

Double-layered Water Cherenkov Detector for SWGO

² Samridha Kunwar^{a,*} on behalf of the SWGO Collaboration

- ³ (a complete list of authors can be found at the end of the proceedings)
- ⁴ ^aMax-Planck-Institut für Kernphysik (MPIK), Saupfercheckweg 1, 69117 Heidelberg, Germany
- 5 *E-mail:* samridha.kunwar@mpi-hd.mpg.de

The Southern Wide-field Gamma-ray Observatory (SWGO) will use the well-established and cost-effective technique of detecting Cherenkov light produced in water-filled detection units for TeV gamma-ray astronomy. Leveraging detector material reflectivity together with an optimised aspect ratio is an option to improve the performance of an array of such detector units. The double-layered Water Cherenkov Detector units comprise chambers with single photosensors in each. A reflective upper compartment enhances sensitivity to impinging secondary particles. A shallow lower compartment enables muon tagging and consequently improves the gamma hadron separation power of the observatory. Here we present detailed studies on the double-layered unit design.

37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany

*Presenter

6

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

7 1. Introduction

⁸ The induced electromagnetic cascade produced by air showers are well suited to be observed by ⁹ ground-level particle detectors providing intrinsically wide field-of-view and ~ 100% duty cycle. ¹⁰ HAWC (High-Altitude Water Cherenkov) [1] on the flanks of the Sierra Negra in Mexico, and ¹¹ LHAASO (Large High Altitude Air Shower Observatory) [2] in the eastern Tibetan plateau are ¹² the two main instruments currently under operation that comprise an array of Water Cerenkov ¹³ Detector (WCD) units. The detection of γ -rays higher than 0.1 PeV have already been reported by ¹⁴ LHAASO [3] and instrumenting the Southern Hemisphere will provide unprecedented opportunities ¹⁵ to probe the galactic plane and the southern hemisphere further [4].

Furthermore, instrumenting at a High altitude (> 4.4 km) with a high fill factor (> 80 %) will allow SWGO to be complementary in the same energy range as Imaging Atmospheric Cherenkov Telescopes (IACTs). This is extended to an outer array with a fill factor of 8% as in Fig. 1 that aims to improve sensitivity at higher energies.

SWGO (for an overview on status and 20 prospects, see [5]) is investigating several de-21 tector technologies such as units with multiple 22 photo-sensors [6] and an option to deploy de-23 tector units in a lake [7]. Muon identification 24 with a separate detector element is a reasonable 25 means of hadronic background rejection (see, 26 e.g. [8]) for γ -ray astronomy. Here we develop 27 the concept of a double-layered WCD design; as 28 a potential detector unit for SWGO, comprising 29 two isolated chambers where the lower chamber 30 in conjunction with the upper chamber enables 31 an effective method for gamma/hadron separa-32 tion. The detector unit with optimised aspect 33 ratio and material reflectivity will also have im-34 proved particle detection efficiency and angular 35 resolution. 36

The simulations in this work use GEANT4 [9] within a simulation framework

Figure 1: Sketch of the simulated array layout of cylindrical double-layered WCDs with a dense inner array (> 80%) and sparser outer array (~ 8%).

adapted from the HAWC collaboration. Air Shower simulations use the CORSIKA 7.7400 simulation package [10] where we select the hadronic interaction model QGSJet-II.04 [11] for energies
above 80 GeV. UrQMD 1.3.1 [12, 13] treats the low energy hadronic interactions and for electromagnetic processes, we use the EGS4 electromagnetic model [14].

43 2. Unit Design

The double-layered design comprises two chambers that are isolated from each other, as shown in Fig. 2. The upper chamber is a light-tight chamber with a reflective lining and a centrally located 8" Photo-Multiplier Tube (PMT) facing upwards. The PMT orientation ensures that the prompt

Figure 2: Cylindrical Double Layered WCD designs comprising an upper chamber $(\pi \times 1.91^2 \times 2.5 \ m^3)$ with white walls and black bases (top and bottom) and an entirely white lower chamber $(\pi \times 1.91^2 \times 0.5 \ m^3)$. The upper chamber comprises an 8" PMT facing upwards, and the lower chamber comprises an 8" PMT facing downwards. A Muon (green) passes through both units and produces photons (red). The number of photons has been limited here for illustration purposes.

