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Motivation & Project background

Excellent wind conditions at deep offshore areas (50-200m):

high wind speeds, less turbulence, less shear

Huge potential for Europe to achieve renewable energy goals

Floating substructure costs are less sensitive to sea depth compared to fixed-bottom
FWTs become feasible at sea depth >50m n | ﬁ
Goal: to make FWT competitive in energy market “ |

lul
FLOAting Wind Energy netwoRk

Work packages: —
= Wind resource assessment
= Advanced floater analysis
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o = Dynamics of wind turbine
FLOAWER = System design to reduce LCOE osomt2mw [ 25500 25 mw o 210 W 2o 310 MW
FLOAting Wind Energy netwoRk y g

Adapted from Arapogianni et al. 2013
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Introduction

* Need to assist turbine design optimization at farm level, driving the design with wind farm LCoE

« Onshore wind farm layout depends on terrain orography, whereas offshore environment offers a more
flexible room for layout optimization.
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Michelle Lewis Matthias Ibeler
(retrieved through http://www.electrek.co) (retrieved through https://www.offshore-stiftung.de/en/alpha-ventus)

» Opportunity to design site-specific wind turbine systems
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Wind farm cost model overview

Fully automated MATLAB tool COSMO-WF (COSt Model for Wind Farms)

/ Wind resource |
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Wind farm layout definition
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Site characteristics

Turbine definition

Layout parameters

Substructures

Financials

Y

)

¢ Wind farm type

« Water depth

» Distance to shore

« Distance to port

+ Average wind speed

« Weibull parameters

» Shear exponent

» Turbulence intensity

« Wind direction probabilities

« Turbine rated power
+ Rotor diameter

+ Hub height

* Cp, Ct curves

» Blade mass

+ Tower mass

+ Generator type

+ Generator efficiency

+ Turbine positions
or
Parametric:

* Number of turbines
* Number of rows/columns
» Turbine spacing

« Platform type
* Mooring/Anchor type
e Number of mooring/

+ Commaodity price database
« Financial year

« Fixed charge rate

« Currency rate

anchors per WT -
+ Inflation rate
Cable properties Installation
e *» Vessel cost database

» Array/ export cable ratings
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AEP Module
(with FLORIS)
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Wind Turbine
Cost Module

Wind Farm Cost Module

« Substructures
* Installation

« Electrical infrastructure
« O&M

« Decommissioning

LCOE Module
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Dynamic cost functions 1

Progression away from “static costs”: Dynamic cost functions

« High level, €/kW * Component-specific

* Fixed at time of publication * Market adjustable

* Do not change with market conditions - * Range of possible inputs (MW, diameter,

« Applies to total CAPEX, OPEX or mass, loads)

component level costs * Value defined by original cost year and
year of project financial close

COSlcomponent = P OWeTfarm(kw) * COSle/kw

A. Commodity prices B. Energy price growth E. Inventories at metals exchanges
e e Refoe Days of global consumption  —2010-19 average
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Dynamic cost functions 2
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Site assessment tool - bathymetry

Bathymetry data from GEBCO Map onshore/offshore Find main shore line Find distance to shore
H[m] Land [I_ogical] (eXCIUde iSIandS) Land [logical]
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Output at a position f(x.;., Vi) = [Water depth (elevation), distance to shore, wind farm flag (onshore/offshore)]
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Site assessment tool — wind resource

Wind data from ERAS5: Hourly data (from 2021) of U and V components at 100 m height

Mean of absolute velocities Bin and fit values to Weibull pdf Shear exponent derived from Wind direction using u- v- components
o sl g 10m & 100m data , Probability distribution by binning values
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Output at a position f(x;., Vsi) = [Weibull parameters A(scale), k(shape), o exponent, direction probability array, Tl]
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Validation of the cost model

Analysis on two validation cases:
Alpha Ventus | Hywind Scotland 2500 1 x A LA x 1 1.08 - — o LCoE
- - —=oa— Capacity Factor
Substructure Monopile Floating (Spar buoy ® Case?2 - CAPEX per turbine
Number of turbines 12 5 2000 AAAAA é ngeL%oE 1.06 I
Total rated power 60 (5x12) MW 30 (6x5) MW = 8 A 8 A 8 ' ol
Turbine rotor diameter 126 m 154 m Ey 1500 ] E
Turbine hub height 90 m 100 m < A A > 1.047
Distance to shore 45 km 25 km § 1000 6 6 6 ] >
Water depth 35m 120 m 500l A A A A A | 1.02 f
o} ) QRANIANPAND A 1w
Assumptions 500 0 500 1000 1500 2000 2500 o 5 10 s 2025 30
¢ Lez';"nglratezL_Raon TCC: Easting [m] M rurbines [
TCCioy =TCC X np® Min. LCoE achieved for actual layout

With LR = 5% — price reduction of 5% every time the number of produced units is doubled. [Meissner 2020]
* Fixed charge rate: 10% for floating wind due to higher risks [Beiter 2016]

LCoE of Hywind is calculated 221 €/MWh, agreeing well
with the public value 220 €/MWh found in reports.
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LCoE analysis — Case study Portugal

Alpha Ventus wind farm layout 12 x 5SMW

LCoE [E/MWH]
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LCoE analysis — Case study Sardinia

Alpha Ventus wind farm layout 12 x 5SMW
LCoE analysis Average wind speed
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LCoE analysis — Case study Sardinia

Impact of wind farm layout

LCoE diff. wrt reference layout
* (1) achieves LCoE gains where westerly winds are
dominant

Mid-column shifted towards north (1)

7 X | * (2) yields generally higher LCoE
< X X . * Overall, baseline layout performs best in locations with
. X " winds from cross compass directions (here NW)
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LCoE analysis — Case study Sardinia

Impact of selected wind turbine
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Conclusion & Outlook

Conclusions:

Demonstrated the capabilities of the developed cost model
Dynamic cost functions applied to forecast costs for a given year in future
Preliminary sensitivity analysis on wind farm layout and turbine size performed

Calculated LCoE values tend to be overestimated due to low wind speeds acquired
from ERAS database. Significant discrepancies with global wind atlas are noted.

Outlook:

Installation module taking into account wave characteristics (height, period, direction)
to be implemented

Setting up an optimization problem based on a MCDM with genetic algorithm
Sensitivity analysis on component designs with commodity price considerations
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