties are automatically verified by the translator every time
a DSL file undergoes the conversion process. Each mission in
the DSL model is subject to formal verification separately and
requires a separate formal model. The conversion process features
an intermediate phase: a JSON file containing the mission’s char-
acteristics is generated for each mission. Each JSON file is then
converted into two files, one with the Uppaal model and one
with the queries to perform the SMC experiment. The interme-
diate JSON notation, which is a lightweight and well-established
standard, decouples the DSL from the specific verification tool
and makes the framework flexible to the introduction of different
verification tools or different DSLs. JSON files are also exploited to
automatically set up the deployment environment.

We illustrate the DSL features and how they can be exploited
to model the illustrative scenario in Section 1.1. The DSL does not
have a specific statement for objects of class Scenario because
8

each file inherently instantiates a single scenario, possibly includ-
ing several missions. Every mission in a scenario consists of four
independent sections, each one identified by the keyword define,
concerning: layout definition, list of agents in the scene, list of
services, and list of queries to be computed. Orchestrator and
ROS nodes are instantiated automatically when the specification
is translated into the model to be used for verification.

3.2.1. Layout, areas and POIs
While modeling the HRI scenario, the user must specify the

layout where the agents will operate. The DSL allows users to
model different layouts (such as different building floors or dif-
ferent sections of the same floor) through statement:

define layout

which includes a non-empty list of areas and POIs.
The DSL captures all layouts made up of adjacent rectangular

areas (i.e., it does not capture curved or diagonal walls), each
defined as:

area id in (x1, y1) (x2, y2)

where coordinate pairs (x1, y1) and (x2, y2) define one of the
area’s diagonal segments from which the other two corner points
are automatically inferred upon generating the SHA network to
save manual effort on the user’s side. Areas’ corners are validated
to ensure that they correctly identify a diagonal, i.e., that x1 ̸= x2
and y1 ̸= y2 hold. Layout-related declarations are validated to
heck whether there are disconnected areas (i.e., all areas must
e reachable from any point in the layout) and that no pair of
reas overlap entirely.
POIs with their coordinates are declared through the following

tatement:

oi id in (x, y)

Although verification tools only handle adimensional vari-
bles, the DSL requires the specification of the length measure-
ent units to ensure that the layout size is consistent with the

obot’s speed. The measurement unit is specified through the
ollowing statement, where mu ∈ {km,m, cm}:

aram measurement_unit mu

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

1

w
a
m
s

Listing 1 DSL section defining layout areas and POIs.
1 param measurement_unit m
2 define layout :
3 area A1 in (0 . 0 , 17.5) (40 .0 , 7 .5)
4 area A2 in (40 .0 , 25.0) (50 .0 , 0 .0)
5 poi RC in (25 .0 , 17.5)
6 poi WR in (49 .5 , 12.5)
7 poi KIT1 in (40 .5 , 21.25)
8 poi KIT2 in (40 .5 , 3 .75)

The specification of the layout in Fig. 1 is given in Listing
: the layout features two areas (a1 and a2) and three POIs

corresponding to the recharge station (RC), the waiting room
entrance (WR), KIT1, and KIT2. All coordinates are expressed in
meters (m), consistently with Fig. 1(b).

3.2.2. Agents
Each mission must feature a mobile robot and at least one hu-

man requiring assistance, specified in two independent sections
that are identified through keywords define robots and define
humans, respectively. The DSL allows designers to declare each
available robot through statement:

robot name in (x, y) id id type type charge C0

where parameters name and id univocally identify the robot, C0

defines its initial level of charge, and coordinates (x, y) define its
starting position. As per Section 3.1, while generating the formal
model, the robot’s type determines the translational and rota-
tional speeds, and the acceleration (attributes vmax, ωr, and amax in
Fig. 4) based on the model’s technical specifications. This feature
of the DSL saves non-technical users the effort of retrieving these
data when they might be more familiar with the type of robot
available in the facility.

Each human is declared through the following statement:

human name in (x, y) id id speed v is pf freewill pfw (1)

where the name univocally identifies the human and the id de-
termines the serving order (thus, it is also required to be unique).
Coordinates (x, y) determine each human’s starting location. Pa-
rameters v, pf, and pfw define the walking speed, fatigue and free
will profiles as described in Section 3.1. The user chooses the
values of pf and pfw out of a pre-determined list, corresponding
to the enumerations in Fig. 4.

Both the robot and human declaration blocks are validated
to ensure that no pair of agents share the same id (within the
same Agent generalization) nor the same name (also across dif-
ferent Agent generalizations). The DSL is developed under the
simplifying hypothesis that agents occupy a single point in space
(corresponding to their center of gravity). This modeling choice is
dictated by the need to keep the DSL (and, thus, the formal model)
as simple as feasible and spare the designer from defining the
three-dimensional envelope of the agents’ bodies. The framework
assumes that refined collision avoidance routines are already
implemented at a lower level within the robotic platform and the
DSL validator only checks that no pair of agents have the same
center of gravity (i.e., coordinates (x, y)).

The agents from the running example are defined as per List-
ing 2. There are two robots available (ROB1 and ROB2) of different
types (thus, they will have different speeds), and two humans
(HUM1 and HUM2), of which one has a Young/Sick fatigue profile
and low free will, whereas the second one is Elderly/Healthy and
has normal free will profile.
9

Listing 2 DSL section defining the agents and their features.
1 define robots :
2 robot ROB1 in (10 .0 , 12.5) id 1 type

t iago charge 40
3 robot ROB2 in (45 .0 , 3 .5) id 2 type

turt lebot3_waf f lep i charge 90
4
5 define humans:
6 human HUM1 in (5 . 0 , 12.5) id 1 speed 80

i s young_sick freewil l low
7 human HUM2 in (35 .0 , 9 .0) id 2 speed 100

i s elderly_healthy freewil l normal

Listing 3 DSL section defining the mission (i.e., the sequence of
services).

1 define mission m1 for ROB1:
2 do robot_leader for HUM1 with target WR
3 do robot_transporter for HUM2 with

target KIT2
4
5 define mission m2 for ROB2:
6 do robot_follower for HUM2 with target

KIT1
7 do robot_leader for HUM1 with target WR

3.2.3. Missions
Designers can declare multiple missions and associate them

ith a layout and a set of agents. Each mission is assigned to
single robot and verification experiments resulting from each
ission declaration (see Fig. 5) are performed separately. A mis-
ion is declared as in the following, where parameter m is the
name of the mission and r is the name of the robot it is assigned
to (association provides in Fig. 4).

define mission m for r

As described in Section 3.1, each mission consists of a se-
quence of services and each service adheres to one of the in-
teraction patterns described in Section 3.1. As per Statement
(1) and the conceptual model presented in Section 3.1, humans
are declared independently of the interaction pattern, which is
specified when declaring the service as in the following:

do ptrn for h with target poi

where ptrn can be either robot_leader, robot_follower, robot_
transporter, robot_competitor, robot_applicant, or robot_rescuer
(i.e., items of RobotPattern in Fig. 4, corresponding to Human-
Follower, HumanLeader, HumanRecipient, HumanCompetitor, Hu-
manRescuer, and HumanApplicant, respectively), h is the name of
the human requesting the service (association requests in Fig. 4),
and poi instantiates attribute target in Fig. 4. Each service declara-
tion is validated to ensure that h and poi refer to existing human
agents and POIs.

The two missions associated with the running example are
declared as in Listing 3. In mission m1, ROB2 has to lead HUM1
to POI WR and then deliver KIT2 to HUM2. In m2, ROB2 has to
follow HUM2 to KIT1, then lead HUM1 to WR.

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

f
a
f

c

w

a
h
a
e
L
o
o
c
{

F
c
o

b
t
t
t
i
t
t

G
e
A
a
f
i
m
C
t
a
t
T
i
t
a
t
t
(
h
c
h
i
e
e

o
m
d
e
c
t
Ξ

o
i
b
T
w
A
l
0
t
l
a
o
(
[

s
b
b
L
r
f
c
f
p
o
e
i
c
s
i

t
S

Listing 4 DSL section defining the set of queries.
1 define queries of mission m1:
2 compute probabi l i ty_of_success with

duration 120 runs 300
3 compute expected_fatigue with duration

120 runs 50
4
5 define queries of mission m2:
6 compute probabi l i ty_of_success with

duration 100 runs auto
7 compute probab i l i t y_o f _ f a i lu re with

duration 100 runs auto
8

3.2.4. Queries

Finally, the designer specifies which experiments to perform
or each mission. The DSL captures the set of queries in Fig. 4
nd described in Section 3.1. A query is declared through the
ollowing statement:

ompute query with duration τ runs R

here query can be either probability_of_success, probability_of_
failure, expected_charge, expected_fatigue, or simulation. Param-
eter τ corresponds to the time bound, while R is the bound on
the number of traces generated for the SMC experiment, whose
value must be set to auto if the user wants the verification tool
to compute the required number of runs.

A possible set of queries for missions 1 and 2 from the running
example is given in Listing 4: the SMC experiments will estimate
the probability of success and maximum fatigue value for all
humans for m1, and probabilities of failure and success (with no
bound on runs) for m2.

4. Formal modeling HRI with uncertain human behaviors

In this section, we illustrate the modeling approach we have
adopted to map aspects of the real system to SHA features. Sub-
sequently, we present in more detail the automata constituting
the SHA network, i.e., the humans, the robot and its battery, and
the orchestrator.

The high-level goal of the SHA network is to capture the
gents’ behavior based on their current operating state (e.g., the
uman resting or walking). For every agent in the scenario and
utomaton A modeling its behavior, defined as in Definition 1,
very operating state of the agent corresponds to a location in
. SHA capture the evolution of relevant quantitative attributes
f the real system, such as human fatigue and battery level
f charge. Each physical attribute, characterizing a human or a
omponent, corresponds to a real-valued variable in set W \
X ∪ Vdc ∪ K } of their modeling automata and flow conditions
(l), associated with a location l, reproducing the set of ODEs
onstraining the evolution of real-valued variables in that specific
perating state.
The switch between two operating states consists of an edge

etween the two corresponding locations. Recurrent features of
he specific systems that our modeling approach targets identify
wo types of switches, which we refer to as controllable or uncon-
rollable. We remark that we use these two terms in a manner that
s specific to our framework, and they are not part of the standard
erminology of the formalism (for example, they are unrelated
o the notion of controllable and uncontrollable edges in Timed
 t

10
ame Automata [27]); instead, they are merely aliases for specific
dges recurring in our SHA (i.e., subsets of E from Definition 1).
controllable switch occurs if, and only if, a specific event fires

nd a synchronization among two or more automata occurs:
or example, the robot starts accelerating when the orchestrator
ssues the command to start moving. For this reason, all the edges
odeling a controllable switch are defined with a channel in
\ {ϵ}. Conversely, uncontrollable switches occur ‘‘naturally’’ in

he original system due to the evolution of the physical variables
t play: for example, the human unavoidably stops moving when
heir fatigue level reaches the maximum endurable threshold.
herefore, they are defined with event ϵ!, i.e., by means of the
nternal action. In every automaton of the networks capturing the
argeted systems, a location l with an outgoing edge modeling
n uncontrollable switch is endowed with a set of invariants of
he form w ≤ k2, where w ∈ W is the real-valued variable subject
o the constraint and k2 ∈ K is its maximum allowable value
e.g., F ≤ 1, with w = F and k2 = 1, constrains the value of the
uman fatigue to be less or equal than 1). The outgoing edge has
ondition w ≥ k1, such that k1 ∈ K and k2 ≥ k1 hold. If k2 > k1
olds, the edge fires with probability distributed uniformly over
nterval [k1, k2], as explained in Appendix A. If k1 = k2 holds, the
dge fires with probability 1 when w = k1 = k2 holds (e.g., the
dge from on to off in Fig. 3 where w = T and k1 = k2 = Tth2).
Since the orchestrator controls the robots by using the digital

bservations made by sensors on humans and robots, the SHA
odeling physical dynamics (i.e., humans and robots) feature
ense-counter variables (set Vdc) as the discrete (i.e., digital)
quivalents of real-valued variables. Dense counters are periodi-
ally updated every Tpoll ∈ K time units (where Tpoll corresponds
o the refresh period of the specific sensor) through updates in
(W) that are compatible with the ODEs modeling the dynamics
f the physical attributes in each location. To this end, every SHA
n the network uses a clock tupd ∈ X to measure the time elapsed
etween two consecutive measurements and to trigger an update.
herefore, when tupd = Tpoll holds for an automaton A, hence
hen time Tpoll has elapsed since the last measurement, then
uncontrollably switches to a committed location. A committed

ocation is equivalent to an ordinary location with invariant t ≤
and all incoming edges with update t = 0 for some t ∈ X:

herefore, time cannot elapse while in these locations [28]. In that
ocation, the dense counters modeling the latest sensor readings
re immediately notified to the orchestrator by firing an event
ver a dedicated channel that triggers the publishing routine
the corresponding modeling pattern is described in detail in
15, Section IV]).

In the forthcoming sections, we present the automata con-
tituting the SHA network, i.e., the humans, the robot and its
attery, and the orchestrator, primarily focusing on the human
ehaviors modeled by the patterns Human Follower, Human
eader, and Human Recipient, which this work extends with
espect to [13,14] with a stochastic characterization of physical
atigue, and a factorization of the common modeling pattern
apturing the periodic sensor reading update. Comparable SHA
or the Human Applicant, Human Rescuer, and Human Competitor
atterns are introduced in [16]. We also present a refined model
f the robot’s battery, which fits the real platform used for the
xperimental validation. The robot-modeling SHA is presented
n detail in [15] and briefly described here to preserve the self-
ontainedness of this paper. Moreover, we report the high-level
tructure of the orchestrator (introduced in [13] and extended
n [16]) with refined mission-management policies.

Controllable switches realize the interactions among the au-
omata and are obtained by means of synchronization channels.
ince the orchestrator implements the control logic that governs
he agents, the issuing of a command by the orchestrator is

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

m

s
w
d
T
c
s
s
u
d
h
t
p

r
p
e
a
t
s

Fig. 6. SHA modeling the ⟨op⟩_pubh pattern, color-coded as in Fig. 3. Ports are
arked by symbols ‘‘▶’’, ‘‘■’’, and ‘‘×’’.

modeled through a synchronization between the orchestrator and
the automaton modeling the agent that reacts to the command.
Hence, all the channels in (the automaton modeling) the or-
chestrator are labeled with !, whereas (the automata modeling)
the humans and the battery are defined with edges having the
channels labeled with ?. The modeling has been designed by
considering one single robot serving one individual at a time,
even if several agents (i.e., humans and robots) can participate in
the scenario. In fact, each pattern models the interaction between
one pair of agents, a robot and a human, and missions are finite
sequences of interactions. Since there is always only one active
robot and a single served human at a time, channels representing
synchronizing events between the orchestrator and the agents
are not specific to a single instance of a human or a robot. A
dense counter in the orchestrator, with finite domain, identifies
the human currently interacting with the robot and it is evaluated
by every automaton modeling the humans to allow or deny the
firing of the synchronization events with the orchestrator. In
particular, all the edges in the automaton modeling a human
agent include a condition which evaluates to true when the dense
counter indicating the currently served human is equal to the
value id uniquely identifying it (see Section 3.1) and, hence, the
automaton. Moreover, even if the modeling of multiple robots
serving multiple humans simultaneously is possible in theory,
adding this feature would cause the models to increase in com-
plexity. The information flow that the orchestrator realizes by
issuing commands to agents, through events via channels, is as
follows. The orchestrator

• informs the human to start or stop walking via channels
cmd_hstart and cmd_hstop;
• makes the robot move or stop via channels cmd_rstart and
cmd_rstop. Moreover, it starts the battery charging through
channel cmd_bstart and interrupts the charging with channel
cmd_bstop, hence restoring the robot back to the mission-
defined interaction.

4.1. Human–robot interaction patterns model

In all interaction patterns, the SHA modeling humans differ-
entiate between operating states based on how fatigue evolves
(i.e., whether individuals are recovering or not) and how humans
are interacting with the robot (e.g., they are leading the action
or waiting for a robot’s action). Hence, all SHA modeling humans
feature real-valued variable F ∈ W , capturing physical fatigue,

and a dense counter f ∈ Vdc capturing the digital counterpart

11
of F . Besides physical fatigue, for each human, suitable sensors
also periodically refresh their position within the building. The
position is modeled by dense counters hposx and hposy capturing
a pair of Cartesian coordinates. Therefore, the portion of SHA
modeling the update of periodic sensor readings is present in
all the operating states of the human, generically indicated as
op, and is hereinafter referred to as ⟨op⟩_pubh. In the following
sections, for a clock t ∈ X , we use notation {t} to represent update
t = 0 (e.g., we write {tupd} instead of tupd = 0).

The ⟨op⟩_pubh pattern is shown in Fig. 6. In the following,
we use label op when describing the high-level structure of
the pattern, while it is replaced by descriptive labels when re-
ferring to a specific instance of the pattern (e.g., ⟨stand⟩_pubh
and ⟨walk⟩_pubh). The automaton features three locations: an
ordinary location h⟨op⟩ and two committed locations hpub1 and
hpub2 . Location h⟨op⟩ captures the human’s behavior while in a
pecific state (e.g., h⟨stand⟩ and h⟨walk⟩). To this end, h⟨op⟩ is endowed
ith invariants I(h⟨op⟩), flow conditions F(h⟨op⟩), and probability
istributions D(h⟨op⟩). For all instances of ⟨op⟩_pubh, (tupd ≤
poll) ∈ I(h⟨op⟩) holds. The combination of this invariant with
ondition tupd ≥ Tpoll on the edge to hpub1 forces the SHA to
witch to the committed location when tupd = Tpoll holds. Upon
witching, the set of updates ξ⟨op⟩ ⊂ Ξ (W) (e.g., ξ⟨stand⟩ and ξ⟨walk⟩)
pdates dense counters f, hposx , and hposy . The effect of ξ⟨op⟩ varies
epending on the specific state of the human. Since hpub1 and
pub2 are committed, the new values are immediately shared with
he orchestrator by firing an event through channels pftg first and
pos right after.
Edges entering and leaving the ⟨op⟩_pubh pattern are rep-

esented through ports (coherently with [15,16]). Ports are not
art of the formalism, but a visualization expedient for the edges
ntering and leaving the sub-automaton (arrows in and out of
port constitute the same transition). SHA enter a submachine

hrough the port marked by symbol ‘‘▶’’ (i.e., start) and leave a
ubmachine through ports marked by symbols ‘‘■’’ (i.e., end) and
‘‘×’’ (i.e., fail), indicating whether the operating state op ended (or
stopped momentarily) or the entire mission ended with failure
(e.g., because the human is too fatigued), respectively.

Edge conditions, channels, and updates characterizing edges
through ports vary depending on the specific ⟨op⟩_pubh instance.
The only exception is update ξrand,⟨op⟩ on the edge through the
start port. Update ξrand,⟨op⟩ is featured by all instances of ⟨op⟩_pubh
since it determines the stochastic properties of human fatigue
when a human behaves while in a specific operating state ⟨op⟩
and the way these properties are determined is the same for
every instance of ⟨op⟩_pubh.

Human fatigue is a complex phenomenon driven by a wide
range of factors: our approach focuses on muscular fatigue due
to physical strain. As discussed by Liu et al. [29], a muscle can
be seen as a reservoir of motor units. When physical exertion
is required, motor units progressively activate and eventually
cause fatigue due to biochemical processes. The muscle can, then,
recover from fatigue if it is put to rest [29,30]. Our approach
exploits the model proposed by Konz [30,31], described by Eq. (2),
for which human action undergoes alternate fatigue and recovery
cycles, each one modeled by an exponential function. Fatigue and
recovery are expressed by means of function parameters, called
fatigue rates, which depend on several factors such as the age of
the subject that the model represents, their health condition, etc.
Each cycle is associated with an index i uniquely identified, given
time t , by function j : R+ → N (thus, i = j(t) holds). We indicate
the timestamp at which cycle i ends by ti. During both fatigue and
recovery, fatigue F (t) for cycle i depends on the residual value
F (ti−1) from the previous cycle ended at time ti−1. Parameters λi
and ρi are the fatigue and recovery rates for cycle i.

