
Poster: libdebug, Build Your Own Debugger for a Better
(Hello) World

Gabriele Digregorio
io_no@libdebug.org

gabriele.digregorio@polimi.it
Politecnico di Milano

Milano, Italy

Roberto Alessandro Bertolini
mrindeciso@libdebug.org

robertoalessandro.bertolini@mail.polimi.it
Politecnico di Milano

Milano, Italy

Francesco Panebianco
frank01001@libdebug.org

francesco.panebianco@polimi.it
Politecnico di Milano

Milano, Italy

Mario Polino
jinblack@libdebug.org

Milano, Italy

Abstract
Automated debugging, long pursued in a variety of fields from
software engineering to cybersecurity, requires a framework that
offers the building blocks for a programmable debugging workflow.
However, existing debuggers are primarily tailored for human in-
teraction, and those designed for programmatic debugging focus
on kernel space, resulting in limited functionality in userland. To
fill this gap, we introduce libdebug, a Python library for program-
matic debugging of userland binary executables. libdebug offers a
user-friendly API that enables developers to build custom debug-
ging tools for various applications, including software engineering,
reverse engineering, and software security. It is released as an
open-source project, along with comprehensive documentation to
encourage use and collaboration across the community. We demon-
strate the versatility and performance of libdebug through case
studies and benchmarks, all of which are publicly available. We
find that the median latency of syscall and breakpoint handling in
libdebug is 3 to 4 times lower compared to that of GDB.

CCS Concepts
• Security and privacy → Software reverse engineering; Soft-
ware security engineering; • Software and its engineering →
Software testing and debugging.

Keywords
Debugging, Software Security, Reverse Engineering

ACM Reference Format:
Gabriele Digregorio, Roberto Alessandro Bertolini, Francesco Panebianco,
and Mario Polino. 2024. Poster: libdebug, Build Your Own Debugger for a
Better (Hello) World. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3691391

Lake City, UT, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3658644.3691391

1 Introduction
Debuggers have long been key tools for software engineers, serv-
ing as essential instruments for identifying and resolving logical
flaws within code. Among the most prominent debugging tools for
Linux is the GNU Debugger (GDB) [11], known for its set of human-
oriented commands designed for interactive debugging. Through
step-by-step manual inspection, software developers can spot un-
expected behavior and bugs. Over time, the need for automation in
the debugging process has been increasingly recognized, promoting
the formalization and systematization of debugging as a hypothe-
sis verification process [13, 14]. While these methodologies were
originally developed within the context of software engineering,
the application of debuggers has since extended beyond traditional
software development into the cybersecurity context. Security pro-
fessionals now leverage debuggers to diagnose memory corruption
vulnerabilities and assess potential exploitation vectors that could
escalate into remote code execution on target systems. Furthermore,
debuggers enable dynamic analysis during reverse engineering, al-
lowing for the dissection of intricate procedures by inspecting the
process state in real-time. This capability is essential for tracing
the behavior of malicious software and identifying vulnerabilities
in binary applications, particularly in scenarios where the source
code is unavailable.

A crucial step in automating debugging is creating a program-
mable framework equipped with essential building blocks to con-
struct tailored debugging workflows. An illustrative example of
such a framework is drgn [10], a programmable debugger specif-
ically targeted for the Linux Kernel. A core aspect of its design
is intuitiveness in scripting, which is a shortcoming for existing
solutions like GDB. However, security specialists frequently need
to script and automate debugging within user space to replicate
specific execution flows or to develop customized wrappers suited
to unique debugging tasks. Although drgn aims to support userland
debugging, it was not initially intended for this purpose. Notably,
at the time of writing, it can access a userspace process and read its
memory, but it lacks fundamental features for effective debugging,
including pausing threads and setting breakpoints [9].

https://orcid.org/0009-0003-1854-759X
https://orcid.org/0009-0002-2314-6056
https://orcid.org/0009-0007-1510-2594
https://orcid.org/0000-0002-0925-2306
https://doi.org/10.1145/3658644.3691391
https://doi.org/10.1145/3658644.3691391
https://doi.org/10.1145/3658644.3691391


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Gabriele Digregorio, Roberto Alessandro Bertolini, Francesco Panebianco, & Mario Polino

To address these needs, we introduce libdebug [5], an open-
source Python library for programmatic debugging. libdebug pro-
vides a comprehensive set of building blocks designed to facilitate
the development of debugging tools for different purposes, includ-
ing reverse engineering and exploitation. During the development
of libdebug, we prioritized efficiency in the implementation of each
building block. This aspect is not secondary, as it directly impacts
the execution time of the debuggee and, therefore, the applicability
of the designed debugging workflows in real-world scenarios.