Figure 3: (a) Injection of vertical 5 MeV to 1 GeV γ -rays across the top surface of different WCD designs. Here we show a comparison between the upper chamber of a [A] white cylindrical double-layered WCD unit $(\pi \times 1.91^2 \times 2.5 \ m^3)$ with a black top and an 8" PMT, a [B] HAWC - like design $(\pi \times 3.65^2 \times 4 \ m^3)$ with black walls, a central 10" PMT and 3x8" PMTs', a [C] LHAASO - like black unit $(5 \times 5 \times 4.5 \ m^3)$ with an open top and an 8" PMT and a [D] white cylindrical double-layered WCD unit $(\pi \times 1.71^2 \times 3 \ m^3)$ with a black top and an 8" PMT. (b) Response to injection of vertical 1 MeV to 1 GeV γ -rays across the top of the upper chamber of double-layered WCD unit $(\pi \times 1.91^2 \times 2.5 \ m^3)$ with vertical 1 MeV to 1 GeV γ -rays with different materials.

⁴⁷ light is detected first. The lower chamber is a similar light-tight chamber but, to ensure we collect

all the energy deposited in the chamber for muon identification, it is composed of highly reflective
 material and a centrally located 8" PMT facing downwards.

50 3. Particle Detection Efficiency and Energy Resolution

The particle detection efficiency of the DLWCD is optimised by leveraging the aspect ratio and the material (reflectivity) selection. To maximise the probability of cascade production, both

Figure 4: The number of p.e's at different electromagnetic energy for upper chambers with different materials. The dashed black line shows the corresponding value for the lower chamber.

⁵³ LHAASO and HAWC have a water depth > $10 \times x_0$, where x_0 is the radiation length of high energy ⁵⁴ $\gamma's$ in water (~ 46 cm). However, both design also uses a material with low reflectivity (black) like ⁵⁵ Polypropylene. The upper chamber of the proposed DLWCD is shallow and narrower than these ⁵⁶ designs. The chamber also comprises reflective walls, namely, Tyvek used by the Pierre Auger ⁵⁷ Observatory [15] with a combination of black bases.

To compare the detection efficiency of the DLWCD, vertical γ 's were injected across the top of several design choices varying in aspect-ratio and material reflectivity (see Fig. 3). The DLWCD design, with white walls and a black top, has improved particle detection efficiency over both HAWC and LHAASO - like designs. A deeper chamber would ensure cascade production and subsequent detection of Cherenkov photons at ~ 100 MeV γs , while a narrower chamber with reflective walls improves sensitivity to lower energy γs . Reflective walls improve particle detection efficiency over non-reflective walls.

Additionally, high energy γ 's close to the shower core can result in the saturation of the upper PMT. To mitigate this, since these particles can also punch through into the lower chamber, the lower PMT can extend the dynamic range (see Fig. 4).

68 4. Angular Resolution

In order to compare the angular resolution of the DLWCD (upper - $\pi \times 1.91^2 \times 2.5 m^3$) of different material combinations, we simulate vertical γ initiated showers at the centre of the array shown in Fig. 1. The angular resolution is then computed in several stages.

First, after requiring a minimum of 10 unit hits, a time difference of arrival of the shower hit first arrival times for each unit are used to compute the shower direction and time. Limiting the

Figure 5: Angular resolution for 1 - 100 TeV vertical γ -ray's simulated with shower core at the center of an array of double-layered WCD's (upper - $\pi \times 1.91^2 \times 2.5 m^3$) with ~ 80% fill factor varying the material properties.

⁷⁴ shower hits to 10% of the units hit with the largest charge limits the computational burden. A

⁷⁵ Landau fit to the arrival times as a function of distance to the shower core and charge is used to

⁷⁶ obtain mean and width parameters.

Given the Landau fit parameters, a 3-parameter likelihood fit (MINUIT [16]) is implemented to obtain the shower direction. The angular resolution is the 68 % containment of such showers (see Fig. 5).

We find that, as expected, as most of the first photons are the direct Cherenkov light, there is no or limited impact of the material combination on the angular resolution of the showers.

5. Gamma Hadron Separation

To evaluate the γ - hadron separation power, a Template-based maximum log-likelihood method 83 comprising charge in the two chambers is implemented to discriminate between γ -ray and hadron 84 induced air showers for an ensemble of γ -ray and proton-induced vertical showers of 1 to 100 TeV 85 energy with the shower core located at the centre of the array. First, γ -ray and proton initiated 86 showers are split into 70 - 30% training and test sets, respectively, with an exclusion region of 87 40 m. The exclusion region is defined to account for the high transverse momentum of μ^{\pm} and 88 punch-through of $\gamma \& e^{\pm}$ close to the shower core. The training set is then used to generate separate 89 templates of charge in the upper and lower chambers for μ^{\pm} and e^{\pm} , & γ 's. The test set is then used 90 to identify the likelihood of a μ^{\pm} on a tank-by-tank basis. 91