F (t) =
{
1− (1− F (ti−1)) · e−λi(t−ti−1) (fatigue)

−ρi(t−ti−1)
(2)
F (ti−1) · e (recovery)

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

F

T
r
a
i
o
d
c
t
c
t
F
p
i
b
i

n

u
F
v
r
T
c
t
c

f

C
t
E
o
d
t
r
v
r

t
h

4

t
w
t
⟨

i

t
f
r
l
c

c
w
c
x
f
c
u
c
h

ull recovery occurs when F (t) = 0 holds, whereas condition
F (t) = 1 models the case in which the muscle has reached
the maximum level of endurance. Liu et al. [29] argue that the
fatigue F (t) can be seen as ratio MF (t)/M0, where M0 is the total
amount of motor units, and MF (t) is the amount of fatigued units
at time t . Therefore, F (t) = MF (t)/M0 = 1 holds when every unit
composing a muscle is fatigued. Running experiments on a pool
of subjects have shown how a Normal distribution is a good
fit to capture the variability of rates λi and ρi in the fatigue
model [32]. Furthermore, the variability of the fatigue rates for
an individual subject between different exertion cycles has been
observed in [33]. The SHA modeling the human in a scenario
embeds this variability by means of probability distributions, as
the automaton is not representative for a single specific indi-
vidual, but it represents a set of subjects with similar physical
characteristics. Therefore, we approximate the complexity of the
fatigue phenomenon by considering each λi (resp., ρi) as a sample
of distribution N(µλ, σ 2

λ) (resp., N(µρ, σ 2
ρ)), whose mean and

variance depend on the fatigue profile that characterizes the class
of humans under analysis.

By construction, every operating state of a human agent is
associated with a specific fatigue profile, i.e., it is either a fatigue
state or a recovery state. Hence, for every instance of ⟨op⟩_pubh
function D(h⟨op⟩) is defined. Upon entering an ⟨op⟩_pubh, update
ξrand,⟨op⟩ computes the fatigue/recovery rate to be considered
while the automaton is in location h⟨op⟩. To this end, every au-
tomaton modeling a human features two dense counters λ, ρ ∈
Vdc, which store the current fatigue/recovery rates. Every time
update ξrand,⟨op⟩ is executed, it generates a new sample of D(h⟨op⟩)
and assigns it to ρ, if h⟨op⟩ is a recovery state, otherwise to λ.
The sample is generated through the Box-Müller algorithm [17].
Update ξrand,⟨op⟩ is given in Eq. (3), where rate equals λ if h⟨op⟩
is a fatigue state and ρ otherwise; µ⟨op⟩ and σ⟨op⟩ are the mean
and standard deviation of D(h⟨op⟩); u1 and u2 are independent
realizations of uniform distribution U(0, 1).

ξrand,⟨op⟩ : rate = µ⟨op⟩ + σ⟨op⟩
√
−2 ln(u2) cos(2πu1) (3)

he values of ρ and λ determine the temporal evolution of the
eal-valued variable F and its digital counterpart f while the
utomaton is in h⟨op⟩. In a given operating state ⟨op⟩, if fatigue
ncreases, flow condition F(h⟨op⟩) corresponds to the derivative
f Eq. (2)(fatigue), indicated as fftg in Eq. (4); otherwise, fatigue
ecreases and F(h⟨op⟩) is equal to the derivative of Eq. (2)(re-
overy), indicated as frec in Eq. (5). Both equations depend on
wo terms other than ρ and λ, i.e., clock tphase ∈ X and dense
ounter Fp ∈ Vdc. Clock tphase ∈ X measures the total amount of
ime the automaton spends in location h⟨op⟩ and dense counter
p ∈ Vdc is the residual value of fatigue at the end of the
revious fatigue/recovery cycle, realized by a different ⟨op⟩_pubh
nstance. Both are updated when a new fatigue/recovery cycle
egins, i.e., every time the SHA modeling the human enters an
nstance of ⟨op⟩_pubh and ξrand,⟨op⟩ is carried out: clock tphase is
reset and variable Fp is updated with F .

Ḟ = fftg(tphase, λ) = Fpλe−λtphase (4)

Ḟ = frec(tphase, ρ) = −Fpρe−ρtphase (5)

Dense counter f, on the other hand, is not associated with a flow
in location h⟨op⟩, because it models the digital equivalent of the
physical attribute F . For this reason, the temporal evolution of
f is calculated explicitly via the update ξ⟨op⟩, which computes a
ew value for f by applying the update in Eq. (6), every Tpoll time

units. The primed version f′ indicates the new value of f after the
computation of the expression, which depends on the operating
state ⟨op⟩. Unlike Eq. (2), the equations in Eq. (6) model fatigue in
 f

12
a single cycle and are expressed in terms of the amount of time
elapsed from the beginning of the current fatigue/recovery cycle.
Conversely, Eq. (2) depends on the absolute time t and instant
ti−1, the latter indicating the end of the cycle that precedes the
current one. Hence, if τ is the amount of time elapsed from the
beginning of a cycle, Eq. (2) can be rewritten in terms of τ by
applying the identity t − ti−1 = τ , and fatigue after τ time
nits from the beginning of the current fatigue/recovery cycle is
¯ (τ) = F (ti−1+τ). For τ = 0, fatigue F̄ (0) is equal to the residual
alue F (ti−1), which is Fp. At the end of the (k + 1)th sensor
efresh, lasting Tpoll time units each, the fatigue is F (kTpoll+Tpoll).
he final expressions are obtained by considering that, before
omputing ξ⟨op⟩, f amounts to Fpe−ρkTpoll , in case of recovery, and
o 1 − (1 − Fp)e−λkTpoll otherwise (i.e., the fatigue after k refresh
ycles).
′
= F̄ (kTpoll + Tpoll)

=

⎧⎪⎪⎨⎪⎪⎩
1− (1− Fp)e−λ(kTpoll+Tpoll)

= 1− (1− Fp)e−λkTpolle−λTpoll

= 1− (1− f)e−λTpoll (fatigue)
Fpe−ρ(kTpoll+Tpoll) = Fpe−ρkTpolle−ρTpoll = fe−ρTpoll (recovery)

(6)

ompared to [13,14], we extend SHA modeling humans by in-
roducing D(h⟨op⟩), ξ⟨op⟩, and ξrand,⟨op⟩ in all ⟨op⟩_pubh instances.
nriching the SHA with these features strengthens the results
btained with SMC as they account not only for the uncertainty
ue to human autonomy, but also for the natural variability of
he fatigue phenomenon. The extension, therefore, leads to more
eliable estimations of the fatigue levels reached by subjects in-
olved in the scenario, including an estimation of their variability
anges.

In the following, we present the individual SHA modeling the
hree interaction patterns, all featuring multiple instances of the
ereby presented ⟨op⟩_pubh pattern.

.1.1. Human follower
An instance of the SHA modeling the human follower pat-

ern is generated for each service specified through the DSL
ith ptrn = HumanFollower. The SHA, hereinafter referred
o as Ahf and shown in Fig. 7, features two instances of the
op⟩_pubh pattern: one capturing the recovery phase while stand-
ng (⟨stand⟩_pubh) and one for the fatigue phase while walking
(⟨walk⟩_pubh). Fatigue decreases while resting (in ⟨stand⟩_pubh)
and increases while walking (while in ⟨walk⟩_pubh). Therefore,
F(h⟨stand⟩) equals frec(t, ρ) (see Eq. (5)) and F(h⟨walk⟩) equals
fftg(t, λ) (see Eq. (4)). Values ρ and λ are realizations of
N(µstand, σ

2
stand) and N(µwalk, σ

2
walk), respectively. Table 1 shows

the internal updates, ξstand and ξwalk, respectively, later described
in detail. Ahf also features a deadlock location hfaint capturing
he case in which the human reaches full exhaustion causing the
ailure of the mission. If the mission fails because the human has
eached location h⟨faint⟩, modeling the evolution of fatigue is no
onger relevant. Therefore, location h⟨faint⟩ is endowed with flow
ondition Ḟ = 0.
While walking (thus, while in location h⟨walk⟩), the SHA periodi-

ally updates variables hposx and hposy . As described in Section 3.1,
e assume that humans walk at constant speed v ∈ K . Dense
ounter hγ captures the human’s orientation with respect to the
-axis. We assume that the human can rotate instantly while
ollowing their trajectory, and, thus, no location is necessary to
apture the delay caused by rotation. Variable hγ is periodically
pdated while walking through function upd_orientation(), which
omputes the new orientation required (primed dense counter
′
γ) to head towards the following point of the trajectory. There-
ore, every T time instants, the x-y coordinates increase by
poll

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

W
m
m
d
s
i
h
m

c
e
t

Fig. 7. SHA modeling human behavior when adhering to the HumanFollower pattern. Color-coding is the same as Fig. 3.
a

c
F

f
a
l
t
c
p
t
a
e
i
w
o
p
F
i

e

Table 1
Updates for the SHA modeling the HumanFollower and HumanLeader patterns.
Symbol Updates Description

ξstand

f′ = feρTpoll ;
h′γ = hγ ;
h′posx = hposx ;

h′posy = hposy ;

fw′ = roll_dice();

Resting phase

ξwalk

f′ = 1− (1− f)e−λTpoll ;
h′γ = upd_orientation();
h′posx = hposx + vTpoll cos(hγ);
h′posy = hposy + vTpoll sin(hγ);
fw′ = roll_dice();

Fatiguing phase

vTpoll cos(hγ) along the x-axis and vTpoll sin(hγ) along the y-axis.
hile standing (in h⟨stand⟩), as per Table 1, the human does not
ove, thus the values of hposx and hposy do not change. The
echanism capturing human free will and the corresponding
ense counter fw is presented later in this section. The periodic
ensor refresh mechanism does not apply to location hfaint (which
s not, thus, part of an ⟨op⟩_pubh instance) since, once the mission
as failed, the orchestrator no longer requires up-to-date sensor
easurements.
The switch between h⟨stand⟩ and h⟨walk⟩ (and viceversa) is con-

trollable and triggered by events through channels cmd_hstart and
md_hstop. The orchestrator sends to the SHA modeling the human
vents through these channels when it detects that the interac-
ion between the human and the robot must start (cmd_hstart)
or stop (cmd_hstop). Upon switching between h⟨stand⟩ and h⟨walk⟩,
the SHA updates the value of variable Fp (see the updates on
entering ⟨op⟩_pubh instances). To capture the unpredictability
of human behavior, the edges between h⟨stand⟩ and h⟨walk⟩ and
back have specific features modeling human free will. In the
literature, there exist several proposals on how to model the free
will phenomenon [34]. We exploit the results on the free will
phenomenon and randomness in [35] to model human haphazard
choices probabilistically. Specifically, as in Fig. 7, the controllable
edges between h⟨stand⟩ and h⟨walk⟩ and the two self-loops com-
plementing them are associated with a probability distribution
such that obey+ disobey = 1, where obey, disobey ∈ K are
two constants. The values are the probabilities with which, when
the orchestrator fires an event over cmd_hstart (resp., cmd_hstop),
the human abides by it and switches to h⟨walk⟩ (resp., h⟨stand⟩) or
ignores it and stays in the same location. The specific value of
13
obey derives from attribute pfw of class Human introduced in
Section 3 (then, disobey = 1 − obey holds). Value disabled for
ttribute pfw implies obey = 1 (hence, disobey = 0).
Manifestations of human free will do not exclusively occur

oncomitantly with the orchestrator’s instructions. As shown in
ig. 7, two additional uncontrollable edges connect h⟨stand⟩ and

h⟨walk⟩. These edges capture the possibility that humans may de-
cide to start or stop walking haphazardly at any time during
the execution of the mission. Therefore, these edges are not
associated with any event occurring in the system, but they only
depend on the value of edge condition fw ≥ FWth, where FWth ∈

K is a constant. As per Table 1, the value of dense counter fw
is updated every Tpoll time units through function roll_dice(),
which generates a random value from [0, FWmax] where FWmax ∈

K is a constant. The uncontrollable edge fires if, and only if,
the generated value of fw is greater or equal than constant
FWth ≤ FWmax. Parameters FWth and FWmax derive from attribute
pfw and determine the frequency of human haphazard actions.

4.1.2. Human leader
The SHA modeling the leader pattern, shown in Fig. 8, shares

most features with the model described in Section 4.1.1. Locations
h⟨stand⟩ and h⟨walk⟩ (within ⟨stand⟩_pubh and ⟨walk⟩_pubh) capture
the human resting and walking constraining real-valued variable
F through the flow conditions in Eqs. (5) and (4). While in these
locations, sensor readings are periodically modified by updates
ξstand and ξwalk in Table 1. When fatigue exceeds the maximum
threshold, the SHA switches to deadlock location h⟨faint⟩.

The distinguishing feature of this pattern is that the switch
rom h⟨stand⟩ to h⟨walk⟩ is purely based on the free will mechanism
nd not on orchestrator’s instructions. As a matter of fact, the
eader autonomously decides when to start the action. Therefore,
he edge to h⟨walk⟩ is not tied to any event fired through any
hannel. Dense counter fw appearing in the edge condition is
eriodically randomly updated as described in Section 4.1.1. On
he other hand, while the leader is free to also stop walking at
ny time irrespective of the robot’s decisions (through the solid
dge from h⟨walk⟩ to h⟨stand⟩), the orchestrator may exceptionally
nstruct the human to stop walking through channel cmd_hstop
hen their fatigue reaches an alarming value. As with all other
rchestrator commands, the edges triggered by such events are
robabilistic and depend on probabilities obey and disobey (see
ig. 8) governing whether the human abides by the instruction or
gnores it and stays in the same location.

Finally, unlike in the follower pattern, the leader marks the
nd of the service by updating the Boolean dense counter

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t

h
m
h
d
a
c
s
o
t√

t

Fig. 8. SHA modeling the HumanLeader pattern, color-coded as in Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 9. SHA modeling the HumanRecipient pattern, color-coded as in Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
id,served ∈ Vdc, which is also used by the orchestrator to deter-
ine whether the robot may move on to serve the following
uman or stop if the mission is complete. The condition that
etermines whether the service is complete is indicated as γsvd
nd corresponds to Formula (7) (see also Fig. 8). The service is
onsidered complete if both the human and the robot are within a
pecific range of the destination, corresponding to attribute target
f class Service in Fig. 4. Dense counters rposx and rposy represent
he Cartesian coordinates of the robot within the layout [15].

(hposx−target.x)2 + (hposy−target.y)2

≤ vTpoll ∧

√
(hposx−rposx)

2 + (hposy−rposy)
2 ≤ vTpoll (7)

As per Fig. 8, when condition γsvd holds and the edge from h⟨walk⟩

o h⟨stand⟩ is taken, dense counter hid,served is set to 1 (Boolean
values are encoded by 0 and 1). If the edge is taken because
fw ≥ FWth holds, hid,served is set with the value of γsvd (that,
possibly, can be 0 if the service has not been completed yet).

4.1.3. Human recipient
The recipient pattern captures a human needing the robot to

fetch an object and deliver it back to their current location. While
14
the robot moves to the object’s physical location (i.e., attribute
target of the corresponding Service) and travels back, the human
is free to move around. Therefore, the SHA modeling human
behavior for this pattern (shown in Fig. 9) features three opera-
tional states, corresponding to as many instances of the ⟨op⟩_pubh
pattern. Instance ⟨stand⟩_pubh captures the human standing still,
as described in Sections 4.1.1 and 4.1.2. Similarly, ⟨walk⟩_pubh
captures the human walking out of free will while waiting for
the robot. Additionally, the recipient pattern features location
h⟨exe⟩ (within pattern ⟨exe⟩_pubh) representing that the robot has
reached the human while carrying the object and the human
has to collect it. During the handover, neither the robot nor the
human can move, thus F(h⟨exe⟩) equals frec. Ordinary location
h⟨faint⟩ captures the human having reached the maximum fatigue
level and, as in previously presented patterns, it is endowed with
flow condition Ḟ = 0.

While the robot is busy fetching the object, the human can
autonomously decide to move at any time. Therefore, the edges
from h⟨stand⟩ to h⟨walk⟩ and back depend on dense counter fw,
which is periodically updated as described in Section 4.1.1. The
orchestrator starts the handover when the human is ready to
deliver the object to the robot, by firing an event through channel

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

r

c
i
s
t
h
i
a

a
t
o
⟨

m
h
S
h
s
o
s
p
c
e
b
t

4

A
m
i
d

4

c
b
n
c
o
u
c
t
i
m
m
c
w
t

Fig. 10. SHA Ab modeling the robot’s battery behavior. Color-coding is the same as in Fig. 3. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
r
t
a
d

w
f
a
I
d

4

w
A
t
l
r
t

r
v
C
S
d
F
C
t
a
v
c
t
d
i
m
(
f
e
t
a
a
d
o
o
b

Q

Q

md_hstart. In this case, whether the human is walking (thus,
n ⟨walk⟩_pubh) or idle (in ⟨stand⟩_pubh), they receive the in-
truction through channel cmd_hstart to switch to ⟨exe⟩_pubh for
he synchronization phase. As with the previous SHA modeling
uman behavior, there is a certain probability that the human
gnores the orchestrator’s commands as dictated by weights obey
nd disobey.
The orchestrator gives the human time to pick up the object

nd then fires an event through cmd_hstop to mark the end of
he service, which the human may follow or ignore. On the
ther hand, no edge governed by variable fw enters or leaves
exe⟩_pubh, since it would not capture ‘‘rational’’ behaviors. As a
atter of fact, such edge entering ⟨exe⟩_pubh would capture the
uman collecting the object before the robot is sufficiently close.
imilarly, a free-will edge leaving ⟨exe⟩_pubh would capture the
uman deliberately suspending the synchronization phase, pos-
ibly dropping the item. The introduction of these categories
f erroneous behaviors will be investigated as a further exten-
ion of the SHA modeling humans. We remark that, instead, the
ossibility that the human still needs time to complete the syn-
hronization after command cmd_hstop is issued by the robot (for
xample, if the item is particularly delicate or bulky) is modeled
y the self-loop (i.e., the robot instructs the human to conclude
he phase, but they ignore it and prolong the action).

.2. Robotic system model

In the following, we briefly recap the main features of SHA
r modeling the robotic platform and present a new SHA Ab
odeling the robot’s battery enhanced with the sensor read-

ngs’ notification mechanism and a more precise charge/discharge
ynamics.

.2.1. Mobile robot model
The robot-modeling SHA is agnostic with respect to the spe-

ific manufacturer and model since it captures the high-level
ehavior of a generic mobile robotic platform. The SHA does
ot capture any aspects related to the hardware and electronic
omponents of the robot. Therefore, the analysis carried out with
ur framework does not cover the possibility of mechanical fail-
res. Referring to the levels identified by Lutz et al. to separate
oncerns in robotic systems’ architectures [36], our model targets
he service level, i.e., the layer serving as access point to the
nternal components of the robot. Under these premises, the two
ain actions a mobile wheeled robotic platform can perform are
oving (forward or backward) and rotating, which is the behavior
aptured by the developed SHA Ar. Furthermore, we assume that,
hile the robot is moving, the linear velocity evolves according
o a trapezoidal velocity profile.
15
Ar has four ordinary non-committed locations, capturing the
obot’s behavior while: 1. idle (location ridle, also corresponding
o the initial location); 2. accelerating (location rstart); 3. moving
t maximum speed (location rmov); 4. turning (location rturn); 5.
ecelerating (location rstop).
InAr, the robot periodically shares the updated position values

hile in rstart, rmov, and rstop. The robot’s coordinates within the
loor layout are modeled by two dense-counter variables rposx
nd rposy , which are periodically updated every Tpoll time instants.
nterested readers find the graphical representation and detailed
escription of Ar in [15, Section II.C].

.2.2. Battery model
Mobile robots are typically powered by a lithium battery,

hich undergoes charging and discharging cycles. Therefore, SHA
b modeling the robot’s battery, which is presented in this sec-
ion and shown in Fig. 10, features two ordinary non-committed
ocations bdis and brech corresponding to the discharge and
echarge cycles, respectively, plus a deadlock location bdead cap-
uring the case in which the battery is fully discharged.

