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ABSTRACT
Surgical workflow recognition has attracted widespread attention
in robot-assisted surgery since it can provide surgical context infor-
mation automatically, which releases the cognitive burden of the
surgeons and allowsmore appropriate surgical decisions. Onemajor
dilemma in this community is the limitation of clinical datasets with
annotated ground truth, because it requires experienced surgeons
to provide specific recognition information during the annotation
progress. In this paper, we developed a clinical dataset with anno-
tated workflow information, and we provided a potential baseline
for the evaluation of this dataset by predicting different surgical
steps. Specifically, our dataset was captured from the robot-assisted
radical prostatectomy with lymphadenectomy performed on six pa-
tients, using the da Vinci Xi robot at European Institute of Oncology,
Milan, Italy, and all annotated outputs concerning various surgical
information were obtained under the supervision of an experienced
surgeon. Furthermore, an advanced neural network was adopted to
predict surgical steps based on this dataset by using two different
training strategies (i.e., the entire dataset and the downsampled
one for the balance of class), and it presented a potential baseline
(0.7825 DICE and 0.7918 DICE, respectively). It is expected that
this dataset could promote the development of surgical workflow
recognition in the medical image community, and this dataset is
now accessible at the link: https://zenodo.org/record/7644037.
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1 INTRODUCTION
Robots provide great benefits in the surgery field and the large num-
ber of robot-assisted procedures performed nowadays highlights
them, such as less intraoperative bleeding and fewer adverse events
during both the surgery and the recovery. Moreover, patients who
undergo robot-assisted surgery have a better chance to remove pos-
itive surgical margins, leading to reduced pain, almost no need for
transfusions and shorter hospital stays [1-3]. Advances in artificial
intelligence also offer broad promise for robotic surgery, and one
of the most representative applications is automatic surgical work-
flow recognition. It releases the cognitive overload of surgeons and
allows better decision making and surgical planning by providing
focused information, which could enhance the safety of surgery
[4-5]. Particularly, various computer-assisted technologies present
increasing demands for the recognition of surgical workflow, so
that they could be applied more appropriately in different surgical
contexts. For instance, novice surgeons perform repeated exercises
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to master the surgery’s technique, involving activities that are com-
mon across different surgical tasks, and feedback from high-quality
surgical motion data could help them to improve their skills. To
understand which phase or step should be paid more attention to, it
is needed to determine what surgical activities are taking place and
when they are taking place, i.e., recognize the surgical workflow
[6].

One of the challenges in automatic surgical workflow recog-
nition is the limitation of the public datasets today. Annotating
a clinical dataset always relies on medical background, which is
more difficult than natural scene recognition [7]. Furthermore, the
context and workflow information always significantly vary in
different surgeries, promoting the demand to expand datasets of
different surgical procedures. There are limited public datasets in
the medical field, such as Cholec80 [8] captured from cholecystec-
tomy surgeries, and Nephrec9 taken from robot-assisted partial
nephrectomy [5]. Similarly, Robot-Assisted Radical Prostatectomy
with Lymphadenectomy (RARPL) could be regarded as one of the
most common procedures in robot-assisted surgery today, in which
the entire prostate gland is removed; since cancer probably spreads
in metastasis, it is necessary to excise both the prostate gland and
the lymph nodes attached [9-10]. The Da Vinci Surgical System
(DVSS) has been widely utilized in this kind of minimally inva-
sive surgery. It was reported around three hundred procedures of
RARPL per year with the Da Vinci robot are carried out at European
Institute of Oncology, Milan, Italy, which shows the significance of
this procedure and motivates us to capture the videos of RARPL.
Although some of the actions performed during this surgical proce-
dure differ according to the patient and the evolution of the tumor,
surgeons have demonstrated how the sequence of steps is very con-
sistent and almost always the same, which shows the generalization
and potential to make this dataset. Hence, this paper presents two
contributions:

1) A clinical dataset captured from RARPL procedures was
made and annotated with different surgical workflow and
context information.

2) A potential baseline for the evaluation of this dataset was
provided using two different training strategies.

The rest of this paper is organized as follows: Section 2 presents the
details of making this dataset; Section 3 gives the evaluation results
using different metrics based on an advanced neural network; and
finally, Section 4 summarizes this work and the next research.