This paper presents the rationale behind libdebug, demonstrating
its utility across various domains via detailed case studies, with an
emphasis on security perspectives. To show how libdebug’s building
blocks can come together, we release the source code of these case
studies. Additionally, we benchmark relevant event handling in
both libdebug and GDB Python scripts, specifically breakpoint and
syscall handling, and find that using libdebug results in a speedup
of 3 to 4 times in the median case.

Our contributions are summarized as follows:
• We introduce libdebug: a versatile Python library for pro-
grammatic debugging of userland binary executables.

• We demonstrate the capability and potential of libdebug
through various use cases, ranging from software engineer-
ing to cybersecurity. Additionally, we compare its event han-
dling latency with that of GDB.

• We release libdebug as an open-source project1, accompanied
by comprehensive documentation2.

2 Your Own Debugger
Debugging a userland binary executable involves kernel-mediated
control over the state of the target process, such as its memory
and register contents. For example, in the case of Unix-like kernels
(e.g., Linux, Darwin), the ptrace [2] system call is used to interact
with running processes, through a series of architecture-specific
commands. The role of a debugger is to add a layer of abstraction
that manages the interaction with these unintuitive native debug
APIs, allowing users to focus on the debugging of applications.

Widespread debuggers such as GDB are designed primarily for
human interaction. However, many tasks require the debugging
flow to be repeatable and programmable. Moreover, traditional
debuggers typically only focus on debugging binaries during devel-
opment and testing phases. In cybersecurity, a debugger is a vital
tool used in reverse engineering and exploitation. During these
tasks, it is crucial to consistently and reliably know the execution
state of a process. For example, programmatically inspecting how
different inputs affect the execution flow or the content of registers
and memory is highly beneficial.

libdebug is a Python library that provides users with all the
necessary building blocks to easily program custom debuggers that
can be tailored to unique scenarios and applications, including those
related to cybersecurity. Python’s consistent popularity, versatility,
and widespread adoption among tech experts [12] make it an ideal
choice for this task. libdebug implements direct interaction with the
native debug APIs exposed by the kernel in a way that is transparent
to the user, providing a consistent high-level API across different

1https://github.com/libdebug/libdebug
2https://docs.libdebug.org

architectures. libdebug does not rely on any assumptions about the
compilation options or the structure of the binary being analyzed,
nor does it require for any debug information to be embedded
in the executable. The functionalities exposed by libdebug include
operations on registers, memory, breakpoints, watchpoints, syscalls,
and signals, as well as support for multithreading. Additionally, it
exposes interaction with the target’s standard input, output, and
error streams.

While it is mostly written in Python, libdebug leverages C code
bindings [6] to improve interaction with the operating system and
performance. It is designed with modularity in mind, facilitating
the easy expansion of its functionalities and support. At the time
of writing, libdebug already supports AMD64 and AArch64. Fur-
thermore, it is not constrained by the ptrace paradigm and different
debugging interfaces can be seamlessly integrated. For example,
support can be added for the gdbstub exposed by QEMU [3] or the
native debug APIs of other operating systems, such asWindows [4].

3 Use Cases
In this section, we present three examples of how libdebug can be
used to create a debugger tailored to a precise task. The first focuses
on demonstrating how a tool madewith libdebug can assist in the re-
verse engineering and debugging of operations performed by code
interpreters. This includes interpreted programming languages, vir-
tual machines, and Just-In-Time recompilation. The second example
illustrates how libdebug can ease the development of tools for au-
tomatic vulnerability detection and exploitation. The last example
highlights the benefits of integrating libdebug in unit testing and
coverage analysis toolchains. The same basic blocks used in these
examples can be reshaped and combined to apply libdebug to any
other task and domain. We publicly release all example code 3.
Interpreted Bytecode Debugging. To reverse engineer or trou-
bleshoot non-native bytecode, knowing the state of the bytecode
interpreter can be particularly useful. This knowledge becomes cru-
cial when no reliable debugging mechanisms exist, or when existing
methods fail to provide the necessary control over the interpreter’s
state. To address this, the proposed solution leverages libdebug’s
building blocks to craft a debugger tailored for the interpreter.