The main physical attribute for a battery is its voltage (rep-
esenting the charge level), which is modeled by real-valued
ariable Q . Variable Q is initialized with the initial voltage value
0 ∈ K , i.e., an attribute of class Battery introduced in Section 3.
imilarly to fatigue F in SHA modeling humans, the temporal
ynamics of Q is determined by flow conditions in F(bdis) and
(brech), whose integral is shown in Eqs. (8) and (9), respectively.
ompared to [13,14], flow conditions have been refined to match
he behavior of lithium batteries for real robotic devices. As
matter of fact, the entire discharge cycle (from 100% of the
oltage capacity to 0%) can be approximated by an exponential
urve [37]. Nevertheless, the real device is not operational when
he voltage drops below a certain threshold (which can vary
epending on the specific battery type and device it is powering),
.e., when the level of charge is not sufficient to power the wheel
otors. Letting the battery pack discharge to very low levels

close to 0%) may actually permanently damage it [38]. There-
ore, compared to [13,14], we identified equations governing the
volution of variable Q (shown in Eqs. (8) and (9)) by fitting
he discharge/charge curve when the robotic device is operative
nd can carry out the assigned mission. A cubic function showed
high fit to the real dynamics. Parameters d0,1,2,3, r0,1,2,3 ∈ K
etermining the discharge and recharge curves are fitted based
n sensor measurements collected during charge/discharge cycles
f the same robotic device. Parameter d0 is always set to C0 at the
eginning of the scenario.

(t) = −d3t3 − 2d2t2 − d1t + d0 (8)

(t) = r t3 + 2r t2 + r t + r (9)
3 2 1 0

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t
t
t
b
d
e
(
Q
w
a
a
(

S

a
u

s
t
k
t

U
o
e
s
u
e

4

c
d
b
t
e
c
t
h
o
d
s
s
t
r
o
m
d
n
t
o
d

Table 2
Updates for the Ab SHA modeling the robot’s battery.
Symbol Updates Description

ξdis b′chg = bchg − Tpoll((d3 + 6d3k)Tpoll
2
+ (d2 + 2d2k)Tpoll + d1); k = k+ 1; Discharge phase

ξrec b′chg = bchg + Tpoll((r3 + 6r3k)Tpoll
2
+ (r2 + 2r2k)Tpoll + r1); k = k+ 1; Recharge phase
The edges from bdis to brech and viceversa both model con-
rollable switches, triggered when the orchestrator fires an event
hrough channels cmd_bstart and cmd_bstop instructing the robot
o start or stop recharging. On the other hand, the switch from
dis to bdead is uncontrollable as it occurs when Q = Cfail holds,
ue to invariant Q ≥ Cfail on bdis and condition Q ≤ Cfail on the
dge to bdead, where Cfail ∈ K is an attribute of class Battery
see Section 3). The edge from bdis to brech is also constrained by
> Cfail, since the automaton must enter deadlock location bdead
hen Q = Cfail holds. The edges from bdis to brech, and viceversa,
re equipped with updates that initialize d0 and r0 from Eqs. (8)
nd (9) with the residual charge value from the previous cycle
i.e., the value of dense counter bchg) and reset clock tphase.

The battery model features dense counter bchg, representing
the digital counterpart of Q , and a modeling pattern to period-
ically publish the latest charge measurement governed by clock
tupd (corresponding to the ⟨op⟩_pub

⟨id⟩ pattern presented in [15,
ection IV.2]). In Ab, this occurs while in bdis and brech by switch-

ing to committed locations bpubd and bpubr , respectively, when
tupd = Tpoll holds. Upon these switches, clock tupd is reset, to begin
new sensor refresh, and dense counter bchg is updated through
pdates ξdis and ξrec. The new value of the battery charge depends

on how many cycles lasting Tpoll time units have been executed
o far, hence how many measurements have been collected. For
his reason, automaton Ab features a dense counter k ∈ Vdc that
eeps track of the number of readings that have been done since
he beginning of the scenario. Updates ξdis and ξrech compute the
battery charge at the kth refresh cycle Q (kTpoll). They are obtained
by expanding Eqs. (9) and (8) when t is equal to (k−1)Tpoll+Tpoll.
nlike the updates in automata modeling humans, dependency
n index k cannot be removed in the equations defining b′chg. At
very sensor refresh, dense counter k is incremented. Updates are
hown in Table 2 (where b′chg is the new value of bchg after the
pdate). The updated value of bchg is then published by firing an
vent through channel pub_bch.

.3. Orchestrator model

The orchestrator controls the robot’s behavior based on the
urrent state of the system to drive the mission to success. As
escribed in previous sections, the humans, the robot, and its
attery share sensor readings with the orchestrator, which checks
hese values against given policies to determine whether a certain
vent has to be fired. Specifically, the orchestrator is fully in
ontrol of the mobile robot’s behavior (i.e., it issues every instruc-
ion to start or stop moving), while it issues suggestions for the
uman, e.g., to stop moving when they reach an alarming value
f fatigue, which might be dismissed due to human free will. The
egree of intrusiveness of how such suggestions are issued to the
ubjects must be tailored to the specific scenario and the involved
ubjects’ demands; however, given the high-level perspective of
he framework, this aspect is currently out-of scope. An abstract
epresentation of the orchestrator SHA is shown in Fig. 11. The
rchestrator operational states (the dashed boxes in Fig. 11) are
odeled as submachines. All the edges connecting them are
efined for events of the form c!, where c is a channel of the
etwork, as the orchestrator proactively triggers suitable actions
o govern the evolution of the entire scenario. The orchestrator
perational states, i.e., the submachines in it, are described in
etail in the following:
16
1. the orchestrator is in ridle when, given the system’s state,
no action can start and, thus, the robot is waiting;

2. rrech orchestrates the robot’s behavior when it has to move
to the recharge station and recharge;

3. rlead controls the start and the end of the movement when,
based on the interaction pattern characterizing the ser-
vice underway, the robot leads the action (i.e., for the
HumanFollower and HumanRecipient patterns);

4. hlead controls the dual case, in which the movement is
initiated by the human (i.e., the HumanLeader pattern);

5. rsync controls the robot during the HumanCompetitor pat-
tern [16];

6. hrint controls the robot’s behavior while providing a ser-
vice that requires precise or close-distance synchronization
with the human (i.e., the HumanApplicant or HumanRes-
cuer patterns) [16].

Submachines in Fig. 11 are endowed with ports, intended as in the
⟨op⟩_pubh pattern. The orchestrator enters a submachine through
the port marked by symbol ‘‘▶’’, and may exit through the ports
marked by symbols ‘‘■’’, ‘‘×’’, and ‘‘✓’’, respectively, indicating
whether the action has ended (or is momentarily suspended), the
mission has ended with failure or with success. Ports highlight the
transitions entering and leaving each submachine, constrained
by conditions γstart, γstop, γfail, and γscs, each associated with a
component-specific formula. The orchestrator enters a subma-
chine when the corresponding γstart condition is true. If either of
γstop, γfail, or γscs holds, the orchestrator exits the submachine.
Locations ofail and oscs of Fig. 11 correspond to the end of the
mission with failure or success, respectively, and are reached
when either γfail (see Formula (10)) or γscs (see Formula (11))
holds. Failure occurs if, for at least one of the Nh ∈ K subjects
in the scenario, human fatigue exceeds 1 (i.e., fi ≥ 1 holds for
some i) or the robot’s charge drops to a neighborhood of Cfail ∈ K
(i.e., |bchg − Cfail| ≤ ϵ holds). The latter condition accounts for
small fluctuations of the estimated discharge curve.(Nh⋁

i=1

fi ≥ 1
)
∨ |bchg − Cfail| ≤ ϵ (10)

Location oscs is reached when the mission has been success-
fully completed—i.e., when all humans in the scenario have been
served: when a human in the scenario with id = i is served, the
Boolean dense counter hi,served ∈ Vdc is set to true.
Nh⋀
i=1

hi,served (11)

We recall that the main expression whose value we calculate
through SMC is PM(⋄≤τ scs), where Boolean dense counter scs is
set to true upon entering location oscs (thus, when the condition
in Formula (11) holds). As per Fig. 11, failure is possible for all
submachines. On the other hand, only rlead, hlead, rsync, and hrint
have outgoing transitions towards oscs, since recharging the robot
does not impact service provision (thus, progress towards mission
completion).

Submachines ridle and rrech are presented in detail in [13], while
rsync and hrint are introduced in [16]. Submachines rlead and hlead

are briefly recapped in the following, as they handle interaction

patterns covered in this paper and subject to the experimental

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

a
w

m
r
T
a
F
h
t
e
t
s

Fig. 11. Orchestrator SHA, as seen in [16]. Submachines are represented as dashed boxes, with ports marked by symbols ‘‘▶’’, ‘‘■’’, ‘‘✓’’, and ‘‘×’’.
Table 3
Orchestrator start and stop conditions (γstart and γstop , respectively) for each submachine (sub.m.) of the orchestrator.
Edge condition γ characterizing a submachine x is indicated with notation x.γ (e.g., rrech.γstart).
Sub.m. Start condition (γstart) Stop condition (γstop)

rlead hpattern ∈ {follower, recipient}∧
¬hserved ∧ f ≤ Frestart ∧ bchg ≥ Crech ∧

dist(rpos, hpos) ≤ Drestart

f ≥ Fstop ∨ bchg ≤ Crech ∨(
hserved ∧

Nh⋁
i=1

¬hi,served

)
∨ dist(rpos, hpos) ≥ Dstop

hlead hpattern ∈ {leader} ∧ ¬hserved∧

bchg ≥ Crech ∧ h′pos ̸= hpos

f ≥ Fstop ∨ bchg ≤ Clow∨(
hserved ∧

Nh⋁
i=1

¬hi,served

)
∨ h′pos = hpos
o
m
f
b
c
t
w
b
i
h
w

h
A
i
h
t
t
i
c
s
(
t
s
t
t

validation process in Section 6. Table 3 contains the formulae for
the start (γstart) and stop (γstop) conditions of these submachines.
Since the mission is a sequence of services involving a human
agent, the orchestrator uses a dense counter curr ∈ [1,Nh] to
store the id of the currently served human. Its value is updated
by the orchestrator every time a service ends, and the next
one can start. The dense counters f, hpattern, hserved ∈ Vdc and
hpos ∈ Vdc keep track of the fatigue of the currently served
human, the required interaction pattern, the completion of the
service and the position of the human, respectively (hpos is a
shorthand representing a pair of coordinates); e.g., f = fi holds
if i is equal to curr. Fig. 11 highlights the channels through which
the orchestrator fires instructions when entering or leaving a
submachine. For the sake of clarity, if a is a submachine, e.g., rlead,
nd g is the condition on an edge through a port, e.g., γstart, then
e refer to g by writing a.g .
The orchestrator enters submachine rlead to initiate the robot

ovement when the robot leads the action. As per Table 3, the
lead.γstart condition holds for the follower and recipient patterns.
he robot begins assisting the currently served human if they
re sufficiently close and the service has yet to be completed.
urthermore, for safety purposes, the action can start only if
uman fatigue is sufficiently low (less than Frestart ∈ K) and
he robot has sufficient charge (greater than Crech ∈ K). Upon
ntering rlead, the orchestrator fires cmd_rstart and cmd_hstart for
he robot to start moving and the human to follow. The robot

tops moving (events cmd_rstop and cmd_hstop fire) if either one t

17
f the following conditions holds: (a) human fatigue f exceeds a
aximum tolerable value Fstop ∈ K (we recall that if the human

aints, i.e., their fatigue is 1, the mission fails; hence, Fstop should
e lower than 1 to allow the orchestrator to prevent failures
aused by fainting); (b) battery charge drops below a value Crech

hat calls for recharging; (c) the human has been served, but they
ere not the last one (if they were the last one, the mission would
e complete); (d) the distance between the robot and the human
s too large (greater than Dstop ∈ K), indicating that the human
as stayed behind and needs to get closer to the robot to proceed
ith the service.
The hlead submachine controls the robot’s behavior when the

uman leads the action (i.e., with the leader interaction pattern).
s per Table 3, the orchestrator enters hlead (i.e., hlead.γstart holds)
f : (a) the currently assisted human is a leader; (b) the service
as not been completed; (c) the robot is sufficiently charged; (d)
he human is moving (their current position h′pos is different from
he previous sensor reading hpos). Upon entering hlead, cmd_rstart
s triggered and the robot starts following the human. The or-
hestrator exits hlead (i.e., hlead.γstop holds) when: (a) the currently
erved human has reached an excessive fatigue level (f ≥ Fstop);
b) the robot’s battery charge has dropped below the recharge
hreshold (bchg ≤ Crech); (c) the human has set themselves as
erved, but there are other humans to serve in the scenario; (d)
he human has stopped moving (their current position h′pos is
he same as the previous sensor reading and the service is yet

o be concluded, hence the robots waits for the human to walk

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

a
gain). When γstop holds, the orchestrator stops the robot through
channel cmd_rstop and instructs the human to stop walking only
if they are excessively fatigued. As explained in Section 4.1.2, the
human may ignore the orchestrator instruction out of free will.

5. Scenario deployment and reconfiguration

In the following, we summarize the main features of the de-
ployment and reconfiguration phases of the framework (phases 2
and 3 in Fig. 2) to keep the presentation of the validation process
in Section 6 self-contained. We refer the interested reader to [15]
for the complete description of the deployment approach.

5.1. Scenario deployment

The goal of the deployment phase is to run the robotic applica-
tion in a real environment or simulate it with a realistic physics
engine. Also, deployment helps the application designer extract
valuable information about the missions and, possibly, drive a
reconfiguration of the scenario, since real executions are available
from the scene. In both cases, executable software is built to run
the application. The approach allows for a hybrid deployment
environment adhering to the digital-twin paradigm [39] with
a real robotic device in the physical environment interacting
with human avatars in the virtual environment. When simulation
is performed, the virtual agents can be controlled by means
of specific software components that the simulator executes to
manifest the agents’ behavior in the virtual scene. Advanced
simulator environments also offer rich control dashboards that
render graphically the virtual 3D scene and allow the user of
the simulator to interact with it through input devices while the
scene develops. In our framework, to ensure that the deployed or-
chestrator enforces the same policies as in the formal model and
that, in case of simulation, the virtual agents behave correspond-
ingly to their respective SHA, a model-to-code mapping principle
converts every SHA into an executable deployment unit. The
latter consists of the executable orchestrator script or the scripts
governing the agents’ behavior – either the humans or the robot –
within the virtual scene. As the presence of humans in the physi-
cal setting is not always guaranteed and, when human agents are
patients in distress, even discouraged, the application designer
performing the simulation directly controls human avatars within
the virtual scene to make their simulated behavior more realistic.
The framework allows the designer to issue commands to the
avatars by means of input devices, such as the keyboard, through
the scripts which control them. The human actions modeled with
the automata are mapped to keys; keystrokes performed by the
application designer are interpreted by the scripts and then ren-
dered in the scene. In the simulated environment, scripts extract
a random sample from a pool of publicly available electromyo-
graphy signals and estimate fatigue rates using the technique
described in [40,41]. This feature replicates both the behavior of
physical fatigue sensors and the stochastic behavior of fatigue
rates (i.e., through random sampling) that would be observable
in a real setting, whose impact on the formal modeling approach
is described in Section 4.

The deployed orchestrator and the agents communicate over
a network of ROS publisher and subscriber nodes [25] (the ‘‘Mid-
dleware Layer’’ in Fig. 2). Each automaton described in Section 4
corresponds to a deployment unit (e.g., AO maps to the exe-
cutable orchestrator and AR to the robot). The firing of an event
through channels in set C in the formal model (of which Fig. 11
shows an overview) corresponds to the publication of a message
on a ROS topic. More specifically, the deployment unit corre-
sponding to the ‘‘sender ’’ SHA (i.e., the one with the edge labeled
18
with c! with c ∈ C) is the publisher node, whereas the ‘‘receiver ’’
SHA (i.e., with the edge labeled with c?) is the subscriber node.

For each run or simulation of the application, system logs
are collected and processed to be examined by the designer
for the reconfiguration phase. Specifically, all data that sensors
(either real or simulated) publish through ROS nodes (i.e., the
robot’s battery and position values, and all humans’ fatigue and
position values) are stored to be examined. The robot carries out
the mission by providing services in sequence. The orchestrator
logs relevant events concerning the advancement of each service:
when it begins, when it is completed, when it has to be inter-
rupted and why (either the human is too tired or the battery is too
low), whether the entire mission ends in failure and the source
of the failure. Data logged by the orchestrator are necessary to
assess whether the deployed mission has ended with success.

5.2. Scenario reconfiguration

The reconfiguration phase begins by processing data collected
during the deployment to extract metrics comparable with those
calculated at design-time. An example is the success rate ob-
served during the deployment phase to be compared with the
value of PM (ψ), with ψ expressing the success of the mission. The
designer performs this comparative analysis to assess whether
unexpected contingencies emerged at runtime. If deploying the
application highlights unforeseen critical situations, the designer
may decide to reconfigure the scenario and iterate all the phases
of the workflow in Fig. 2 with the new configuration.

Data analysis from deployment and reconfiguration may be
necessary as SHA modeling human behavior have stochastic fea-
tures that are necessarily an approximation of the behavior ob-
servable in reality. On the other hand, the framework targets the
service level of robotic systems’ architectures [36], as it focuses
on the workflow of the mission rather than on aspects related
to hardware or structural components: automata modeling the
robot, its battery, and the orchestrator do not thus have stochastic
features (i.e., in Ar, Ab, and Ao, function D(l) is undefined for
all l ∈ L and all edges have probability weight 1). Possible
reconfiguration measures include:

RM1. Assigning a different robot to the task, if the facility has
more than one available device. It may not be feasible for
a human subject participating in a service to change their
starting position due to facility policies (e.g., patients nec-
essarily start in the waiting room). On the other hand, two
robotic devices in a fleet may differ either because of their
starting position or initial battery charge. In both cases, this
reconfiguration measure can cut down the overall duration
of the mission. In the first case, the robot may require less
time to reach the first human to serve. In the second case,
the robot may take less time to recharge, or skip recharging
entirely while carrying out the mission.

RM2. Changing the order in which humans are to be served. Note
that this is only possible if there are no logical dependencies
between the services being swapped. This measure can
reduce the overall duration of the mission if the robot
has to cover a smaller distance between services and the
maximum level of fatigue reached by human subjects (thus,
impacting their wellbeing), for example if a patient has
more time to rest between two services.

RM3. Changing the target of a pattern, if feasible and com-
pliant with the facility policies. An example is a patient
following the robot directly to the doctor’s office without
going through the waiting room first. This reconfiguration
measure can reduce both the duration of the mission and
the level of fatigue reached by the human subjects. As a
matter of fact, reducing the active time leads to a decrease
in the fatigue endured, since, during a fatigue cycle, time is
the only variable in Eq. (2).

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t
e
R

f

5

e
d

a

h

e

RM4. Modifying the orchestrator’s thresholds. For example, it
is possible to reduce the charge threshold at which the
robot is instructed to move to the recharge station or
the fatigue level at which the orchestrator instructs the
human to stop walking. The designer must handle the
trade-off between the decrease in mission duration and
the increase in probability of failure (for example, due to
battery degradation).

The cyclical nature of the framework allows the analyst to
modify the scenario and perform multiple iterations of the anal-
ysis until verification results are deemed acceptable. The frame-
work also supports the designer in terms of which and how
many parameters of the scenario require manual specification.
Parameters concerning the robot (i.e., speed and acceleration)
and battery behavior (i.e., charge and discharge rates) are pro-
vided by the framework to decrease the manual effort required
on the designer’s side. Designers manually specify parameters
concerning the specific robotic mission (i.e., how many humans
are involved and the service they request) whose value cannot be
known a-priori by the framework. Should the tuning of such pa-
rameters result overly cumbersome for the practitioner, splitting
the mission into smaller sequences to be individually analysed is
feasible.

6. Experimental validation

This section presents the results obtained while validating the
presented approach on case studies inspired by the healthcare
setting. The validation process addresses the following questions:

G1. Is the formal model presented in Section 4 adherent to the
physical robotic system and how accurate are SMC results?