2 DATASET DETAILS
Six complete surgical videos with a resolution of 1920×1080 and 25
Frames Per Second (FPS) were captured from patients who accepted
the procedure of RARPL using the da Vinci Xi robot at European
Institute of Oncology. Each procedure was recorded using a 3D
HD video recorder (HVO-3300MT, SONY, Tokyo) with a length of
approximately 55 minutes each, for a total of approximately 990
minutes. Annotation related to the specific surgical workflow was
achieved under the guidance of an experienced surgeon. Specifi-
cally, 6 surgical steps of the procedure, representing the surgeons’
different actions, were defined as ‘Dissection’, ‘Traction’, ‘Clip of
the vases (Clips)’, ‘Suction’, ‘Irrigation’ and ‘Suturing’. It could be
seen that surgical steps contain important contextual information,

but the recognition is always full of challenges due to the alternat-
ing action and time continuity. In addition, 4 surgical phases were
also annotated, including ‘Collapse of the peritoneum’, ‘Prostate
removal’, ‘Lymphadenectomy’ and ‘Anastomosis’, as well as the
types of instruments that appeared, including monopolar scissors,
Maryland bipolar forceps, Cadiere forceps, suction tube, clip applier
and, only for the suturing part, the large needle driver. Figure 1
shows the recognition details of this procedure, providing the ex-
ample frames, the number of frames collected, and the tools mainly
used for each step and phase.

After the recognition of the surgical workflow, the original videos
were divided into smaller videos manually following different steps
using iMovie, hence six videos containing the six steps for each
patient were obtained. Clips with heavy motion blur, bleeding or
smoke caused by the cauterization during the dissection, which ob-
structed the view of the endoscope, were manually removed. Then,
ANVIL, a free video annotation tool that offers multi-layered an-
notation based on a user-defined coding scheme [11], was adopted.
On ANVIL it is possible to create some specifications that contain
different attributes to annotate the video, so the step was set as the
primary track, and another track, a subdivision of the primary one,
was also highlighted, representing the phase. In the subdivision
track, another attribute was also defined, related to the instruments.
Once obtained all the frames related to the specific step, they were
further divided into different phases, giving the dataset the property
of being double-sided, as one can focus on the division of frames
into steps or on the division into phases. This procedure was man-
ually carried out, selecting the frames related to a specific phase,
based on the ground truth labels obtained with ANVIL. The manual
annotation took around 100 hours in our case. Figure 2 gives the
distribution of frames in different steps. It could be seen that the
dataset is not homogenously distributed concerning steps. This
result is consistent with what the surgeons have shown us: a large
part of the RARPL operation is dedicated to dissection, while other
steps are shorter and less recognizable.

Considering that RARPL is a surgical procedure with a reduced
inter-variability between patients, the workflow of the whole pro-
cedure is quite always the same, as also confirmed by the surgeons
of IEO hospital. Hence, a transition diagram is useful to understand
the probabilities of going from one step to another. In general, a
transition diagram of a Markov chain describes the probabilities
associated with state changes, called transition probabilities, de-
pending on the previous state. In our case, state changes are the
transitions from one step to another, as shown in Figure 3.

3 CLASSIFICATION EVALUATION
3.1 Evaluation Approach
Considering that the surgical steps contain rich context informa-
tion for the recognition of surgeon’s behaviors, we conducted the
prediction of steps in this section. A state-of-the-art deep learn-
ing based approach named Temporal Memory Relation Network
(TMRNet) [12] was chosen to conduct the evaluation. It adopts
dual branches with different temporal inputs to incorporate context
information, as shown in Figure 4. More specifically, an external
long-range memory bank generated by ResNet and LSTM [13-15]
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Figure 1: The recognition details of our dataset. The data at the bottom of the picture represents the specific frame number and
the entire duration. The three blank boxes mean that the surgeons didn’t perform the corresponding steps at that phase.

was first created to store the global surgical information by inject-
ing the long video 𝑉𝐶𝑙 , and then multi-scale convolutions were
adopted to enhance the representation of temporal features 𝑓𝑡 . On
another branch, a short video clip 𝑉𝐶𝑠 extracted from the long
video was injected into the network using the same architecture
consisting of ResNet and LSTM to generate the current features 𝑓𝑐 .
Then the feature clips 𝑓𝑡 and 𝑓𝑐 from dual branches were aggregated
by implementing the non-local operator [12, 16] to generate the

attention features 𝑓𝑎 . Finally, features 𝑓𝑐 from the short clip were
concatenated with 𝑓𝑎 , and forwarded to two fully connected layers
for the prediction.

To train the network, we divided the whole dataset into five
videos as training data, and one video left for evaluation. The res-
olution of the original images is 1920×1080 which consumes lots
of computing resources, so we resized the images into 250×250
to save memory. We also kept the same hyperparameters for the
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Table 1: Recognition result of six surgical steps using all frames.