Once μ^{\pm} are tagged, the number of such particles is counted on an event-by-event basis for both γ and hadron initiated showers for a similar number of tanks hit. The γ and p^+ identification

Figure 6: Gamma - Hadron separation efficiency for an array of double-layered WCD's (upper - $\pi \times 1.91^2 \times 2.5 \ m^3$) with ~ 80% fill factor varying material reflectivity and an exclusion region of 40 m for 547 $\leq nhits < 1280$.

efficiency is shown in Fig. 6 for different material combinations and 547 $\leq nhits < 1280$. Tanks with a combination of white material represent showers with a lower median γ -ray energy. As expected while there is no significant difference in the γ - hadron separation power with different material combinations, with the combination of reflective material lower energy threshold can be achieved due to an increased particle detection efficiency.

99 6. Conclusion

The Southern Wide-field-of-view Gamma-ray Observatory (SWGO) will use the well-established and cost-effective technique of detecting Cherenkov light produced in water-filled detection units for TeV gamma-ray astronomy. Several detector technologies such as units with multiple photo-sensors and an option to deploy detector units in a lake are currently under investigation. The double-layered WCD leverages material and aspect ratio to enhance sensitivity, achieve excellent angular resolution and gamma hadron separation.

106 Acknowledgements

¹⁰⁷ The SWGO Collaboration acknowledges the support from the agencies and organizations listed ¹⁰⁸ here: https://www.swgo.org/SWGOWiki/doku.php?id=acknowledgements.

109 References

- [1] A. U. Abeysekara et al. (HAWC Collaboration), Astrophys. J. 843, 39 (2017).
- [2] G. D. Sciascio et al. (LHAASO Collaboration), *Nucl. Part. Phys. Proc.* **279 281**, 166-173 (2016).
- [3] Z. Cao, F.A. Aharonian, Q. An et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ -ray Galactic sources. *Nature* 594, 33–36 (2021). https://doi.org/10.1038/s41586-021-03498-z
- ¹¹⁶ [4] A. Albert et al. (SGSO Alliance), arXiv:1902.08429 (2019).
- [5] J. Hinton (SWGO Collaboration), *PoS ICRC2021* (2021) 023. https://pos.sissa.it/ 395/023/pdf
- [6] R. Conceicao (SWGO Collaboration), *PoS ICRC2021* (2021) 707. https://pos.sissa.
 it/395/707/pdf
- [7] H. Goksu (SWGO Collaboration), *PoS ICRC2021* (2021) 708. https://pos.sissa.it/
 395/708/pdf
- [8] H. Schoorlemmer et al., *Eur. Phys. J. C* 79, 427 (2019). https://doi.org/10.1140/epjc/
 s10052-019-6942-x
- [9] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506 205-303 (2003).
- [10] Heck, D., et al., *CORSIKA: a Monte Carlo code to simulate extensive air showers*. (FZKA 6019)(Karlsruhe: Forschungszentrum Karlsruhe) (1998).
- [11] S. Ostapchenko, *Phys. Rev. D* 83, 014018 (2011). https://doi.org/10.1103/PhysRevD.
 83.014018
- 130 [12] S.A.Bass et al. Prog.Part.Nucl.Phys. 41 (1998) 225
- ¹³¹ [13] M.Bleicher et al. J.Phys. G25 (1999) 1859
- [14] Nelson, W. & Namito, Yoshihito. (1990). The EGS4 Code System: Solution of gamma-ray
 and electron transport problems.
- [15] I. Allekotte et al. (Pierre Auger Collaboration), *Nuclear Instruments and Methods in Physics Research A* 586, 409-420 (2008).
- [16] F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version,
 94.1, CERN-D-506 (2017)