G2. Is the model-driven framework described in Sections 3 and
5 practical and useful while developing interactive scenar-
ios with multiple subjects and services? More specifically,
we evaluate:

(a) how the DSL supports designers in configuring com-
plex scenarios;

(b) how the design-time analysis phase provides reliable
and valuable insights into the modeled scenario;

(c) how scenarios can be reconfigured to improve key
indicators (the probability of success and estimated
fatigue level of human subjects).

Both validation phases have been carried out following the
framework workflow in Fig. 2. Firstly, we model the scenarios
through the DSL described in Section 3. The case studies feature
one mobile robot providing services (in compliance with the
patterns presented in Section 3.1) to one or multiple humans.
Agents operate within the floor layout represented in Fig. 12,
corresponding to the third floor of Building 22 of Politecnico di
Milano. Specifically, Fig. 12(a) highlights the POIs, while Fig. 12(b)
shows how the real layout is abstracted as a set of rectangular
areas as described in Section 3.2.1. While the physical layout
where the robotic device moves is a university building, its areas
are repurposed in the simulation environment to reproduce a
healthcare setting. The layout features a main entrance ENTR
where the robot meets patients to assist them and two side aisles,
each with cupboards containing medical kits (CUP1 and CUP2),
wo rooms serving either as waiting rooms for the patients or
xamination rooms where doctors administer medications (R1a,
1b, and R2), and doctors’ offices (OFF1, OFF2, and OFF3).
DSL models6 are automatically converted into a JSON file and

inally into an Uppaal model implementing the SHA network

6 The DSL sources are available at:https://github.com/LesLivia/hri_dsl (10.
281/zenodo.7581827).
19
described in Section 4 modeling the specific scenario.7 The frame-
work also automatically sets up and runs the SMC experiment.
For the case studies discussed in this section, we perform SMC
through Uppaal v.4.1.26 on a machine running macOS v.10.15.7
with 4 cores and 8 GB of RAM.

All case studies are subsequently deployed as described in
Section 5.1 [15].8 We have adopted the digital-twin deployment
pattern [42] (see Fig. 13) with a real mobile robot operating
in the physical environment (shown in Fig. 13(b)) and reacting
to virtual human subjects in the simulation scene (of which a
portion is shown in Fig. 13(a)). For the experimental campaign,
human avatars are controlled as described in Section 5.1, that
is with the designer being able to step in at any time during
mission execution to possibly trigger haphazard human actions
through keystrokes. The hybrid deployment environment allows
us to verify the adherence of the robotic system’s model and
the orchestrator’s efficacy with a real device while also perform-
ing several runs with (virtual) subjects exhibiting critical fatigue
profiles. Electromyography signals serving as dataset to simu-
late fatigue curves in the simulation environment are provided
by [43]. The mobile device is a TurtleBot3 Waffle Pi.9 Scenarios
are deployed using V-REP v.3.6.2 for the simulation scene, Python
v.3.6.9 for the orchestrator script, and ROS Melodic to communi-
cate with virtual agents and the TurtleBot3 [25]. The deployment
software tools run on a single machine running Ubuntu v.18.04
with 2 cores and 4 GB of RAM.

6.1. Formal model validation

The purpose of the hereby presented experiments is to assess
the accuracy of the formal model presented in Section 4 and of
the SMC results (validation goal G1). To this end, we perform the
design-time analysis as presented in Section 3 on three scenarios,
referred to as HF (‘‘Human Follower’’), HL (‘‘Human Leader’’) and
LB (‘‘Low Battery’’), all taking place in the experimental setup in
Fig. 12. The service sequence constituting the mission, the robot’s
starting position, and each service’s target POI are reported in
Table 4. The three scenarios are structured to validate the main
features of the formal model: human–robot dyadic leader/fol-
lower dynamics, human fatigue model, robot’s battery model,
and orchestrator policies. Therefore, the three experiments test
the formal model with both critical (low battery in LB and high
fatigue in HL) and non-critical elements (high battery in HF/HL
and low fatigue in HF/LB).

We perform SMC with decreasing values of time bound τ

to estimate the success probability of the three scenarios (i.e.,
query with QueryType P_SCS). This corresponds to the value of
expression PM (⋄≤τ scs), where M is the SHA network modeling
ach mission. SMC experiments are performed in Uppaal with
efault statistical parameters, thus with ϵ = α = 0.05. We also

estimate the maximum average human fatigue value (expression
EM,τ [max(f)]), and the robot’s expected residual charge at the end
of the mission (expression EM,τ [min(bchg,%)]), i.e., queries with
QueryType E_FTG and E_CHG, respectively.

Subsequently, we deploy the three scenarios in the digital-
twin setting (see Fig. 13) to collect runtime observations, compute
the same metrics, and compare the results with those obtained
at design-time. To this end, we apply a partial replication of
SMC (summarized by Algorithm 1) to the traces collected through

7 The software tool to automatically generate the Uppaal model is available
t: https://github.com/LesLivia/hri_designtime (10.5281/zenodo.7581793).
8 The software tool implementing the deployment approach is available at:
ttps://github.com/LesLivia/hri_deployment.
9 Full documentation and technical specifications available at: https://
manual.robotis.com/docs/en/platform/turtlebot3/overview/.

https://github.com/LesLivia/hri_dsl
https://doi.org/10.5281/zenodo.7581827
https://doi.org/10.5281/zenodo.7581827
https://github.com/LesLivia/hri_designtime
https://doi.org/10.5281/zenodo.7581793
https://github.com/LesLivia/hri_deployment
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387
Fig. 12. Layout used for the experimental validation.
Fig. 13. Hybrid real/simulated deployment environment.
Table 4
Scenarios used for the formal model validation phase (abbreviation and detailed description). For each service, we indicate the
starting location of the human and the target location as START→ TARGET.
Scenario Description Mission START→ TARGET

HF The robot (Tbot) leads the human (H1) from OFF1 to
CUP1. The robot is sufficiently charged to complete the
mission, and the human exhibits a non-critical fatigue
profile (Young/Healthy).

H1 Follower OFF1 → CUP1

HL The robot (Tbot) follows the human (H1) from OFF1 to
CUP1. The robot is sufficiently charged to complete the
mission, and the human exhibits a critical fatigue
profile (Elderly/Sick).

H1 Leader OFF1 → CUP1

LB The robot (Tbot) leads the human (H1) from OFF1 to
CUP1. The robot gets fully discharged during the
mission, while the human exhibits a non-critical fatigue
profile (Young/Healthy).

H1 Follower OFF1 → CUP1
20

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

d

1
1
O

t

t
b
i
a

C
1
d
U
α
t
a

f
t

i
d
t
t
e
r
w
7
H
w

i
e
t
s
r
r
w
d
i

s
r
t
f
i
i
f
b
τ

c
t
(
s
s
b

r
0
a
v
N
o
m
i
a

Algorithm 1 Estimation of the success probability CI for a set of
eployment traces DT .

Input: DT , τ , Nh, Tint, α
1: DT scs ← ∅

2: for dt ∈ DT do
3: SVDdt ← {t|t ∈ N ∧ i ∈ [1,Nh] ∧ hi,svd ∈ dt(t)} ▷

Timestamps corresponding to the end of a service.
4: if |SVD |= Nh ∧max(SVD) ≤ τ − Tint then
5: DT scs ← DT scs ∪ {dt} ▷ All humans have been served

within τ − Tint.
6: end if
7: end for
8: pl ← ppf(α/2, |DT scs|, |DT | − |DT scs| + 1)
9: pu ← ppf(1− α/2, |DT scs| + 1, |DT | − |DT scs|)
0: ϵ ← (pu − pl)/2
1: p← pl + ϵ
utput: p, ϵ

deployment to estimate the success probability range observed at
runtime. We refer to the simulation log and sensor logs collected
during a single run (described in Section 5.1) as deployment
race. Given deployment trace dt , we indicate as dt(t) the set of
data (sensor readings and milestones recorded by the orchestra-
tor, if any) logged at time t ∈ N. Since the orchestrator records
the timestamp at which each human is served, it is possible to
infer from a deployment trace dt whether the mission ended
successfully. If human i ∈ [1,Nh] has been served in trace dt ,
there exists t ∈ N such that hi,svd ∈ dt(t) holds. We indicate as
DT the set of all deployment traces collected for a given scenario.
Set SVDdt = {t|t ∈ N ∧ i ∈ [1,Nh] ∧ hi,svd ∈ dt(t)} at Line
3 in Algorithm 1 contains the timestamps corresponding to the
completion of a service in a specific trace dt . Similar to SMC,
given a time-bound τ and the set of collected deployment traces
DT , for each deployment trace dt ∈ DT we check whether the
mission has ended with success within τ (i.e., whether ⋄≤τ scs
holds for dt). Algorithm 1 checks through the condition on Line
4 whether set SVDdt has Nh elements (i.e., all humans have been
served) and the maximum of SVDdt is smaller than τ − Tint (i.e.,
he last human to be served has been served within the time
ound minus the time required by the orchestrator to process the
nformation). If condition on Line 4 is verified, trace dt constitutes
success and is added to set DT scs by the instruction on Line 5.
Algorithm 1 computes PDT (⋄≤τ scs) in terms of a Bayesian

onfidence Interval (CI) of the form p ± ϵ with confidence level
− α. We adopt the Clopper–Pearson approach for binomial
istributions to compute the CI as it is also exploited by the
ppaal tool. Specifically, pl = p − ϵ can be calculated as the
-quantile of a Beta distribution with parameters successes and
rials− successes+ 1 (Line 8), while pu = p+ϵ can be calculated
s the γ -quantile with γ = 1− α and parameters successes+ 1

and trials− successes (Line 9) [44].10 Unlike point estimator
successes/trials, this procedure also provides an insight into the
variability of the success rate (i.e., the value of ϵ) and how its
value changes as more runs are performed.

The results of the SMC experiments, the time and runs neces-
sary to complete it with the required level of confidence, and the
fatigue and charge estimations are reported in Table 5 (marked
as DT, ‘‘Design Time’’). The success probability ranges estimated
for scenarios HF, HL, and LB through Algorithm 1 are reported in
Table 5 (marked as DEPL, ‘‘Deployment’’).

10 The Python implementation exploits the scipy.stats.distributions.beta.ppf
unction (referred to as ppf in Algorithm 1) from the SciPy library to calculate
he required quantiles. Full documentation available at: https://docs.scipy.org.
 t

21
Results in Table 5 corroborate the intuition that, for decreas-
ng values of τ , the probability of success decreases both at
esign time and during deployment. Experimental results with
he largest difference between design-time and deployment es-
imations are highlighted in gray. We select values of param-
ter τ to be displayed in Table 5 corresponding to probability
anges in three macro-intervals: high success probability (i.e.,
ith p > 80%), average success probability (i.e., with 40% < p <
0%), and low success probability (i.e., with p < 25%). Scenarios
F and HL require 75 s and 50 s, respectively, to end successfully
ith probability range 0.95 ± 0.05, while it drops to approxi-

mately 20% when the analysis is bounded to 34 s and 33 s. The
variability of the success probability between runs within 34 s
(for HF) or 33 s (for HL) and those requiring up to 75 s is due to
the human stopping haphazardly during the mission as described
in Section 4.1, causing a delay in the completion of the mission. As
shown in Table 5, the configurations with the largest difference
between design-time and runtime estimations of the success
probability (highlighted in gray) are also the ones requiring the
largest number of traces for the SMC experiment (395 and 389
compared to the 110 and 120 performed in the physical setting).
This is due to how PM (⋄≤τ scs) and PDT (⋄≤τ scs) are calculated:
f traces that have been generated or collected are consistent with
ach other (e.g., they are all successful), it takes a smaller set of
races to obtain a certain value of ϵ than when the number of
uccesses fluctuates. Indeed, the estimated success probabilities
esulting from the configurations requiring the largest number of
uns (395 for HF and 389 for HL) are also the closest to 50%. In the
orst case, the values of p estimated at design-time and runtime
iffer by 6.7% (for HF) and 1.4% (for HL) while this drops to 0.2%
n the best case.

Data collected through the three scenarios are also neces-
ary to assess whether the formal model accurately captures the
obot’s battery voltage drop (i.e., the battery discharging while
he robot is operative). To estimate the expected minimum charge
or the same decreasing values of τ used for the success probabil-
ty ranges, we calculate the value of expression EM,τ [min(bchg,%)]
n Uppaal (column DT) and the average of minimum values logged
or each deployment trace EDT ,τ [min(bchg,%)] (column DEPL). Ta-
le 5 reports the battery charge percentage estimations at time
for the three scenarios, highlighting, as in previous cases, the

onfigurations leading to the largest estimation error. We recall
hat the differential equations obtained by deriving Eqs. (8) and
9) constrain the battery voltage ([V]), whose value in the real
ystem is directly measured through a sensor. The percentages
hown in Table 5 are calculated according to Eq. (12), where
chg represents the dense counter presented in Section 4.2.2 (for

column DT) or the value shared by the real sensor (for column
DEPL), Cfail is the lowest voltage value allowed by the device (as
presented in Section 4.2.2), and Cfull is the (approximate) voltage
value when the battery is fully charged.

bchg,% =
bchg − Cfail

Cfull−Cfail

· 100 (12)

For the three scenarios, we estimate the residual battery charge,
assuming that C0 is set to 99%, 75%, 0.8% for HF, HL, and LB,
espectively. The largest estimation error is 0.61% for HF and
.53% for HL. Unsurprisingly, charge-related estimations are more
ccurate than for human fatigue, which has a higher degree of
ariability and is subject to the human’s unforeseeable choices.
evertheless, the time span required for the scenarios is orders
f magnitude shorter than a full battery discharge cycle (approxi-
ately 2.5 h). Therefore, while these estimations provide insights

nto how accurate the model is in the range of seconds, we have
lso assessed its accuracy in the longer run. We have recorded
he real battery sensor readings over the course of three full

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

r
t

t
s
(
a
e
i
w

e
c
i
i

i
w
r
c
p

Table 5
Comparison between the results obtained through SMC at design time (DT) and the results obtained by deploying the three model validation
scenarios (DEPL). For decreasing values of time bound τ ([s]), the table contains the verification time ([min]), the probability CI estimated
through Uppaal, the CI observed at runtime, and the runs necessary to compute such estimations. The table also contains the estimated
maximum human fatigue values ([0− 1]) and minimum charge levels ([%]). For each metric, configurations leading to the least accurate
results are highlighted in gray.
SC. τ Ver. Time [min] Success probability Runs Max. fatigue Min. charge

DT DEPL DT DEPL DT DEPL DT DEPL

HF

75 0.41 0.950± 0.05 0.950± 0.05 29 110 0.0208± 0.004 0.0211± 0.007 95.54% 95.75%
53 3.42 0.859± 0.05 0.865± 0.06 199 110 0.0177± 0.005 0.0179± 0.008 96.86% 96.27%
50 3.23 0.812± 0.05 0.800± 0.07 250 110 0.0167± 0.003 0.0168± 0.008 97.05% 96.51%
40 4.25 0.433± 0.05 0.500± 0.10 395 110 0.0125± 0.004 0.0125± 0.008 97.65% 97.11%
34 2.19 0.239± 0.05 0.252± 0.08 296 110 0.0112± 0.003 0.0114± 0.003 98.01% 98.10%

HL

50 0.31 0.950± 0.05 0.950± 0.05 29 120 0.2015± 0.037 0.1939± 0.050 73.71% 73.32%
42 2.72 0.826± 0.05 0.840± 0.07 236 120 0.1763± 0.038 0.1623± 0.051 74.19% 74.17%
38 2.46 0.676± 0.05 0.664± 0.09 354 120 0.1599± 0.014 0.1577± 0.025 74.43% 74.38%
35 3.94 0.409± 0.05 0.395± 0.09 389 120 0.1545± 0.042 0.1561± 0.027 74.61% 74.55%
33 2.13 0.216± 0.05 0.208± 0.07 277 120 0.1451± 0.045 0.1434± 0.025 74.74% 74.91%

LB 150 1.02 0.000± 0.05 0.000± 0.05 29 107 – – 0.001% −0.001%
Fig. 14. Graph representing the battery voltage (Q [V]) evolution during a complete TurtleBot3 discharge/recharge cycle (approximately 140 min each). Dots represent
eal voltage sensor readings. The red and green lines are the fitted discharge and recharge curve, respectively. Black dashed lines mark the voltage values corresponding
o 100% (about 12.4 V) of the charge and 0% (11.0 V). The red dashed line marks the time instant where the design-time estimation is the least accurate. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
discharge/recharge cycles. This set of data has been used to fit
parameters in Eqs. (8) and (9) governing the evolution of real-
valued variable Q in the SHA. Fig. 14 shows the voltage curves
(modeled in SHA through real-valued variable Q) resulting from
he fitting (red and green lines), compared against the actual
ensors readings of a fourth complete discharge/recharge cycle
gray dots). Sensor readings used to fit the curve parameters
nd those shown in Fig. 14 are different data sets. The largest
stimation difference (also highlighted in Fig. 14) is 0.54%, which
s comparable to the previously described differences obtained
ith the three scenarios.
Scenario LB requires a separate analysis. The purpose of this

xperiment is to assess whether the formal model accurately
aptures reality in a boundary condition where the robot’s charge
s insufficient to complete the mission (as previously mentioned,
n this case C0 is 0.8%). When the mission starts, since the charge
level is too low (c ≤ Clow holds), the orchestrator immediately
nstructs the robot to start moving towards the recharge station,
hich, however, requires about 3.5 min to be reached while the
obot has only 2.5min of battery life left. The design-time analysis
orrectly predicts this outcome as the mission has 0% success
robability within 150 s (see Table 5), and all the collected de-

ployment traces end in failure. No fatigue estimation is provided
in this case since the human never starts moving. As a matter of
fact, the robot needs to recharge as soon as the mission starts,
thus the orchestrator immediately enters submachine rrech (see
Fig. 11) without sending any instructions to the human. As per
Formula (10), failure occurs when voltage drops sufficiently close
to 0%, which is why the estimation reported in Table 5 is not
exactly 0% but the estimated probability of failure is still 1. On the
other hand, the negative percentage estimated from deployment
traces is due to how the real device works. As soon as the detected
22
battery voltage equals 11 V, the device will start emitting an
acoustic signal to notify the need to recharge, it will beep for a
few seconds and then stop sending power to the motors (thus,
no motion is possible). From the moment it starts beeping to the
moment it stops moving, the voltage drops slightly below 11 V,
leading to the negative percentage (see Eq. (12)).

Concerning the estimation of the human fatigue, Table 5 re-
ports the maximum value estimated through Uppaal (column
DT) and from deployment traces (column DEPL). To estimate
the maximum fatigue expected value at design time, we com-
pute the value of expression EM,τ [max(f)] in Uppaal (Table 5,
column DT), whose result is a 95% confidence interval of the
requested value [17]. The same procedure is applied to the set
of deployment traces DT . For each deployment trace, we calcu-
late the maximum value of fatigue of the human subject within
time bound τ . The so-obtained values constitute the set of in-
dependent samples, of which we subsequently calculate the 95%
confidence level (results are reported in Table 5, column DEPL).
In scenario HF, the human has the least critical fatigue pro-
file (Young/Healthy), thus it only reaches a fatigue value of ap-
proximately 2%. For this scenario, in the worst case, the largest
design-time estimation error (calculated as difference between
the average value at design time and observed during deploy-
ment) is 1.75%. In HL, the human reaches higher fatigue values (up
to approximately 20%). All intervals calculated from deployment
traces fall within the range estimated at design-time. In the
worst case, also highlighted in Table 5, the estimation error is
8.6%. Although design-time estimations pertaining to fatigue are
promising, it is important to remark that the simulator scripts
governing human behavior during deployment directly result
from the model-to-code transformation (presented in [15]) of
the SHA described in Section 4.1. These results, therefore, do

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

i

c
p
l
h

Table 6
Scenarios used for the framework validation phase (abbreviation, detailed description, and sequence of services). For each service,
we indicate the starting location of the human and the target location as START→ TARGET.
Scenario Description Mission START→ TARGET

DPa The robot (Tbot) serves a patient–doctor pair (P1/D1,
respectively). The robot meets the patient by the entrance
(ENTR) and leads them to the waiting room (R1b) to wait
for the doctor to visit them. The robot follows the doctor to
CUP1 where they fetch required tools, and follows them
back (carrying the tools) to the examination room (R2)
where the patient will receive the treatment. Finally, the
robot returns to R1b and escorts the patient to R2 where
the doctor is waiting.