Recognized Steps DICE Precision Recall Specificity Accuracy
Clips 0.6716 0.5922 0.7756 0.9833 0.9771

Dissection 0.8658 0.9732 0.7798 0.9588 0.8412
Irrigation 0.2014 0.2024 0.2004 0.9938 0.9877
Suction 0.4216 0.2970 0.7262 0.9412 0.9341
Suturing 0.8988 0.9833 0.8277 0.9954 0.9540
Traction 0.2064 0.1219 0.6722 0.8762 0.8711

Figure 2: The intra-class variability of the number of frames
in different steps.

Figure 3: Transition probabilities between different steps in
the whole procedure.

model training recommended in [12]. All experiments were con-
ducted on a local computer with an Nvidia GeForce GTX 980 Ti.
We noticed that the distribution of different steps is imbalanced, so
two different training strategies were adopted in our evaluation: 1)
We kept the original frames to train the model. 2) We downsampled
the dataset to narrow the difference in the distribution. Specifically,
we used the images of ‘Dissection’ and ‘Suturing’ every 25 frames,
the images of ‘Clips’, ‘Suction’ and ‘Traction’ every 10 frames and
we kept the original frames of ‘Irrigation’. Five common evaluation
metrics were calculated for the dataset evaluation, including DICE
Coefficient, precision, recall, specificity, and accuracy [17-18].

3.2 Evaluation Results
The normalized confusion matrices based on the entire dataset and
the downsampled one were shown in Figure 5. We could notice that
the predicted labels are more accurate after balancing the number
distribution of steps than the original distribution since the true
positive rates are increasing. However, the predicted accuracy of
‘Irrigation’ is still low (0.20 and 0.21 respectively). It can be seen
that the prediction among ’Irrigation’, ‘Dissection’ and ‘Suction’
was difficult to achieve when the true step is ‘Irrigation’, since the
prediction probability of other two steps was even higher than
the correct label. The step of ‘irrigation’ occupies the minimum
number of frames in the entire dataset, while we augmented the
proportion of this step in the downsampled dataset. Nevertheless,
the prediction performance of this step is still unsatisfactory, which
can be given by the fact that the discrimination among those three
steps was inconspicuous and challenging after our observation.
Table 1 and Table 2 also showed the prediction values in each step
using different metrics. On the one hand, the performance keeps
better when adopting downsampled dataset than the original one,
and the prediction of ‘Clips’ got the most improvement. On the
other hand, we found the step of ‘Traction’ performs badly since
its precision keeps low (0.1219 and 0.3394 respectively). It means
that the false positive rates are high in this step, i.e., other steps
(specifically, ‘Clips’, ‘Dissection’, ‘Irrigation’ and ‘Suction’) were
prone to be predicted as ‘Traction’, which can also be observed in
Figure 5. Finally, we calculated the DICE by adding all six steps
together, and the values were 0.7825 and 0.7918 using the entire
dataset and the downsampled dataset, respectively. It could be re-
garded as a baseline for the evaluation of more advanced prediction
approaches in the future.

4 CONCLUSION
This paper proposed a public clinical dataset for automatic surgical
workflow recognition for safer robotic surgery. It was captured
using da Vinci Xi surgical system based on robot-assisted radical
prostatectomy with lymphadenectomy on six patients. We also
provided the annotated surgical workflow and context information
under the supervision of an experienced surgeon. An advanced
method was adopted to evaluate our dataset using two different
training strategies. Given the comprehensive results calculated
by different metrics, our dataset could provide a potential base-
line in the surgical workflow recognition community. Future work
will continue the surgical workflow recognition using 3D surgical
scenes. We intuitively think that adding extra depth information
using 3D surgical scene reconstruction [19-22] could enhance the

101



RARPL6: Development of a clinical dataset for surgical workflow recognition from robot-assisted radical prostatectomy with
lymphadenectomy ICBIP 2023, July 21–23, 2023, Chengdu, China

Figure 4: The architecture of the adopted temporal memory relation network

Figure 5: The normalized confusion matrices with two different training strategies. (a) is the result using the complete dataset,
while (b) represents the downsampled one.

Table 2: Recognition result of six surgical steps using the downsampled dataset.

Recognized Steps DICE Precision Recall Specificity Accuracy
Clips 0.9581 0.9218 0.9974 0.9948 0.9950

Dissection 0.8930 0.8826 0.9037 0.8806 0.8921
Irrigation 0.3401 0.9244 0.2084 0.9971 0.8813
Suction 0.5576 0.4251 0.8103 0.9265 0.9192
Suturing 0.9354 0.9819 0.8932 0.9962 0.9769
Traction 0.4671 0.3394 0.7484 0.9276 0.9191
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recognition performance since different soft tissues and tools are
easier to be recognized in 3D space, which will be verified in the
future.
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