Full Authors List: SWGO Collaboration 138

P. Abreu¹, A. Albert², E.O. Angüner³, C. Arcaro⁴, L.H. Arnaldi⁵, J.C. Arteaga-Velázquez⁶, P. Assis¹, A. Bakalová⁷, U. Bar-139 res de Almeida⁸, I. Batković⁴, J. Bellido⁹, E. Belmont-Moreno¹⁰, F. Bisconti¹¹, A. Blanco¹, M. Bohacova⁷, E. Bottacini⁴, T. Bretz¹², 140 C. Brisbois¹³, P. Brogueira¹, A.M. Brown¹⁴, T. Bulik¹⁵, K.S. Caballero Mora¹⁶, S.M. Campos¹⁷ A. Chiavassa¹¹, L. Chytka⁷, 141 R. Conceição¹, G. Consolati¹⁸, J. Cotzomi Paleta¹⁹, S. Dasso²⁰, A. De Angelis⁴, C. R. De Bom⁸, E. de la Fuente²¹, V. de Souza²², 142 D. Depaoli¹¹, G. Di Sciascio²³, C. O. Dib²⁴, D. Dorner²⁵, M. Doro⁴, M. Du Vernois²⁶, T. Ergin²⁷, K. L. Fan¹³, N. Fraija⁸, S. Funk²⁸, 143 J. I. García¹⁷, J. A. García-González²⁹, S. T. García Roca⁹, G. Giacinti³⁰, H. Goksu³⁰, B. S. González¹, F. Guarino³¹, A. Guillén³², 144 F. Haist³⁰, P.M. Hansen³³, J.P. Harding², J. Hinton³⁰, W. Hofmann³⁰, B. Hona³⁴, D. Hoyos¹⁷, P. Huentemeyer³⁵, F. Hueyotl-145 Zahuantitla¹⁶ A. Insolia³⁶, P. Janecek⁷, V. Joshi²⁸, B. Khelifi³⁷, S. Kunwar³⁰, G. La Mura¹, J. Lapington³⁸, M. R. Laspiur¹⁷, 146 F. Leitl²⁸, F. Longo³⁹, L. Lopes¹, R. Lopez-Coto⁴, D. Mandat⁷, A. G. Mariazzi³³, M. Mariotti⁴, A. Marques Moraes⁸, J. Martínez-147 Castro⁴⁰, H. Martínez-Huerta⁴¹, S. May⁴², D. G. Melo⁴³, L. F. Mendes¹, L. M. Mendes¹, T. Mineeva²⁴, A. Mitchell⁴⁴, S. Mohan³⁵, 148 O.G. Morales Olivares¹⁶, E. Moreno-Barbosa¹⁹, L. Nellen⁴⁵, V. Novotny⁷, L. Olivera-Nieto³⁰, E. Orlando³⁹, M. Pech⁷, A. Pichel²⁰, 149 M. Pimenta¹, M. Portes de Albuquerque⁸, E. Prandini⁴, M. S. Rado Cuchills⁹, A. Reisenegger⁴⁶, B. Reville³⁰, C. D. Rho⁴⁷, A. C. Rovero²⁰, 150 E. Ruiz-Velasco³⁰, G. A. Salazar¹⁷, A. Sandoval¹⁰, M. Santander⁴², H. Schoorlemmer³⁰, F. Schüssler⁴⁸, V. H. Serrano¹⁷, R. C. Shellard⁸, 151 A. Sinha⁴⁹, A. J. Smith¹³, P. Surajbali³⁰, B. Tomé¹, I. Torres Aguilar⁵⁰, C. van Eldik²⁸, I. D. Vergara-Quispe³³, A. Viana²², J. Vícha⁷, 152 C. F. Vigorito¹¹, X. Wang³⁵, F. Werner³⁰, R. White³⁰, M. A. Zamalloa Jara⁹ 153