P1 Follower,
D1 Leader,
D1 Leader,
P1 Follower

ENTR → R1b,
R2 → CUP1,
CUP1 → R2,
Rb1 → R2

DPb The robot (Tbot) serves a patient–doctor pair (P1/D1,
respectively). The robot meets the patient by the entrance
(ENTR) and leads them to the waiting room (R1a) to wait
for the doctor to visit them. The robot approaches CUP2 to
retrieve a required medical kit, and then delivers it to D1 at
OFF2. The robot follows the doctor to the examination
room (R2) where the patient will receive the treatment.
Finally, the robot returns to R1a and escorts the patient to
R2 to be treated.

P1 Follower,
D1 Recipient,
D1 Leader,
P1 Follower

ENTR → R1a,
OFF2 ↔ CUP2,
OFF2 → R2,
R1a → R2

DPc The robot (Tbot) serves two patient–doctor pairs (P1 and
P2 are patients, D1 and D2 are doctors). The robot meets
P1 by the entrance (ENTR) and leads them to the waiting
room (R1a), then it performs the same task for P2 leading
them from the entrance to R1b. The robot fetches the first
required medical kit from CUP1 and delivers it to D1 at
OFF1. The robot then serves D2 by following them to CUP2
and back to their office (OFF3) while carrying the kit.
Finally, the robot leads P1 to OFF1 and P2 to OFF3 as both
doctors are ready to visit them.

P1 Follower,
P2 Follower,
D1 Recipient,
D2 Leader,
D2 Leader,
P1 Follower,
P2 Follower

ENTR → R1a,
ENTR → R1b,
OFF1 ↔ CUP1,
OFF3 → CUP2,
CUP2 → OFF3,
R1a → OFF1,
R1b → OFF3
t
i
D
o

not constitute a conclusive empirical proof that SHA modeling
humans accurately capture reality. Nevertheless, since simulated
sensors share their readings with the orchestrator over actual ROS
topics, the limited design time-to-deployment errors indicate that
modeling patterns dealing with readings update and publishing
(i.e., the pattern in Fig. 6 and the RosPubNode pattern presented
n [15]) are reliable.

Concerning performance and scalability, given the limited
omplexity of the scenarios analyzed in this batch of SMC ex-
eriments, verification experiments performed through Uppaal
ast between 0.31 and 4.25 min. For the deployment phase, we
ave performed a total of 337 real runs (110 for HF, 120 for

HL, 107 for LB). By factoring in the time required to perform
each run, reset the layout to its starting configuration at the end
of each run, and the time required to recharge the robot, this
corresponds to approximately 64 h of non-stop deployment and
runtime data collection. Considering that, in a real healthcare
facility, employees have multiple tasks to deal with, robots are
not actively deployed 100% of the time, and there are time breaks
between shifts, the data collection phase would take a longer
time.

6.2. Model-driven framework validation

After the analysis on the accuracy of the formal model, we
focus on the overall efficacy of the model-driven framework
(goal G2). To this end, we have analyzed 41 real-world scenarios
describing service robotic applications extracted from [45–50].
We remark that, given that service robot deployment is not
widespread at the time of writing, there is no structured reposi-
tory collecting natural language specifications of such scenarios;
to the best of the authors’ knowledge, the RoboMAX repository
(providing 14 of the 41 identified scenarios) is the first attempt
in this direction [46]. Therefore, the scenario collection phase
has been performed manually by surveying related works in the
literature and commercial service robots’ documentation. Within
the set of eligible scenarios, we consider 14 scenarios to fall
 l

23
outside of the scope of our framework. As our work targets ser-
vice robot applications featuring mobile robots that interact with
humans, we consider out-of-scope all scenarios featuring robots
that operate autonomously (e.g., performing patrolling or auto-
mated room cleaning), are teleoperated, or provide information
without expecting any reaction on the human side (e.g., periodical
medication reminders). For the 27 scenarios that are within the
scope of the framework, we map the provided natural language
description to a mission as intended in our framework (i.e., a
sequence of interaction patterns with a target in the layout). By
doing so, we assess that 24 scenarios can be modeled through our
framework, leading to a coverage percentage of scenarios existing
in the literature of 88.8%. The three scenarios that our framework
does not cover feature: (a) exoskeletons, which are considered
service robots by standard ISO 13482 [51] (thus, they are in-scope
with respect to our framework) but require different software
development practices than mobile robots that our framework
targets; (b) cognitive interaction (e.g., comforting children or re-
habilitating cognitive skills of patients recovering from strokes),
whereas our framework targets physical coordination between
humans and robots.

To address goal G2, we have developed three scenarios fea-
turing more sophisticated missions, referred to as DPa (‘‘Doctor–
Patient’’), DPb, and DPc, which feature frequent tasks from the
24 scenarios found in the literature (i.e., fetch-and-delivery tasks,
doctor–patients dynamics, patient greeting, and transporting
items). The three scenarios (i.e., the service sequence constituting
the mission, start and target POI for each service) are described
in detail in Table 6. In all three scenarios, the robot has to serve
one (in DPa and DPb) or two (DPc) pairs of human subjects rep-
resenting a doctor and a patient. The robot always accompanies
the patient to the waiting room (R1a, R1b, or R2) first (adhering,
hus, to the Follower pattern), and then supports the doctor
n retrieving the instrumentation needed to treat the patient.
octors are either Leaders (D1 in DPa and DPb, and D2 in DPc)
r Recipients (D1 in DPc) depending on whether they personally
ead the robot to destination or it moves independently and then

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

m

i
i
r
o
A
t
e
a
v
i
E
t
o
w
r
o
h
b
g
t
(
g
t

c
s
D
s
a
s
b
v
S
w
i

|

T
t

f
e
t
m

Table 7
Results of the DSL2SHA calculation, of the design-time analysis (DT) and of the deployment phase (DEPL) for scenarios DPa, DPb, and DPc. For decreasing values of τ
([s]), the table contains the verification time ([min]), the success probability CI estimated through Uppaal, the mean success rate observed at runtime, the estimated
maximum fatigue value for all humans, and the estimated minimum charge value for the robot. Fatigue and charge level are estimated for the maximum value of
τ for each scenario. For each metric, configurations leading to the least accurate results are highlighted in gray.
SC. DSL2SHA τ Ver.Time [min] Success probability HUM. Max. fatigue ROB. Min. charge

DT DEPL (p) DT DEPL DT DEPL

DPa
235/863
(27.2%)

400 16.36 0.933± 0.05 1.00
P1
D1

0.2664± 0.014
0.0372± 0.004

0.2385
0.0332 Tbot 82.4% 82.77%350 54.67 0.706± 0.05 0.60

300 59.09 0.419± 0.05 0.40

DPb
235/876
(26.8%)

520 22.69 0.909± 0.05 1.00
P1
D1

0.2469± 0.009
0.0248± 0.007

0.2191
0.0235 Tbot 80.4% 79.99%450 64.29 0.597± 0.05 0.50

400 26.88 0.227± 0.05 0.20

DPc
283/1161
(15.7%)

1500
1400
1300

54.54
123.52
175.68

0.920± 0.05
0.792± 0.05
0.421± 0.05

1.00
0.80
0.40

P1 0.2860 ± 0.063 0.3070

Tbot 64.3% 67.85%D1 0.0064 ± 0.002 0.0067
P2 0.6028 ± 0.044 0.6610
D2 0.0218 ± 0.002 0.0261
p
e
c
o
G
c
n
s

delivers the resource. For this experimental phase, the robot’s
charge is always sufficient (the opposite boundary condition has
already been investigated with scenario LB), and patients exhibit
ore critical fatigue profiles than doctors.
As per Fig. 2, the entry point to the design-time phase analysis

s the specification of the scenarios through the DSL presented
n Section 3. The complete DSL file for the three scenarios is
eported in Appendix B. All scenarios are set in the same lay-
ut (shown in Fig. 12), thus, there is only one floor definition.
gents participating in the three scenarios are fixed; specifically,
he DSL features one robot definition (identified as Tbot) and
ight human definitions (P1 and D1 for DPa, P1 and D1 for DPb,
nd P1, D1, P2, and D2 for DPc). We recall that the maximum
elocity and acceleration for the robot are directly derived from
ts type parameter, which, in this case, is turtlebot3_wafflepi.
ach scenario in Table 6 corresponds to a robotic mission, thus,
here are three mission definition blocks defining the sequence
f services that the robot must provide to complete the mission
ith success. Finally, queries are defined to compute the metrics
equired to carry out this design-time analysis, i.e., the probability
f success for decreasing values of τ , estimated fatigue for all
uman subjects, and residual battery charge. Parameter R (the
ound on runs) is set to auto, to indicate that Uppaal should
enerate as many runs as necessary to compute estimations with
he requested confidence level. As per Fig. 5, for each mission
thus, in our case, DPa, DPb, DPc), a JSON file is automatically
enerated and converted into a pair of Uppaal model/query files
o perform verification.

We assess the ‘‘efficiency’’ of the DSL in terms of effort saved
ompared to manually drafting the SHA network modeling each
cenario. To this end, we calculate the ratio (indicated as
SL2SHA in Table 7) between the size of a DSL instance and the
ize of the corresponding SHA network. We compute the size of
DSL model as the number of words needed to configure the

cenario. Counting words rather than abstract elements captured
y the DSL gives us a more accurate indication of the DSL’s
erbosity: note that, since the declaration of each element in
ection 3.2 requires at least one word, counting abstract elements
ould result in more favorable ratios. Given a SHAA, we compute

ts size, indicated as |A| according to Eq. (13):

A| = |E| + |Γ (W)| + |C!?| + |Ξ (W)| + |L| + |D| + |F| + |W | (13)

he size of a network of SHA equals the sum of the sizes of all
he SHA that compose it. Table 7 reports the resulting ratios.

SMC results are reported in Table 7 and discussed in the
ollowing. For this validation phase, the duration of verification
xperiments performed through Uppaal ranges from 16.36 min
o 175.68 min in the worst case (i.e., scenario DPc, which has the
ost complex robotic mission and highest τ values). Unlike the
24
revious phase, the goal in this case is to test the framework’s
fficacy when developing realistic scenarios. Therefore, we do not
ollect a large batch of deployment traces to keep the duration
f the deployment phase more practical (i.e., shorter than 1 h).
iven the smaller number of deployment traces that have been
ollected, the probability of success of the deployed system is
ot calculated through Algorithm 1, as it would yield scarcely
ignificant CIs. In this case, we adopt point estimator p given by
the percentage of successful runs as specified by Eq. (14), where
DT is the set of deployment traces and set SVDdt is calculated
from a deployment trace dt ∈ DT as in Algorithm 1, Line 3.

p =
|{dt|dt ∈ DT ∧ |SVDdt | = Nh ∧max(SVDdt) ≤ τ − Tint}|

|DT |
·100

(14)

Metrics related to fatigue (for each human subject) and battery
charge are computed as in the previous validation phase.

Through the design-time analysis we estimate that the three
scenarios require a τ of approximately 7 min, 9 min, and 25 min,
respectively, to end in success with probability greater than 90%.
As previously mentioned, the robot’s charge is not critical for any
of the scenarios: although DPc is the most demanding in terms
of robot’s power, since the initial charge C0 is 99% the estimated
residual charge at the end of the mission is greater than 60%.
Doctors (i.e., agents D1 and D2) all adhere to the Elderly/Healthy
fatigue profile, thus they do not constitute a criticality to the
mission. As per Table 7, they reach an estimated maximum fa-
tigue level between 2.18% and 3.7%, in particular D1 in DPc (who
participates in the Recipient pattern) reaches the lowest fatigue
value (0.6%) as they only move haphazardly out of free will while
waiting for the robot to deliver the resource (see Section 4.1.3).
On the other hand, as expected, patients reach more critical
values. We remark that, although they walk for longer, patient
P1 in all three scenarios reaches fatigue levels compatible with
those estimated for HL because they have time to rest while the
robot is assisting the doctor.

The design-time analysis highlights that the most concerning
aspect among the three scenarios is the fatigue level reached by
patient P2 in DPc, as they also adhere to a critical fatigue profile
(Elderly/Sick) and have to cover a significant distance from R1b
to OFF3. For all experiments, threshold Fhigh (see Table 3) is set
to 0.6. Therefore, some traces of the formal model feature the
orchestrator instructing P2 to stop and rest (when f ≥ Fhigh
holds) causing a delay in the mission. We remark that this safety
measure embedded in the orchestrator is necessary to prevent
the patient from reaching the maximum value of fatigue, but
it is not sufficient to prevent them from reaching a significant
(average) fatigue level (i.e., approximately 60%).

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

t
f

t
f
t
e
t
r
s
D
e
d
D
N
o
o
t
t

t
d
r
a
t
a
i
i
o
s
m
m
f
s

Table 8
Reconfiguration measures applied to scenarios DPa, DPb, and DPc, and updated sequence of services.
Scenario Reconfiguration measures Mission START→ TARGET

R-DPa The robot (Tbot) leads P1 directly to R2, then it serves D1 by
following them to CUP1 and back to R2.

P1 Follower,
D1 Leader,
D1 Leader

ENTR → R2,
R2 → CUP1,
CUP1 → R2

R-DPb The robot (Tbot) serves D1 first by fetching the resource from
CUP2 and follows them to R2, then it serves P1 and leads them to
R2.

D1 Recipient,
D1 Leader,
P1 Follower

OFF2 ↔ CUP2,
OFF2 → R2,
ENTR → R2

R-DPc The robot (Tbot) leads P2 to R1b first and then provides the same
sequence of services as scenario DPc.

P2 Follower,
P1 Follower,
D1 Recipient,
D2 Leader,
D2 Leader,
P1 Follower,
P2 Follower

ENTR → R1b,
ENTR → R1a,
OFF1 ↔ CUP1,
OFF3 → CUP2,
CUP2 → OFF3,
R1a → OFF1,
R1b → OFF3
Table 9
Results of DSL2SHA calculation and of the design-time analysis of scenarios R-DPa, R-DPb, and R-DPc. For decreasing values of τ ([s]), the table contains the verification
ime ([min]), the success probability CI estimated through Uppaal, the estimated maximum fatigue value for all humans, and the estimated minimum charge value
or the robot. Fatigue and charge level are only estimated for the maximum value of τ for each scenario.
SC. (M) DSL2SHA τ Ver.Time

[min]
Success probability
(PM (⋄≤τ scs))

HUM. Max. fatigue
(EM,max(τ)[max(Fi)])

ROB. Min. charge
(EM,max(τ)[min(C)])

R-DPa
227/768
(29.5%)

300 6.86 0.950± 0.05
P1
D1

0.1042± 0.014
0.0367± 0.004 Tbot 86.51%250 32.56 0.498± 0.05

200 30.10 0.258± 0.05

R-DPb
227/781
(29.0%)

350 10.54 0.950± 0.05
P1
D1

0.1387± 0.008
0.0235± 0.001 Tbot 85.45%320 55.46 0.741± 0.05

300 40.69 0.206± 0.05

R-DPc
283/1161
(15.7%)

1500
1400
1300

20.60
121.59
149.31

0.950± 0.05
0.854± 0.05
0.556± 0.05

P1 0.3034± 0.061

Tbot 64.28%D1 0.0032± 0.001
P2 0.3761± 0.029
D2 0.0245± 0.016
f
o
s
t
r
t
h
R
S

r
c
i
r
c
p
u
w
3
c
t
i
e
t
t
t
t
r

Results observed by deploying the scenarios in the hybrid set-
ing corroborate the outcomes predicted at design-time. As in the
irst validation phase, Table 7 highlights the results corresponding
o larger estimation errors. Specifically, success probability ranges
stimated at design time and reported in column DT (we recall
hat rates in column DEPL are point estimators and, thus, not
eported as ranges) are the least accurate when the average
uccess rate is closer to 50% or 60% (DPa with τ = 350 s and
Pb with τ = 450 s, also highlighted in gray). On the other hand,
stimations of the fatigue level have design time-to-deployment
ifferences range from approximately 5% in the best case (D1 in
Pc) to 16% in the worst case (D2 in DPc, also highlighted in gray).
evertheless, we recall that, although errors are larger than those
btained with the first three scenarios, these are not an indication
f inaccuracies within the formal model as only 5 deployment
races are performed for DPa, DPb, and DPc (compared to more
han 100 for the previous validation phase).

Given the results of the first design-time analysis round and
he data collected during deployment, the designer in charge of
eveloping and maintaining these scenarios may choose to apply
econfiguration measures and refine the three robotic missions
s described in Section 5. The reconfiguration measures applied
o the three scenarios (hereinafter referred to as R-DPa, R-DPb,
nd R-DPc) and the updated sequences of services are described
n Table 8. Since the robot’s battery was not a critical element
n the first round of analysis, replacing the robot with a different
ne or recharging it would not impact the updated results. For
cenarios DPa and DPb, the sequence of services (i.e., the robot’s
ission) is modified to reduce the time required to complete the
ission or, in other words, to obtain a high probability of success

or smaller values of τ . In these two cases, the patient is led
traight to the examination room rather than to the waiting room
25
irst.11 As for the third scenario, the goal is to lighten the strain
n the patient in the most delicate condition. Therefore, the robot
erves P2 first and leads them to the doctor’s office last to allow
hem a longer recovery time while in the waiting room. Table 9
eports the DSL2SHA ratio for the reconfigured scenarios. Note
hat for R-DPc the ratio is unvaried since only the order in which
umans are served is changed. On the other hand, for R-DPa and
-DPb removing one human declaration (13 words) reduces the
HA network size by 11% and 10.8%, respectively.
The results of the second round of design-time analysis are

eported in Table 9. Quality metrics report a slight improvement
ompared to the first round of analysis since the robotic mission
s shorter for R-DPa and R-DPb. In this case, verification time
anges from 10.54 min to approximately 149.31 min in the worst
ase, as scenario R-DPc is substantially unvaried in terms of
erformance. Estimations inform us that for R-DPa and R-DPb the
pdated mission can be completed successfully in less time as
e obtain a success probability > 90% for τ equal to 300 s and
50 s, respectively (compared to 400 s and 520 s for the initial
onfiguration). Since the patient only walks from the entrance
o R2, their estimated maximum level of fatigue is also approx-
mately 60% (in R-DPa) and 43% (in R-DPb) lower than fatigue
stimations obtained with DPa and DPb, respectively, whereas
he value remains essentially unchanged for D1 as they perform
he same actions as in the original scenario. For R-DPc, we observe
hat allowing P2 more time to rest in the waiting room reduces
heir maximum fatigue level by 37%. Furthermore, as they do not
each the critical threshold Chigh = 60% anymore, the orchestrator

11 Note that, in a real healthcare facility, this may not be feasible in all cases:
the examination room must either be empty when P1 is served or equipped to
host more than one patient simultaneously.

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

d
r

6

g

G
e
1
c
p
i
s
h
v
i
c
t

t
t
d
a
h
d
m

oes not instruct them to stop mid-service, leading to a slight
eduction in the duration of the mission.

.3. Discussion

We can summarize how we have addressed the validation
oals as follows:

G1. We have performed more than 300 runs of three experi-
mental scenarios in a digital-twin environment involving
simulated humans and a real robotic device communi-
cating via ROS. Collected deployment traces have been
exploited to assess the accuracy of the formal model and
SMC results.

G2. We have assessed the coverage of our development frame-
work with respect to existing real-world scenarios in the
service robotics domain. We have then collected the most
recurring tasks within the collected set of real applications
into three scenarios to be analyzed and developed through
our framework. In this regard:

(a) We have assessed the efficiency of the presented
DSL by calculating the number of words necessary to
configure the whole SHA network (i.e., the DSL2SHA
metric).

(b) We have analyzed the three scenarios at design-time
and the results of such analysis are reflected by the
deployment traces.

(c) We have reconfigured the three scenarios in light
of the collected deployment traces and iterated the
design-time analysis.

Concerning the analysis of the formal model accuracy (goal
1), as discussed in Section 6.1, we obtain relative estimation
rrors for the probability of success and charge level smaller than
0% also in boundary conditions, e.g., involving subjects with a
ritical fatigue profile or a robot close to full discharge. Success
robability and minimum battery charge ranges provide empir-
cal evidence of the reliability of the SHA modeling the robotic
ystem. Since we have only performed experiments with virtual
uman agents whose model derives from literature analysis, the
alidation of the formal model of human behavior needs further
nvestigation. As future work, the validation process is to be
ompleted by performing experiments with real human subjects
o assess the accuracy of SHA modeling human behavior.

Coverage analysis (enabling the pursuit of goal G2) yields
hat more than 80% of the healthcare scenarios extracted from
he literature that fall within the scope of this work can be
esigned and deployed through the presented framework. The
nalysis carried then out on scenarios DPa, DPb, and DPc shows
ow the framework supports practitioners throughout the entire
evelopment process by automating the generation of the formal
odel and the deployment of the resulting application.
The analysis of the DSL2SHA ratio (smaller than 30% in all

cases) shows that the DSL requires less effort than manually
drafting the formal model (goal G2a). DSL2SHA values show that
the DSL grows more efficient than the manual creation of the
formal model as the size of the SHA network in question in-
creases. This is due to the fact that the portion of DSL configuring
the geometrical layout (which is the same for all scenarios in
Section 6.2, regardless of the complexity of the mission) is the
most verbose element. This issue is to be addressed in the future
by automatically acquiring the information regarding the layout
from planimetries to significantly boost the efficiency of the DSL.

Indicators estimated through the design-time analysis phase
of the three scenarios are corroborated by the observations col-
lected during deployment (goal G2b). With a small number of
26
deployment traces (i.e., 5), relative estimation errors do not ex-
ceed 16%. As for goal G2c, reconfiguration measures applied to
scenarios DPa and DPb (through minor modifications to the DSL
specification) improve the estimated success probabilities with
a 25% smaller time bound (300 s compared to 400 s) and 33%
(350 s compared to 570 s), respectively. As previously discussed,
reconfiguring DPc reduces the physical effort imposed on subject
P2.

7. Related work

Introducing formal analysis into the robot software devel-
opment process is a long-standing issue in the research com-
munity. In a survey from 2019, Luckcuck et al. [52] examine
more than 60 papers focused on specification and verification of
autonomous robotic systems, emphasizing both the community’s
interest in the topic and the challenges to face as we move
forward. In the following, we report on works existing in the
literature proposing:

1. formal modeling and verification techniques for the analy-
sis of robotic applications, especially dealing with human–
robot interaction;

2. user-friendly DSLs for the specification of robotic missions.

7.1. Formal analysis for robotic applications development

Developing software for the robotic domain is an elaborate
process given the complexity and unstructured nature of the
system itself [7]. Therefore, it usually requires a combination of
different software development techniques to achieve a satis-
factory result. Several works focus on tasks such as testing and
simulation [53] or implementation [54], which are substantial to
the development process but out of the scope of this review. In
the following, we focus on the early design phase and report on
works exploiting formal methods to this end.

Existing works can be classified based on the formalism used
to model the environment and the agents’ behavior and the
verification technique applied to check properties.

7.1.1. Temporal logic-based robotic applications modeling
As for the first criterion, temporal logic notations are often

adopted to model the robotic task. Gainer et al. [55] present
the CRutoN tool to analyze a personal robot’s behavior in a
domestic setting. The work models the robot’s behavior as a set
of logic constraints, which are automatically parsed and con-
verted into a NuSMV model [56]. The generated model is put
through model checking to verify relevant properties about the
system, e.g., that the robot never fails to alert the user about
an event that requires their attention. Webster et al. [57] had
previously exploited the BrahmsToPromela tool [58] for the same
case study. The human users and the robot are modeled as agents
using Brahms. Brahms models are then automatically translated
into Promela and verified through the SPIN model-checker. Both
works treat human behavior as a black-box whose actions are
selected non-deterministically out of a pre-determined set. The
work by Vicentini et al. [59] introduces an innovative risk as-
sessment procedure for collaborative industrial tasks based on
the TRIO temporal logic language [60]. Similarly to previous ex-
amples, the authors model the agents and the task through a
set of logic formulae to find safety hazards and assess their
severity. As previously mentioned, human-robot interaction in-
troduces uncertainties into the model, thus, the work has been
subsequently extended to include manifestations of erroneous

human behavior [61].

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

7

t
m
v
c
m
p
a
f

.1.2. State-based robotic applications modeling
State-based formalisms are also a popular choice to model

he behavior of robotic systems. Most works pair the state-based
odel of the system with a set of logic properties to perform
erification. Ding et al. [62] exploit Finite State Machines to model
ollaborative industrial tasks, later extended to cover multi-robot
ulti-human tasks [63], where unexpected events due to the
resence of humans are modeled as exceptions and paired with
recovery strategy. Porfirio et al. [64] explore how formal veri-

ication can be used to ensure that robots adhere to social norms
while interacting with humans. Norms, expressed as LTL formu-
lae, constitute the properties to be verified, whereas interaction
sequences are modeled as a composition of Labeled Transition
Systems (LTSs). The work by Adam et al. [65] also targets the
social robotics field, as the authors propose the CAIO framework.
The authors exploit the Belief Desire Intention (BDI) architecture
and models of human cognition to develop a perception and de-
liberation process that drives the robot towards making decisions
in a human-like fashion and making human–robot interaction feel
more natural. Araiza-Illan et al. [66] exploit the AgentSpeak lan-
guage [67] to implement BDI agents and automatically generate
test cases for interactive robotic applications. The framework is
tested on a cooperative table assembly case study, where the
robot’s BDI agent infers the human’s state based on three sensors
and reacts accordingly as encoded by the AgentSpeak model.
Quottrup et al. [68] model multi-robot systems as a network of
Timed Automata and verify whether collisions potentially occur
or some robots are not able to complete their goal, which are all
expressed as CTL properties and verified through Uppaal. Zhou
et al. [69] propose a similar approach based on Timed Automata
and MITL properties focused on motion planning to synthesize
optimal trajectories based on verification results. Some works
have also exploited Hybrid Automata to incorporate physical laws
into the verification process. Molnar et al. [70] introduce the
concept of Model Composition Agents (MCA), which encapsulate
a Hybrid Automaton modeling either an agent or the environment
and its interaction with other automata in the system. The result-
ing network of MCA is abstracted as an LTS and model checked
to diagnose faults in the original system.

7.1.3. Formalizations of human behavior
As human–robot interaction becomes a key element in mod-

ern robotic systems, particular attention has been given to how
the unpredictability due to the presence of humans can be for-
mally modeled. In this aspect, two main research directions
emerge from the literature: game-based approaches and proba-
bilistic models. The possibility to model the interaction between
a robotic agent and the environment as a game to synthesize
a robot controller strategy (if it exists) is investigated in [71].
Kress et al. emphasize the challenge to find a proper abstraction
of the environment model that allows for significant verification
results without leading to state space explosion. Chen et al. [72]
apply the approach based on Timed Game Automata (TGA) and
LTL to surveillance, monitoring, and delivery tasks in partially
unknown environments. The work by Bersani et al. [73] addresses
applications involving robots and humans working in a shared
environment, modeled as TGA networks. Humans are modeled
as uncontrollable agents, to capture the uncertainty of their be-
havior. A robot controller that also accounts for unpredictable
human moves is then automatically synthesized through the
Uppaal-TIGA tool.

On the other hand, probabilistic models of human behavior
and decision making (e.g., the Boltzmann policy [74]) are well-
established in the literature and have been successfully applied
to the robotic domain. Mason et al. [75] exploit Markov Decision
Processes (MDPs) to model an assistive-living scenario and verify
27
probabilistic properties (expressed in PCTL logic) through the
PRISM model checker [76]. The work by Junges et al. [77] com-
bines the two approaches since it models the robot as a stochastic
controllable agent and the human as stochastic and uncontrollable,
which, when combined, produce a stochastic two-player game.
In this case, optimal robot policies are also synthesized through
PRISM-Games [78]. Vibekananda et al. [79] exploit Probabilistic
State Machines to perform human pose estimation and predict
their intention while interacting with a robot. Galin et al. [80]
build upon a previous study on how Cellular Automata with
probabilistic transitions can be used to model human motion in
partially unknown environments [81]. The authors exploit these
theoretical results to develop the model of a shared workspace
where human and robot work simultaneously to compute the
area where their trajectories are more likely to overlap.

7.1.4. Verification techniques and tools
Since state-based formalisms and temporal logics are the most

popular choices when it comes to modeling the robotic system,
it follows that model-checking is the natural choice in terms
of verification technique [52], given the availability of powerful
model checkers such as Uppaal [28] and SPIN [82]. Models based
on MDPs, such as the one developed by Ye et al. [83], can be
verified through Probabilistic Model Checking, which is most
often performed through PRISM [76]. Statistical Model Checking
(SMC), which is the verification technique used in our framework,
has also gained momentum over the last few years. The most
common motivation pertains to the reduced verification times,
which lead to more practical approaches. Paigwar et al. [84]
exploit SMC to estimate the probability of collisions in automated
driving systems. Foughali et al. [85] apply SMC to formally verify
real-time properties, like schedulability and readiness, of robotic
software. Herd et al. [86] focus on multi-agent systems, and on
swarm robotics in particular: in this case, SMC dampens issues
related to the size of the problem, which cannot be handled by
traditional model checking techniques.

7.2. Specification languages for the robotic domain

In 2014, Nordmann et al. [87] surveyed 137 papers presenting
robotic DSLs. At the time of writing, Scopus indexes more than 90
papers published since 2014 with keywords robot* and domain-
specific language. These numbers show that DSL development is
a cornerstone of the robotic software engineering process since it
automates the generation of code or complex models and makes
development frameworks accessible to a wider audience. Refer-
ring to the classification in [87], in the following we report on the
subset of works on this topic dealing with the scenario building
phase, i.e., DSLs to specify high-level environment features and
the robot’s task, as these are the closest to our work.

7.2.1. DSLs for scenario building
Noreils and Chatila [88] present a high-level notation to spec-

ify reactive robotic mission plans. The language envisages the
specification of modules, which are further structured into three
architectural layers: the functional layer to specify the lower-level
robot’s capabilities, the planning layer to specify task sequences,
and the control layer that translates plans into requests to the
functional modules. Knoop et al. [89] present an approach to
automatically generate robotic tasks starting from representa-
tions of tasks in the human operational space, adhering to the
Programming by Demonstration paradigm. Finucane et al. [90]
present the LTLMoP framework to automatically synthesize and
deploy robot controllers. The framework converts Structured En-
glish specifications describing the robotic task into equivalent LTL
formulae, which are then synthesized into an automaton (the

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

d
b
r
‘
p
b
t

p

iscrete controller). The work has been subsequently extended
y Raman et al. [91] with implicit memory strategies to model
obotic tasks depending on events that occurred in the past (e.g.,
‘every time you sense order, visit the kitchen’’). Kunze et al. [92]
resent SRDL, a framework extending the KnowRob knowledge
ase [93] with notions about robots, hardware components, ac-
ions, and capabilities (of performing a certain action). Miyazawa
et al. [94] introduce RoboChart, a DSL to model and verify real-
time concurrent robotic tasks with budgets and deadlines (i.e.,
cost and time constraints). RoboChart semantics, which is based
on Timed Automata and Timed Communicating Sequential Pro-
cesses (CSP) [95], makes the notation amenable to formal verifi-
cation, specifically model-checking. Ciccozzi et al. [96] propose a
family of three languages to specify missions for multi-robot sys-
tems: the Monitoring Mission Language to specify task sequences,
the Robot Language to configure the individual robots, and the
Behavior Language to specify the atomic movements of robots.

7.2.2. DSLs for human–robot interaction
The advent of human–robot interaction and collaborative

robotics has also influenced DSL development. Gavran et al. [97]
introduce the Tool DSL to specify collaborative assembly tasks
in the manufacturing sector through a textual notation that is
accessible to non-experts. Detzner et al. [98] present LoTLan, a
DSL to describe material flow processes in warehouses. The work
consists of a procedure to map human vocal requests (e.g., ‘‘I
need an item’’) to common semantics, identifying who has to
erform which action, and finally LoTLan primitives, which are

then converted into plans for AGVs. Forbig et al. [99] exploit
their language CoTaL [100] to model interactive tasks between
a humanoid robot and a stroke patient performing arm mobility
recovery exercises. The resulting specification captures all phases
needed for the exercise session, how the humanoid robot can
detect whether the patient has completed an exercise or not and
how to react accordingly.

7.3. Discussion

As this survey shows, numerous approaches exploit formal
methods to analyze robotic applications. Specifically, several at-
tempts have been made at formalizing the aspects of human
behavior that are significant while interacting with a robot and
should, thus, impact the results of the formal analysis. Most of
these works present approaches that are either deterministic,
game-based, or probabilistic, such as the hereby presented frame-
work. Deterministic approaches – such as architectures based on
BDI agents – potentially result in less complex models and more
favorable verification times. However, assuming complete ratio-
nality and absence of fuzziness is reasonable for robotic agents
(the orchestrator SHA indeed inherits most of its substructures
from the BDI architecture) or for human agents performing small
repetitive tasks in controlled environments [65,66]. Human–robot
interactions in the service sector feature virtually no constraint
on human behavior, thus deterministic models are overly re-
strictive. Furthermore, service robots applications involve people
from various age groups with different characteristics and per-
forming a broad range of tasks. Therefore, while estimating the
outcome of a scenario, the exploration of the state space of all
possible behaviors should be guided by such features. Game-
based approaches, although effective when exploited for con-
troller synthesis [73], imply an exhaustive exploration of human
actions (i.e., the opponent ’s move) irrespective of their likelihood
given the specific scenario configuration. For these reasons, prob-
abilistic approaches are particularly suited for the purpose of
this framework. Specifically, to the best of the authors’ knowl-
edge, this is the first attempt at combining probabilistic weights
28
on human actions with a hybrid and stochastic characterization
of physiological processes. Due to its complexity, the resulting
model is more practically manageable through SMC rather than
probabilistic model checking. Indeed, works exploiting exhaustive
techniques such as [101] focus on smaller setups targeting a
specific task (e.g., the handover of an item). Despite the loss in
reliability introduced by SMC that only relies on a finite set of
runs of the systems, the proposed framework is applicable to
a broad range of scenarios (as shown by the coverage analysis
results) while still providing results at design-time that accurately
reflect runtime observations.

As per Section 7.2, the literature is rich with DSLs for the
robotic domain, but proposals targeting interactive applications
are lacking. Specifically, existing works target the manufactur-
ing sector [97,98] or very specific tasks from the healthcare
setting [99], whereas the service sector calls for more general-
purpose primitives to define how robots and humans interact.
Other works propose a high-level specification of mission pat-
terns for multi-robot teams in environments (possibly) populated
by humans [12,45], but this has not been attempted for applica-
tions where humans are actively involved as in the domain of this
framework.

8. Conclusion and future work

We have presented a specification, modeling and analysis
framework targeting interactive service robotic applications. The
framework has been extended with respect to previous publi-
cations with the introduction of a custom DSL, refined formal
models of the battery and the human behavior with a stochas-
tic characterization of human fatigue, and extensive experimen-
tal validation results including real-life experiments, coverage
analysis, and DSL evaluation.

The framework is open to extensions. The quality metrics
analyzed in the paper are not the only measures of interest for
a potential application designer using our modeling approach.
With the current model, the analysis can be easily enriched with
measures such as the percentage of time agents spend in a certain
operational state, the frequency of a human agent reacting to
a command issued by the orchestrator, the number of times a
certain action is taken, etc. For the sake of clarity, we kept the
presentation limited to the human fatigue and battery charge. In
addition, a number of physiological or psychological indicators
can be considered to enrich the model of humans, provided
that they can be represented by means of (OD) equations or
discrete/automata-based features. These indicators would allow
the designer to model the sensitivity of humans to phenomena
that affect their responsiveness when environmental conditions
are not ideal. For instance, meaningful physiological values can
be the heartbeat rate, the blood pressure, the breath frequency
of the patients in critical health conditions, and psychological
indicators include stress, patience or the level of engagement of
the operators and doctors who take part in a scenario.

The availability of tools such as the one presented in this work
implies the need for a criterion to establish which is the ‘‘right
accuracy’’ to consider when judging the outcomes of the analysis.
To the best of the authors’ knowledge, such a criterion does
not exist and its definition would require specific work, possibly
conducted by healthcare specialists and medical engineers in real
contexts. Nonetheless, the paper shows in Section 6 an approach
to assess the accuracy of our tool that is based on the comparison
of quantitative metrics obtained as a result of the formal analysis
of the models and implemented real-world scenarios.

We plan on improving the level of support provided to the
designer by – at least partially – automating the reconfiguration
phase. The model of human behavior can be automatically refined

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

c
t

D

A

m

A

i
F
s
a
F
e

e

l
o

n
s
a

e
T
t

m
i
r
p
d
e
e
s
d

Fig. A.15. SHA modeling the room from the running example in Section 2
with detailed representation of how probability weights on receiving edges are
handled.

based on observations collected during deployment. The manual
effort required on the designer’s side can be further reduced
by automatically computing alternative mission plans leading
to better key indicator values (success probability and human
subjects’ physical strain) than those resulting from the initial
plan. In addition, we plan on assessing the DSL with the engage-
ment of non-expert users of formal verification and of healthcare
operators, and to add syntactical structures that allow operators
to integrate their own interaction patterns in the framework
without resorting to customized translations set out by formal
method experts.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

We thank the anonymous reviewers for their insightful com-
ents that helped us improve this paper.

ppendix A. SHA semantics

This appendix presents the semantics of SHA and shows,
n Fig. A.15, an equivalent representation of the automaton of
ig. 3(a) that is fully compliant with the introduced syntax and
emantics of SHA. The automaton of Fig. 3(a) must be understood
s an equivalent, simplified representation of the automaton of
ig. A.15, where the latter differs from the former in the way the
dge exiting location cool is connected to locations high and low.
Complex systems constituted by multiple entities can be mod-

led as a combination of SHA, which form a network. To make n
automata A1, . . . , An (each one defined as in Definition 1) form a
network, the following properties must be satisfied [21]. Every
automaton Ai must be deterministic, i.e., there are no two (or
more) edges, outgoing from a location of Ai, defined by the same
event and whose edge conditions can be satisfied by the same
valuation. Moreover, they must guarantee the following two se-
mantic properties, called input-enabledness and time divergence.
Let v′var : Wi → R be a valuation for variables in Wi, li ∈ Li be a
ocation of automaton Ai and let pair (li, vvar) be a configuration
f Ai. For every automaton Ai, and for all configurations (li, vvar)

and channel c ∈ C , there exists an edge c? that can be taken,
i.e., the edge is enabled as the associated edge condition in Γ (W)
29
is satisfied by vvar. Intuitively, this assumption ensures that every
automaton can fire a transition in every possible configuration.
Second, every automaton Ai always allows for executions such
that if Ai is equipped with an extra clock which is never reset
then, in all executions of Ai, this clock cannot be bounded by any
arbitrary integer constant (i.e., no Zeno executions are feasible).

Finally, every automaton Ai is defined by considering the same
set of channels (Ci = Cj when i ̸= j) and no pair of transitions,
each one belonging to two different automata in the network,
are built by referring to the same event c!. These properties are
with no loss of generality. For example, disjointedness of channels
can always be achieved by choosing properly defined symbol sets
Ci. In addition, for simplicity, for the network A1, . . . , An to be
composable the sets of real-valued variables must be pairwise
disjoint (Wi ∩Wj = ∅ when i ̸= j). However, this constraint can
be relaxed through a suitable extension of the semantics.