- ¹ Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal 154
- ² Physics Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, United States 155
- ³ Aix Marseille Univ, CNRS/IN2P3, CPPM, 163 avenue de Luminy Case 902, 13288 Marseille cedex 09, France 156
- ⁴ University of Padova, Department of Physics and Astronomy & INFN Padova, Via Marzolo 8 35131 Padova, Italy 157
- ⁵ Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, S. C. de Bariloche (8400), RN, Argentina 158
- ⁶ Universidad Michoacana de San Nicolás de Hidalgo, Calle de Santiago Tapia 403, Centro, 58000 Morelia, Mich., México 159
- ⁷ FZU, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Praha 8, Czech Republic 160
- ⁸ Centro Brasileiro de Pesquisas Físicas, R. Dr. Xavier Sigaud, 150 Rio de Janeiro RJ, 22290-180, Brazil 161
- ⁹ Academic Department of Physics Faculty of Sciences Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Av. de 162
- la Cultura, 733, Pabellón C-358, Cusco, Peru 163
- ¹⁰ Instituto de Física, Universidad Nacional Autónoma de México, Sendero Bicipuma, C.U., Coyoacán, 04510 Ciudad de México, 164
- CDMX México 165
- ¹¹ Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125, Torino, Italy 166
- ¹² RWTH Aachen University, Physics Institute 3, Otto-Blumenthal-Straße, 52074 Aachen, Germany 167
- ¹³ University of Maryland, College Park, MD 20742, United States 168
- ¹⁴ Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom 169
- ¹⁵ Astronomical Observatory, University of Warsaw, Aleje Ujazdowskie 4, 00478 Warsaw, Poland 170
- ¹⁶ Facultad de Ciencias en Física y Matemáticas UNACH, Boulevard Belisario Domínguez, Km. 1081, Sin Número, Terán, Tuxtla 171 Gutiérrez, Chiapas, México 172
- ¹⁷ Facultad de Ciencias Exactas, Universidad Nacional de Salta, Avda. Bolivia Nº 5150, (4400) Salta Capital, Argentina 173
- ¹⁸ Department of Aerospace Science and Technology, Politecnico di Milano, Via Privata Giuseppe La Masa, 34, 20156 Milano MI, 174 175 Italy
- ¹⁹ Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, C.P. 72592, México 176
- ²⁰ Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Casilla de Correo 67 Suc. 28 (C1428ZAA), Ciudad 177 178 Autónoma de Buenos Aires, Argentina
- ²¹ Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, 44430 Guadalajara, Jal., México 179
- ²² Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, nº 400, Parque Arnold Schimidt -180 CEP 13566-590, São Carlos - São Paulo - Brasil 181
- ²³ INFN Roma Tor Vergata and INAF-IAPS, Via del Fosso del Cavaliere, 100, 00133 Roma RM, Italy 182
- ²⁴ Dept. of Physics and CCTVal, Universidad Tecnica Federico Santa Maria, Avenida España 1680, Valparaíso, Chile 183
- ²⁵ Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Emil-Fischer-Str. 31, 97074 Würzburg, Germany 184
- ²⁶ Department of Physics, and the Wisconsin IceCube Particle Astrophysics Center (WIPAC), University of Wisconsin, 222 West 185
- Washington Ave., Suite 500, Madison, WI 53703, United States 186
- ²⁷ TUBITAK Space Technologies Research Institute, ODTU Campus, 06800, Ankara, Turkey 187
- ²⁸ Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D 91058 188 Erlangen, Germany 189
- ⁹ Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, México 190
- ³⁰ Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany 191
- ³¹ Università di Napoli "Federico II", Dipartimento di Fisica "Ettore Pancini", and INFN Napoli, Complesso Universitario di Monte 192
- Sant'Angelo Via Cinthia, 21 80126 Napoli, Italy 193
- ³² University of Granada, Campus Universitario de Cartuja, Calle Prof. Vicente Callao, 3, 18011 Granada, Spain 194

- ³³ IFLP, Universidad Nacional de La Plata and CONICET, Diagonal 113, Casco Urbano, B1900 La Plata, Provincia de Buenos Aires, 195
- Argentina 196
- ³⁴ University of Utah, 201 Presidents' Cir, Salt Lake City, UT 84112, United States 197
- ³⁵ Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States 198
- ³⁶ Dipartimento di Fisica e Astronomia "E. Majorana", Catania University and INFN, Catania, Italy 199
- ³⁷ APC-IN2P3/CNRS, Université de Paris, Bâtiment Condorcet, 10 rue A.Domon et Léonie Duquet, 75205 PARIS CEDEX 13, France 200
- ³⁸ University of Leicester, University Road, Leicester LE1 7RH, United Kingdom 201
- ³⁹ Department of Physics, University of Trieste and INFN Trieste, via Valerio 2, I-34127, Trieste, Italy 202
- ⁴⁰Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz S/N, Nueva Industrial Vallejo, 203
- Gustavo A. Madero, 07738 Ciudad de México, CDMX, México 204

⁴¹ Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., 205 México

- 206
- ⁴² Department of Physics and Astronomy, University of Alabama, Gallalee Hall, Tuscaloosa, AL 35401, United States 207
- ⁴³ Instituto de Tecnologías en Detección y Astropartículas (CNEA-CONICET-UNSAM), Av. Gral Paz 1499 San Martín Pcia. de 208 209 Buenos Aires, Argentina
- ⁴⁴ Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland 210
- 45 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (ICN-UNAM), Cto. Exterior S/N, C.U., Coyoacán, 211
- 04510 Ciudad de México, CDMX, México 212
- ⁴⁶ Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Av. José Pedro 213
- Alessandri 774, Ñuñoa, Santiago, Chile 214
- ⁴⁷ Department of Physics, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea 215
- ⁴⁸ Institut de recherche sur les lois fondamentales de l'Univers (IRFU), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France 216
- ⁴⁹ Laboratoire Univers et Particules de Montpellier, CNRS, Université de Montpelleir, F-34090 Montpellier, France 217
- ⁵⁰ Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Puebla, México 218
- 219