In the following, we outline the semantics of an SHA network
including n automata A1, . . . , An, each defined as in Definition 1.
The semantics of a composable network A1, . . . , An is defined
based on the configurations (of the network), each one being a tu-
ple of the form (s1, . . . , sn) where every state si is a configuration
of automaton Ai. There are two possible types of configuration
changes realized, respectively, by discrete transitions and time
transitions. A discrete transition occurs when one or more au-
tomata take an edge. In the latter case, at least two automata
synchronize with each other. Synchronization among different
automata inside a network occurs through the channels of set
C [28]. Given a channel c ∈ C and two edges of two distinct
automata, whose events are c! (the sender) and c? (the receiver),
triggering an event through channel c causes both edges to
fire simultaneously. Synchronization always requires at most one
sender and possibly many receivers (even none). In Fig. 3(b),
the thermostat can trigger an event through channels on! and
off! to start or stop heating the room. The triggered event is
then received by the room automaton through labels on? and
off?, which makes the corresponding edges fire. Taking an edge
(l, c, γ , ξ , l′) of automaton Ai with configuration (l, vvar) implies
that the edge is enabled—i.e., all the conditions in Γ (W) asso-
ciated with the edge are satisfied by the values defined by vvar.
Upon taking the edge, the location of Ai changes from l to l′ and
the associated update ξ is executed, resulting in configuration
(l′, v′var). Since several automata may be involved in a synchro-
ization, and many updates can be executed simultaneously,
pecific rules are needed to regulate their execution. The value of
variable w in v′var is determined based on the interpretation of

w, i.e., whether w is a stochastic parameter or not. In the former
case, upon entering a location l′ ∈ Li such that Di(l′) is defined,
a realization of distribution Di(l′) (e.g., N(µH, σ

2
H) in Fig. A.15)

defines the value of w in v′var (e.g., θ in Fig. A.15); otherwise,
when Di(l′) is not defined, the value of w in v′var and in vvar is the
same [17]. In the latter case, w is not interpreted as a randomly
distributed parameter and its value in v′var is the value of the
assignment associated with w′ in ξ , that is obtained by evaluating
very non-primed variable of the constraint with values from vvar.
he configuration (l′, v′var) is such that the valuation v′var satisfies
he invariant Ii(l′).

Besides randomly distributed variables, in SHA, probability
easures can be associated with delays to model the elaps-

ng of time in the network, hence the wait between the occur-
ence of two discrete transitions. According to [21], the adopted
robabilistic semantics is based on the ‘‘principle of indepen-
ence’’ among automata in the network. Upon the firing of an
dge, for every automaton Ai in the network, a delay di mod-
ls the time Ai waits before taking an edge for event c!, for
ome c ∈ C . If no edges for event c! originate from l′, then
is ∞. Otherwise, let d (l′, v′) be the minimum delay that
i min var

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

a
a
m
f
b
c
n
d
d
t
a
i
f
f
a
n
d
d
a

l
c
n
t
t
c
o
t
t
o
s
c

a
t
(
l
t
F
h
t
h
F
s

d
v
T
i
c
s
A
W
p

A

D
c

L
h
t
t

a
l

utomaton Ai should wait before an edge whose event is c!,
nd departing from l′, is enabled; and let dmax(l′, v′var) be the
aximum delay that automaton Ai can wait before all edges,

or events c!, with c ∈ C , exiting l′ are disabled (note that
oth values are a function of the invariant Ii(l′), of the edge
onditions and of the current valuation v′var). If dmin(l′, v′var) is
ot defined, then di is ∞; otherwise, if dmin(l′, v′var) is defined,
i is a realization of the probability distribution µi(l′, v′var). If
max(l′, v′var) is finite, then µi(l′, v′var) is a uniform distribution over
he interval [dmin(l′, v′var), dmax(l′, v′var)]; otherwise, µi(l′, v′var) is
n exponential distribution over [dmin(l′, v′var),∞). If di is ∞, by
nput-enabledness, then Ai can take an edge, whose event is c?,
or some c ∈ C . Otherwise, by definition of di, after di time units
rom the current discrete transition, automaton Ai can surely take
n edge, whose event is possibly c!, for some c ∈ C . Since the
etwork consists of n automata, the minimum allowed progress
m is selected among the n delays d1, . . . , dn. If dm is finite, then
m is the time the network waits before an automaton performs
new discrete transition.
The wait between the execution of two discrete transitions,

asting a generic δ > 0 time units, is a timed transition, i.e., a
onfiguration change such that no location of the automata in the
etwork is modified but values of the variables evolve because of
he elapsing of time. The configuration of the ith automaton at
he end of this wait is (l′′, v′′var), with l′′ = l′, where (l′, v′var) is the
onfiguration whence the timed transition starts. All the variables
f the set Wi evolve according to the flow conditions Fi(l′). In
he case of clocks x ∈ Xi, for instance, they are incremented by
he value δ, hence, v′′var(x) = v′var(x) + δ holds. The value of the
ther variables is determined based on the differential equation
pecified by Fi(l′). With the adopted semantics, δ is the value dm
alculated at the occurrence of the last discrete transition.
At the end of the time interval lasting dm units of time, the

utomaton Ai such that di = dm holds performs a discrete transi-
ion for some event c!, with c ∈ C . If several edges are enabled in
l′, v′var), probability distribution P(l′)(c!, γ ′, ξ ′, l′′) ∈ [0, 1] with
′′
∈ Li, γ ′ ∈ Γi(Wi), and ξ ′ ∈ ℘(Ξi(Wi)) determines how likely

he system is to evolve in one direction rather than the other. In
ig. A.15, pL and pH are the probability of the switching of the
eating when the window is open or closed, respectively, which
akes place after the synchronization between the two automata
as been achieved through channel on. Channels onH and onL in
ig. A.15 model a probabilistic choice and are not intended for
ynchronizing the two automata.
We remark that some of the models presented in this work

o not conform with the disjointness of the set of real-valued
ariables, hence two or more automata can use the same variable.
his, however, is with no loss of generality in our work, because
t is always possible to introduce suitable transitions and local
opies of the shared variables and build a network such that all
ets of real-valued variables are pairwise disjoint. An automaton
1 can always make an automaton A2 change a variable v in
2 by means of two synchronizing edges with a dedicated event,
ossibly representing the operation to be carried out on v.

ppendix B. DSL for framework validation scenarios

This Appendix contains the DSL configuration of scenarios
Pa, DPb, and DPc. The complete .dsl file is constituted by the
oncatenation of Listings 5 through 9.

isting 5 DSL section defining layout areas (i.e., the rectangles
ighlighted in Fig. 12(b)) and POIs: specifically, the entrances to
he three offices, to the waiting room and emergency room, the

wo cupboards, main entrance, and robot’s recharge station. As

30
ll scenarios are set in the same layout, the DSL features only one
ayout definition.
1 param measurement_unit cm
2 define layout :
3 area a1 in (0 .0 ,110 .0) (1550.0 ,299.5)
4 area a2 in (0 .0 ,110 .0) (185.0 ,850.0)
5 area a3 in (0 .0 ,672 .5) (1550.0 ,850.0)
6 area a4 in (1352.0 ,110.0)

(1550.0 ,850.0)
7 area a5 in (2970.0 ,110.0)

(4512.5 ,299.5)
8 area a6 in (2970.0 ,110.0)

(3155.0 ,850.0)
9 area a7 in (2970.0 ,672.5)

(4512.5 ,850.0)
10 area a8 in (4322.0 ,110.0)

(4512.5 ,850.0)
11 area a9 in (1945 .0 ,0 .0) (2670.0 ,695.0)
12 area a10 in (1352.0 ,110.0)

(3155.0 ,425.0)
13
14 poi OFF1 in (200.0 , 200.0)
15 poi OFF2 in (4400.0 , 200.0)
16 poi OFF3 in (4400.0 , 700.0)
17 poi R1a in (1200.0 , 680.0)
18 poi R1b in (400.0 , 270.0)
19 poi R2 in (4000.0 , 270.0)
20 poi CUP1 in (1400.0 , 450.0)
21 poi CUP2 in (3000.0 , 450.0)
22 poi ENTR in (2300.0 , 600.0)
23 poi RECH in (4250.0 , 450.0)

Listing 6 DSL section defining robot Tbot and its features. As
illustrated in Section 6, it is a TurtleBot3 Waffle Pi starting with
90% of charge.

1 define robots :
2 robot Tbot in (2300.0 , 400.0) id 1

type turt lebot3_waf f lep i charge 90

Listing 7 DSL section defining the human subjects and their
features. Patients (P1a, P1b, P1c, and P2c) all have sick fatigue
profiles, and only P2c belongs to the elderly age group. Doctors
(D1a, D1b, D1c, and D2c) all have healthy fatigue profiles and
belong to the elderly age group, except for D2c. Walking speeds
are set to 40 cm/s for patients, and 100 cm/s for doctors.

1 define humans:
2 human P1a in (2300.0 , 600.0) id 1

speed 40.0 i s young_sick freewil l
normal

3 human D1a in (4400.0 , 700.0) id 2
speed 100.0 i s elderly_healthy
freewil l low

4
5 human P1b in (2300.0 , 600.0) id 1

speed 40.0 i s young_sick freewil l
normal

6 human D1b in (4400.0 , 700.0) id 2
speed 100.0 i s elderly_healthy
freewil l normal

7
8 human P1c in (2290.0 , 600.0) id 1

speed 40.0 i s young_sick freewil l high
9 human P2c in (2400.0 , 580.0) id 2

speed 40.0 i s e lder ly_s i ck freewil l
normal

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387

L
r
r
a

10 human D1c in (200.0 , 200.0) id 3 speed
100.0 i s elderly_healthy freewil l low

11 human D2c in (4400.0 , 700.0) id 4
speed 100.0 i s young_healthy freewil l
normal

isting 8 DSL section defining the service sequences (i.e., the
obotic missions). As described in Section 6.2, each scenario cor-
esponds to a mission declaration. Service sequences are defined
s in Tables 6 and 8.

1 define mission DPa:
2 do robot_leader for P1a with target

R1b
3 do robot_follower for D1a with target

CUP1
4 do robot_follower for D1a with target

R2
5 do robot_leader for P1a with target R2
6
7 define mission DPb:
8 do robot_leader for P1b with target

R1a
9 do robot_transporter for D1b with

target CUP2
10 do robot_follower for D1b with target

R2
11 do robot_leader for P1b with target R2
12
13 define mission DPc:
14 do robot_leader for P1c with target

R1a
15 do robot_leader for P2c with target R2
16 do robot_transporter for D1c with

target CUP1
17 do robot_follower for D2c with target

CUP2
18 do robot_follower for D2c with target

OFF3
19 do robot_leader for P1c with target

OFF1
20 do robot_leader for P2c with target

OFF3
21
22 define mission R−DPa:
23 do robot_leader for P1a with target R2
24 do robot_follower for D1a with target

CUP1
25 do robot_follower for D1a with target

R2
26
27 define mission R−DPb:
28 do robot_transporter for D1b with

target CUP2
29 do robot_follower for D1b with target

R2
30 do robot_leader for P1b with target R2
31
32 define mission R−DPc:
33 do robot_leader for P2c with target

R1b
34 do robot_leader for P1c with target

R1a
35 do robot_transporter for D1c with

target CUP1
31
36 do robot_follower for D2c with target
CUP2

37 do robot_follower for D2c with target
OFF3

38 do robot_leader for P1c with target
OFF1

39 do robot_leader for P2c with target
OFF3

Listing 9 DSL section defining the queries to be performed for
the design-time analysis. Queries defined in this Listing yield the
results shown in Tables 7 and 9.

1 define queries of mission DPa:
2 compute probabi l i ty_of_success with

duration 400 runs auto
3 compute probabi l i ty_of_success with

duration 350 runs auto
4 compute probabi l i ty_of_success with

duration 300 runs auto
5 compute expected_charge with duration

400 runs auto
6 compute expected_fatigue with duration

400 runs auto
7
8 define queries of mission DPb:
9 compute probabi l i ty_of_success with

duration 520 runs auto
10 compute probabi l i ty_of_success with

duration 450 runs auto
11 compute probabi l i ty_of_success with

duration 400 runs auto
12 compute expected_charge with duration

520 runs auto
13 compute expected_fatigue with duration

520 runs auto
14
15 define queries of mission DPc:
16 compute probabi l i ty_of_success with

duration 1500 runs auto
17 compute probabi l i ty_of_success with

duration 1400 runs auto
18 compute probabi l i ty_of_success with

duration 1300 runs auto
19 compute expected_charge with duration

1500 runs auto
20 compute expected_fatigue with duration

1500 runs auto
21
22 define queries of mission R−DPa:
23 compute probabi l i ty_of_success with

duration 300 runs auto
24 compute probabi l i ty_of_success with

duration 250 runs auto
25 compute probabi l i ty_of_success with

duration 200 runs auto
26 compute expected_charge with duration

300 runs auto
27 compute expected_fatigue with duration

300 runs auto
28
29 define queries of mission R−DPb:
30 compute probabi l i ty_of_success with

duration 350 runs auto
31 compute probabi l i ty_of_success with

duration 320 runs auto
32 compute probabi l i ty_of_success with

duration 300 runs auto

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387
33 compute expected_charge with duration
350 runs auto

34 compute expected_fatigue with duration
350 runs auto

35
36 define queries of mission R−DPc:
37 compute probabi l i ty_of_success with

duration 1500 runs auto
38 compute probabi l i ty_of_success with

duration 1400 runs auto
39 compute probabi l i ty_of_success with

duration 1300 runs auto
40 compute expected_charge with duration

1500 runs auto
41 compute expected_fatigue with duration

1500 runs auto

References

[1] C.B. Frey, M.A. Osborne, The future of employment: How susceptible
are jobs to computerisation? Technol. Forecast. Soc. Change 114 (2017)
254–280.

[2] A.A. Morgan, J. Abdi, M.A. Syed, G.E. Kohen, P. Barlow, M.P. Vizcaychipi,
Robots in healthcare: a scoping review, Curr. Robot. Rep. (2022) 1–10.

[3] A. Maibaum, A. Bischof, J. Hergesell, B. Lipp, A critique of robotics in
health care, AI Soc. (2022) 1–11.

[4] Robotics and the impact on nursing practice, 2020, URL https:
//www.nursingworld.org/~494055/globalassets/innovation/robotics-
and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf.

[5] Robots in healthcare: a solution or a problem? 2019, URL
https://www.europarl.europa.eu/RegData/etudes/IDAN/2019/638391/
IPOL_IDA(2019)638391_EN.pdf.

[6] Fraunhofer Institute for Manufacturing Engineering and Automation,
EFFIROB: Economic feasibility studies on innovative service robot appli-
cations, 2010, URL https://www.ipa.fraunhofer.de/en/reference_projects/
EFFIROB.html.

[7] S. García, D. Strüber, D. Brugali, T. Berger, P. Pelliccione, Robotics soft-
ware engineering: A perspective from the service robotics domain, in:
ESEC/FSE, ACM, USA, 2020, pp. 593–604.

[8] K. Ehrlenspiel, A. Kiewert, U. Lindemann, M.S. Hundal, Cost-Efficient
Design, Vol. 544, Springer, 2007.

[9] D. Brugali, Software product line engineering for robotics, in: Software
Engineering for Robotics, Springer, 2021, pp. 1–28.

[10] P. Payne, M. Lopetegui, S. Yu, A review of clinical workflow studies and
methods, in: Cog. Inf., Springer, 2019, pp. 47–61.

[11] ISO/PAS 21448:2019, Road Vehicles — Safety of the Intended Functional-
ity, ISO/PAS, 2019, p. 54.

[12] S. García, P. Pelliccione, C. Menghi, T. Berger, T. Bures, PROMISE: high-
level mission specification for multiple robots, in: Intl. Conf. on Software
Engineering, ACM, Seoul, South Korea, 2020, pp. 5–8.

[13] L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, Formal verification
of human-robot interaction in healthcare scenarios, in: SEFM, Springer,
2020, pp. 303–324.

[14] L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, A model-driven ap-
proach for the formal analysis of human-robot interaction scenarios, in:
IEEE SMC, 2020, pp. 1907–1914.

[15] L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, A deployment frame-
work for formally verified human-robot interactions, IEEE Access 9 (2021)
136616–136635.

[16] L. Lestingi, C. Sbrolli, P. Scarmozzino, G. Romeo, M.M. Bersani, M. Rossi,
Formal modeling and verification of multi-robot interactive scenarios
in service settings, in: Intl. Conf. on Formal Methods in Software
Engineering, 2022, pp. 80–90.

[17] A. David, K.G. Larsen, A. Legay, M. Mikučionis, D.B. Poulsen, Uppaal SMC
tutorial, STTT 17 (4) (2015) 397–415.

[18] C.J. Clopper, E.S. Pearson, The use of confidence or fiducial limits
illustrated in the case of the binomial, Biometrika 26 (4) (1934) 404–413.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid
systems, TCS 138 (1) (1995) 3–34.

[20] S.F. Arenis, M. Vujinovic, B. Westphal, On implementable timed automata,
in: Formal Techniques for Distributed Objects, Components, and Systems,
in: Lecture Notes in Computer Science, vol. 12136, Springer, Valletta,

Malta, 2020, pp. 78–95.

32
[21] A. David, K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen, J. van Vliet, Z.
Wang, Statistical model checking for networks of priced timed automata,
in: Formal Modeling and Analysis of Timed Systems, in: Lecture Notes
in Computer Science, vol. 6919, Springer, Aalborg, Denmark, 2011, pp.
80–96.

[22] U. Grenander, Stochastic processes and statistical inference, Ark. Mat. 1
(3) (1950) 195–277.

[23] G. Agha, K. Palmskog, A survey of statistical model checking, TOMACS 28
(1) (2018) 1–39.

[24] R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J.
ACM 43 (1) (1996) 116–146.

[25] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A.Y. Ng, ROS: an open-source robot operating system, in: ICRA Workshop
on Open Source Software, Vol. 3, IEEE, Kobe, Japan, 2009, p. 5.

[26] D. Tardioli, R. Parasuraman, P. Ögren, Pound: A multi-master ROS node for
reducing delay and jitter in wireless multi-robot networks, Robot. Auton.
Syst. 111 (2019) 73–87.

[27] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, D. Lime,
Uppaal-tiga: Time for playing games!, in: International Conference on
Computer Aided Verification, Springer, 2007, pp. 121–125.

[28] K.G. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, Int. J. Softw. Tools
Technol. Transf. 1 (1–2) (1997) 134–152.

[29] J.Z. Liu, R.W. Brown, G.H. Yue, A dynamical model of muscle activation,
fatigue, and recovery, Biophys. J. 82 (5) (2002) 2344–2359.

[30] S. Konz, Work/rest: Part ii-the scientific basis (knowledge base) for the
guide 1, EGPS 1 (401) (2000) 38.

[31] Z. Givi, M.Y. Jaber, W.P. Neumann, Modelling worker reliability with
learning and fatigue, Appl. Math. Model. 39 (17) (2015) 5186–5199.

[32] B. Liu, L. Ma, C. Chen, Z. Zhang, Experimental validation of a subject-
specific maximum endurance time model, Ergonomics 61 (6) (2018)
806–817.

[33] M. Roberto, D. Farina, M. Gazzoni, M. Schieroni, Effect of age on muscle
functions investigated with surface electromyography, Muscle Nerve 25
(1) (2002) 65–76.

[34] M. Hadley, A deterministic model of the free will phenomenon, J.
Conscious. Explor. Res. 9 (1) (2018).

[35] C. Calude, F. Kroon, N. Poznanovic, Free will is compatible with
randomness, Philos. Inq. 4 (2) (2016) 37–52.

[36] M. Lutz, D. Stampfer, A. Lotz, C. Schlegel, Service robot control architec-
tures for flexible and robust real-world task execution: Best practices and
patterns, in: INFORMATIK 2014, in: LNI, vol. P-232, GI, Stuttgart, Germany,
2014, pp. 1295–1306.

[37] O. Tremblay, L.-A. Dessaint, A.-I. Dekkiche, A generic battery model for
the dynamic simulation of hybrid electric vehicles, in: Vehicle Power and
Propulsion Conference, IEEE, 2007, pp. 284–289.

[38] H. Chuangfeng, L. Pingan, J. Xueyan, Measurement and analysis for lithium
battery of high-rate discharge performance, Procedia Eng. 15 (2011)
2619–2623.

[39] A. Rasheed, O. San, T. Kvamsdal, Digital twin: Values, challenges and
enablers from a modeling perspective, IEEE Access 8 (2020) 21980–22012.

[40] R. Merletti, L.L. Conte, C. Orizio, Indices of muscle fatigue, J. Electromyogr.
Kinesiol. 1 (1) (1991) 20–33.

[41] L. Lindstrom, R. Kadefors, I. Petersen, An electromyographic index for
localized muscle fatigue, J. Appl. Physiol. 43 (4) (1977) 750–754.

[42] T. Nguyen, M. Reynolds, R. Kandaswamy, et al., Emerging technologies
and trends impact radar: 2021, Gartner Res. Notes (2021) Available at.

[43] H.G. Kang, J.B. Dingwell, Differential changes with age in multiscale
entropy of electromyography signals from leg muscles during treadmill
walking, PLoS One 11 (8) (2016) e0162034.

[44] F. Scholz, Confidence bounds and intervals for parameters relating to the
binomial, negative binomial, Poisson and hypergeometric distributions
with applications to rare events, 2008, 2008.

[45] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, T. Berger, Specification
patterns for robotic missions, IEEE Trans. Softw. Eng. 47 (10) (2021)
2208–2224.

[46] M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione, S.
García, R. Caldas, T.J. von Oertzen, M. Wimmer, L. Berardinelli, et al.,
RoboMAX: Robotic mission adaptation eXemplars, in: 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, IEEE, 2021, pp. 245–251.

[47] K. Baraka, M.M. Veloso, Mobile service robot state revealing through
expressive lights: formalism, design, and evaluation, Int. J. Soc. Robot.
10 (1) (2018) 65–92.

[48] Case studies - Service robots, 2018, https://ifr.org/case-studies/service-

robots-case-studies.

http://refhub.elsevier.com/S0921-8890(23)00026-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb3
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb3
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb3
https://www.nursingworld.org/~494055/globalassets/innovation/robotics-and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf
https://www.nursingworld.org/~494055/globalassets/innovation/robotics-and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf
https://www.nursingworld.org/~494055/globalassets/innovation/robotics-and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf
https://www.nursingworld.org/~494055/globalassets/innovation/robotics-and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf
https://www.nursingworld.org/~494055/globalassets/innovation/robotics-and-the-impact-on-nursing-practice_print_12-2-2020-pdf-1.pdf
https://www.europarl.europa.eu/RegData/etudes/IDAN/2019/638391/IPOL_IDA(2019)638391_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/IDAN/2019/638391/IPOL_IDA(2019)638391_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/IDAN/2019/638391/IPOL_IDA(2019)638391_EN.pdf
https://www.ipa.fraunhofer.de/en/reference_projects/EFFIROB.html
https://www.ipa.fraunhofer.de/en/reference_projects/EFFIROB.html
https://www.ipa.fraunhofer.de/en/reference_projects/EFFIROB.html
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb33
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb33
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb33
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb33
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb33
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb34
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb34
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb34
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb35
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb35
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb35
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb36
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb37
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb37
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb37
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb37
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb37
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb38
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb38
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb38
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb38
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb38
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb39
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb39
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb39
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb40
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb40
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb40
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb41
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb41
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb41
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb42
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb42
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb42
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb43
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb43
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb43
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb43
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb43
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb44
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb44
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb44
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb44
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb44
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb45
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb45
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb45
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb45
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb45
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb46
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb47
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb47
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb47
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb47
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb47
https://ifr.org/case-studies/service-robots-case-studies
https://ifr.org/case-studies/service-robots-case-studies
https://ifr.org/case-studies/service-robots-case-studies

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387
[49] M. Bajones, D. Fischinger, A. Weiss, P.D.L. Puente, D. Wolf, M. Vincze,
T. Körtner, M. Weninger, K. Papoutsakis, D. Michel, et al., Results of
field trials with a mobile service robot for older adults in 16 private
households, ACM Trans. Human-Robot Interact. (THRI) 9 (2) (2019) 1–27.

[50] Care-O-bot 3 application scenarios, 2012, https://www.care-o-bot.de/en/
care-o-bot-3/application.html.

[51] ISO 13482, Robots and Robotic Devices - Safety Requirements for Personal
Care Robots, ISO, 2014.

[52] M. Luckcuck, M. Farrell, L.A. Dennis, C. Dixon, M. Fisher, Formal speci-
fication and verification of autonomous robotic systems: A survey, ACM
Comput. Surv. 52 (5) (2019) 100:1–100:41.

[53] S. Abbaspour Asadollah, R. Inam, H. Hansson, A survey on testing for
cyber physical system, in: International Conference on Testing Software
and Systems, Springer, Sharjah and Dubai, UAE, 2015, pp. 194–207.

[54] G. Ajaykumar, M. Steele, C.-M. Huang, A survey on end-user robot
programming, ACM Comput. Surv. 54 (8) (2021) 1–36.

[55] P. Gainer, C. Dixon, K. Dautenhahn, M. Fisher, U. Hustadt, J. Saunders,
M. Webster, CRutoN: Automatic verification of a robotic assistant’s
behaviours, in: Critical Systems: Formal Methods and Automated
Verification, Springer, Turin, Italy, 2017, pp. 119–133.

[56] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, A. Tacchella, Nusmv 2: An opensource tool for symbolic model
checking, in: International Conference on Computer Aided Verification,
Springer, Copenhagen, Denmark, 2002, pp. 359–364.

[57] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K.L. Koay,
K. Dautenhahn, Formal verification of an autonomous personal robotic
assistant, in: AAAI Spring Symposia, AAAI Press, Palo Alto, California, USA,
2014, pp. 1–6.

[58] R. Stocker, L.A. Dennis, C. Dixon, M. Fisher, Verifying brahms human-
robot teamwork models, in: Logics in Artificial Intelligence, in: Lecture
Notes in Computer Science, vol. 7519, Springer, Toulouse, France, 2012,
pp. 385–397.

[59] F. Vicentini, M. Askarpour, M.G. Rossi, D. Mandrioli, Safety assessment of
collaborative robotics through automated formal verification, IEEE Trans.
Robot. 36 (1) (2019) 42–61.

[60] C.A. Furia, D. Mandrioli, A. Morzenti, M. Rossi, Modeling Time in Comput-
ing, in: Monographs in Theoretical Computer Science. An EATCS Series,
Springer, Berlin, Heidelberg, 2012.

[61] M. Askarpour, D. Mandrioli, M. Rossi, F. Vicentini, Formal model of human
erroneous behavior for safety analysis in collaborative robotics, Robot.
Comput.-Integr. Manuf. 57 (2019) 465–476.

[62] H. Ding, J. Heyn, B. Matthias, H. Staab, Structured collaborative behavior
of industrial robots in mixed human-robot environments, in: Intl. Conf.
on Automation Science and Engineering, IEEE, Madison, WI, USA, 2013,
pp. 1101–1106.

[63] H. Ding, M. Schipper, B. Matthias, Collaborative behavior design of indus-
trial robots for multiple human-robot collaboration, in: IEEE Internationel
Symposium on Robotics, IEEE, Seoul, Korea (South), 2013, pp. 1–6.

[64] D. Porfirio, A. Sauppé, A. Albarghouthi, B. Mutlu, Authoring and veri-
fying human-robot interactions, in: ACM Symposium on User Interface
Software and Technology, ACM, Berlin, Germany, 2018, pp. 75–86.

[65] C. Adam, W. Johal, D. Pellier, H. Fiorino, S. Pesty, Social human-robot in-
teraction: A new cognitive and affective interaction-oriented architecture,
in: Intl. Conf. on Social Robotics, in: Lecture Notes in Computer Science,
vol. 9979, Springer, Kansas City, MO, USA, 2016, pp. 253–263.

[66] D. Araiza-Illan, A.G. Pipe, K. Eder, Intelligent agent-based stimulation for
testing robotic software in human-robot interactions, in: Workshop on
Model-Driven Robot Software Engineering, ACM, Leipzig, Germany, 2016,
pp. 9–16.

[67] A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable
language, in: Workshop on Modelling Autonomous Agents in a Multi-
Agent World, in: Lecture Notes in Computer Science, vol. 1038, Springer,
Eindhoven, The Netherlands, 1996, pp. 42–55.

[68] M.M. Quottrup, T. Bak, R. Izadi-Zamanabadi, Multi-robot planning: a
timed automata approach, in: IEEE International Conference on Robotics
and Automation, IEEE, New Orleans, LA, USA, 2004, pp. 4417–4422.

[69] Y. Zhou, D. Maity, J.S. Baras, Timed automata approach for motion
planning using metric interval temporal logic, in: European Control
Conference, IEEE, Aalborg, Denmark, 2016, pp. 690–695.

[70] L. Molnar, S.M. Veres, Hybrid automata dicretising agents for formal
modelling of robots, IFAC Proc. Vol. 44 (1) (2011) 49–54.

[71] H. Kress-Gazit, T. Wongpiromsarn, U. Topcu, Correct, reactive, high-level
robot control, IEEE Robot. Autom. Mag. 18 (3) (2011) 65–74.

[72] Y. Chen, J. Tumova, C. Belta, LTL robot motion control based on automata
learning of environmental dynamics, in: IEEE International Conference
on Robotics and Automation, IEEE, St. Paul, Minnesota, USA, 2012, pp.
5177–5182.
33
[73] M.M. Bersani, M. Soldo, C. Menghi, P. Pelliccione, M. Rossi, PuRSUE-from
specification of robotic environments to synthesis of controllers, Form.
Asp. Comput. 32 (2) (2020) 187–227.

[74] C.L. Baker, J. Tenenbaum, R.R. Saxe, Goal inference as inverse planning,
in: Proceedings of the Annual Meeting of the Cognitive Science Society,
29 (29), 2007.

[75] G. Mason, R. Calinescu, D. Kudenko, A. Banks, Assurance in reinforcement
learning using quantitative verification, in: Advances in Hybridization of
Intelligent Methods, Vol. 85, Springer, 2017, p. 71.

[76] M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of prob-
abilistic real-time systems, in: Computer Aided Verification, in: Lecture
Notes in Computer Science, vol. 6806, Springer, Snowbird, UT, USA, 2011,
pp. 585–591.

[77] S. Junges, N. Jansen, J.-P. Katoen, U. Topcu, Probabilistic model checking
for complex cognitive tasks–A case study in human-robot interaction,
2016, arXiv preprint arXiv:1610.09409.

[78] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, A. Simaitis, PRISM-games: A
model checker for stochastic multi-player games, in: Intl. Conf. on TOOLS
and Algorithms for the Construction and Analysis of Systems, Springer,
Rome, Italy, 2013, pp. 185–191.

[79] V. Dutta, T. Zielinska, Predicting the intention of human activities for
real-time human-robot interaction (HRI), in: Int. Conf. on Social Robotics,
in: Lecture Notes in Computer Science, vol. 9979, Springer, Kansas City,
MO, USA, 2016, pp. 723–734.

[80] R.R. Galin, R.V. Meshcheryakov, M.V. Mamchenko, Analysis of intersec-
tion of working areas within the human-robot interaction in a shared
workspace, in: Proceedings of the Computational Methods in Systems
and Software, Springer, Czech Republic, 2021, pp. 749–759.

[81] R. Breukelaar, T. Bäck, Using a genetic algorithm to evolve behavior in
multi dimensional cellular automata: emergence of behavior, in: Genetic
and Evolutionary Computation Conference, ACM, Washington DC, USA,
2005, pp. 107–114.

[82] G.J. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5)
(1997) 279–295.

[83] K. Ye, A. Cavalcanti, S. Foster, A. Miyazawa, J. Woodcock, Probabilistic
modelling and verification using RoboChart and PRISM, Softw. Syst.
Model. (2021) 1–50.

[84] A. Paigwar, E. Baranov, A. Renzaglia, C. Laugier, A. Legay, Probabilistic
collision risk estimation for autonomous driving: Validation via statistical
model checking, in: IEEE Intelligent Vehicles Symposium, IEEE, Las Vegas,
NV, USA, 2020, pp. 737–743.

[85] M. Foughali, F. Ingrand, C. Seceleanu, Statistical model checking of
complex robotic systems, in: International Symposium on Model Checking
Software, in: Lecture Notes in Computer Science, vol. 11636, Springer,
Beijing, China, 2019, pp. 114–134.

[86] B. Herd, S. Miles, P. McBurney, M. Luck, Quantitative analysis of multi-
agent systems through statistical model checking, in: Int. Workshop on
Engineering Multi-Agent Systems, Springer, 2015, pp. 109–130.

[87] A. Nordmann, N. Hochgeschwender, S. Wrede, A survey on domain-
specific languages in robotics, in: Simulation, Modeling, and Programming
for Autonomous Robots, in: Lecture Notes in Computer Science, vol. 8810,
Springer, Bergamo, Italy, 2014, pp. 195–206.

[88] F.R. Noreils, R. Chatila, Plan execution monitoring and control architecture
for mobile robots, IEEE Trans. Robot. Autom. 11 (2) (1995) 255–266.

[89] S. Knoop, M. Pardowitz, R. Dillmann, Automatic robot programming from
learned abstract task knowledge, in: Intl. Conf. on Intelligent Robots and
Systems, IEEE, California, USA, 2007, pp. 1651–1657.

[90] C. Finucane, G. Jing, H. Kress-Gazit, LTLMoP: Experimenting with lan-
guage, temporal logic and robot control, in: Intl. Conf. on Intelligent
Robots and Systems, IEEE, Taipei, Taiwan, 2010, pp. 1988–1993.

[91] V. Raman, B. Xu, H. Kress-Gazit, Avoiding forgetfulness: Structured English
specifications for high-level robot control with implicit memory, in:
Intl. Conf. on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve,
Portugal, 2012, pp. 1233–1238.

[92] L. Kunze, T. Roehm, M. Beetz, Towards semantic robot description
languages, in: Intl. Conf. on Robotics and Automation, IEEE, Shanghai,
China, 2011, pp. 5589–5595.

[93] M. Tenorth, M. Beetz, KnowRob: A knowledge processing infrastructure
for cognition-enabled robots, Int. J. Robot. Res. 32 (5) (2013) 566–590.

[94] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, J. Woodcock,
RoboChart: modelling and verification of the functional behaviour of
robotic applications, Softw. Syst. Model. 18 (5) (2019) 3097–3149.

[95] S. Schneider, Concurrent and Real-Time Systems: The CSP Approach, John
Wiley & Sons, 1999.

[96] F. Ciccozzi, D.D. Ruscio, I. Malavolta, P. Pelliccione, Adopting MDE for
specifying and executing civilian missions of mobile multi-robot systems,
IEEE Access 4 (2016) 6451–6466.

http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb49
https://www.care-o-bot.de/en/care-o-bot-3/application.html
https://www.care-o-bot.de/en/care-o-bot-3/application.html
https://www.care-o-bot.de/en/care-o-bot-3/application.html
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb51
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb51
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb51
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb52
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb52
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb52
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb52
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb52
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb53
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb53
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb53
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb53
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb53
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb54
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb54
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb54
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb55
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb56
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb57
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb58
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb59
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb59
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb59
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb59
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb59
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb60
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb60
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb60
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb60
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb60
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb61
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb61
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb61
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb61
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb61
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb62
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb63
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb63
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb63
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb63
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb63
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb64
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb64
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb64
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb64
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb64
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb65
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb66
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb67
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb68
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb68
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb68
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb68
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb68
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb69
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb69
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb69
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb69
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb69
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb70
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb70
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb70
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb71
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb71
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb71
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb72
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb73
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb73
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb73
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb73
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb73
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb74
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb74
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb74
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb74
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb74
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb75
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb75
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb75
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb75
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb75
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb76
http://arxiv.org/abs/1610.09409
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb78
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb79
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb80
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb81
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb82
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb82
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb82
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb83
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb83
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb83
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb83
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb83
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb84
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb85
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb86
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb86
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb86
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb86
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb86
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb87
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb88
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb88
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb88
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb89
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb89
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb89
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb89
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb89
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb90
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb90
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb90
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb90
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb90
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb91
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb92
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb92
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb92
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb92
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb92
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb93
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb93
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb93
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb94
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb94
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb94
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb94
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb94
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb95
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb95
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb95
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb96
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb96
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb96
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb96
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb96

L. Lestingi, D. Zerla, M.M. Bersani et al. Robotics and Autonomous Systems 163 (2023) 104387
[97] I. Gavran, O. Mailahn, R. Müller, R. Peifer, D. Zufferey, Tool: accessible
automated reasoning for human robot collaboration, in: Intl. Symp.
on New Ideas, New Paradigms, and Reflections on Programming and
Software, 2018, pp. 44–56.

[98] P. Detzner, T. Kirks, J. Jost, A novel task language for natural interaction in
human-robot systems for warehouse logistics, in: Intl. Conf. on Computer
Science & Education, IEEE, Toronto, ON, Canada, 2019, pp. 725–730.

[99] P. Forbrig, A. Bundea, Modelling the collaboration of a patient and an
assisting humanoid robot during training tasks, in: Human-Computer
Interaction, in: Lecture Notes in Computer Science, vol. 12182, Springer,
Copenhagen, Denmark, 2020, pp. 592–602.

[100] P. Forbrig, A. Dittmar, M. Kühn, A textual domain specific language
for task models: Generating code for CoTaL, CTTE, and HAMSTERS, in:
Symposium on Engineering Interactive Computing Systems, ACM, Paris,
France, 2018, pp. 5:1–5:6.

[101] M. Webster, D. Western, D. Araiza-Illan, C. Dixon, K. Eder, M. Fisher,
A.G. Pipe, A corroborative approach to verification and validation of
human–robot teams, Int. J. Robot. Res. 39 (1) (2020) 73–99.

Livia Lestingi is a Ph.D. candidate in Information Tech-
nology at Politecnico di Milano. She earned an M.Sc.
degree in Automation Engineering from Politecnico di
Milano in 2017. Her research interests include the
analysis of human–robot interaction through formal
methods and formal modeling techniques of human
behavior.
34
Davide Zerla received his M.Sc. in Computer Sci-
ence and Engineering from Politecnico di Milano in
2022. His research interests include software engi-
neering for robotic applications and development of
Domain-Specific Languages.

Marcello M. Bersani is a senior assistant professor
at Politecnico di Milano. His research interests are
mainly focused on Formal Methods, Temporal logic and
Verification.

Matteo Rossi is an associate professor at Politecnico di
Milano. His research interests are in formal methods
for safety–critical and real-time systems, architectures
for real-time distributed systems, and transportation
systems both from the point of view of their design,
and of their application in urban mobility scenarios.

http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb97
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb98
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb98
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb98
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb98
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb98
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb99
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb100
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb101
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb101
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb101
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb101
http://refhub.elsevier.com/S0921-8890(23)00026-X/sb101

	Specification, stochastic modeling and analysis of interactive service robotic applications
	Introduction
	Model-Driven Framework
	Contributions

	Background
	Design-Time Analysis of HRI Scenarios
	Conceptual Model of HRI Scenarios
	Domain-Specific Language
	Layout, Areas and POIs
	Agents
	Missions
	Queries

	Formal Modeling HRI with Uncertain Human Behaviors
	Human–Robot Interaction Patterns Model
	Human Follower
	Human Leader
	Human Recipient

	Robotic System Model
	Mobile Robot Model
	Battery Model

	Orchestrator Model

	Scenario Deployment and Reconfiguration
	Scenario Deployment
	Scenario Reconfiguration

	Experimental Validation
	Formal Model Validation
	Model-Driven Framework Validation
	Discussion

	Related Work
	Formal Analysis for Robotic Applications Development
	Temporal Logic-based Robotic Applications Modeling
	State-based Robotic Applications Modeling
	Formalizations of Human Behavior
	Verification Techniques and Tools

	Specification Languages for the Robotic Domain
	DSLs for Scenario Building
	DSLs for Human–Robot Interaction

	Discussion

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. SHA Semantics
	Appendix B. DSL for Framework Validation Scenarios
	References