In the example, libdebug is used for debugging the CPython
interpreter binary and the libpython shared library loaded by the
interpreter. At runtime, the script dumps each fetched Python op-
code and modifies the interpreter’s state to change the execution
flow — for instance, changing the type of a binary operation from
sum to subtraction. This example showcases a high level of au-
tomation, including the identification of optimal locations within
the shared library to install breakpoints. On breakpoint hit, the
libdebug script specifies the operation to perform according to the
task’s objectives.
Vulnerability Detection and Exploitation. Fuzzing is an auto-
mated technique to identify inputs that cause inconsistent or failure
states. This method has received significant attention from both
software developers and security specialists [15]. However, once
fuzzing yields a candidate input, the task of understanding the bug
and assessing its potential as a vulnerability falls to the user. In
our example, we demonstrate a use case employing libdebug to
3https://github.com/libdebug/libdebug/tree/0.5.4/examples

https://github.com/libdebug/libdebug
https://docs.libdebug.org
https://github.com/libdebug/libdebug/tree/0.5.4/examples


Poster: libdebug, Build Your Own Debugger for a Better (Hello) World CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

develop a simple program for detecting buffer overflows. This tool
catches SIGSEGV signals during the execution of a Linux binary.
Upon identifying a problematic input, the script performs a detailed
post-mortem analysis, examining registers and memory locations
impacted by the input. Then, it modifies the input to determine
the setup that can overwrite the base pointer or even the instruc-
tion pointer, leading to a successful stack-pivoting or control flow
hijacking. To facilitate remediation, a stack trace is provided, for
precise identification of the vulnerable execution flow.
Automated Testing and Coverage.Modern software engineering
practices emphasize the need for frequent and extensive testing to
quickly detect and correct errors. Code coverage analysis ensures
all edge cases are tested by tracing and analyzing each execution
path. A common coverage metric is the branch coverage, which
measures the percentage of conditional branches that are taken
or not during various executions. There are two main ways of
performing coverage analysis during testing. Some tools, like GNU
gcov [1], employ compile-time binary instrumentation to embed
additional code that records any branch taken. Other tools, like
kcov [7] and bcov [8], perform dynamic analysis to identify any
branching path and calculate the corresponding coverage.

Our example shows how libdebug can be used to develop a tool
that efficiently calculates the branch coverage after each test run.
The tool requires minimal development effort. Using breakpoints,
it performs dynamic analysis of the code paths taken at runtime.
Moreover, the use case simplifies and enriches the testing process by
simulating and validating rare failures, such as those during mem-
ory allocation or file access. These faults can be deterministically
injected while running a test case, ensuring their coverage.

4 Benchmarks
In the following section, we present two benchmarks that com-
pare the execution times of equivalent tasks using libdebug and
GDB. The first benchmark assesses the overhead associated with
breakpoint handling, while the second evaluates the overhead in
syscall handling. These two events were chosen for their relevance
to many use cases, including those presented in this work, which
require efficient programmatic debugging.

It is important to note that GDB is not primarily designed to be
programmatic. Despite this, it offers a Python API for the creation
of custom commands that directly interact with the debugger [11].
Due to their nature, care must be taken while designing custom
commands to avoid disrupting the normal functioning of GDB.
Moreover, this approach inevitably incurs additional overhead in
printing logs and interpreting commands. Thus, we developed two
GDB commands that run the benchmark scripts while disabling as
many logs and potential overhead sources as possible.

Each benchmark script handles 1000 events. We ran each bench-
mark 1000 times on the same machine, equipped with an Intel
Core Ultra 7 155H and 64GB of RAM. The kernel version was 6.9.9-
arch1-1, while libdebug and GDB were at versions 0.5.4 and 15.1,
respectively. All scripts used for the benchmarks are public for
reproducibility 4. The benchmark results are shown in Figure 1.
We can see that in both tests, the run time shown by libdebug is

4https://github.com/libdebug/libdebug/tree/0.5.4/test/benchmarks

Figure 1: Distributions of run times for handling 1000 break-
points (a) or 1000 syscalls (b) with libdebug and the GDB
Python API. The multiplier on the right is GDB’s overhead.

significantly lower than that of GDB, with libdebug being 3 to 4
times faster in the median case.

5 Conclusions
Debuggers are essential tools for software engineers and security
analysts, but existing solutions often lack the programmability re-
quired for advanced automation. To address this gap, we developed
libdebug, a programmable debugger for userland binary executa-
bles. It has been released as open-source software and comes with
comprehensive documentation. libdebug is designed to abstract
architecture-specific details, providing unified APIs that can be used
across different platforms. Currently, libdebug supports AMD64
and AArch64 Linux systems, but its modular design enables easy
adaptation to other architectures and operating systems in future
versions. This paper demonstrated libdebug’s capabilities through
various use cases and benchmarks against GDB, with all test source
code made publicly available. We find that libdebug is 3 to 4 times
faster than GDB at handling some common debugging events.

References
[1] 1996. gcov — a Test Coverage Program. https://gcc.gnu.org/onlinedocs/gcc/

Gcov.html
[2] 1999. ptrace source code. https://github.com/torvalds/linux/blob/master/kernel/

ptrace.c
[3] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

annual technical conference, FREENIX Track, Vol. 41. California, USA, 10–5555.
Issue: 46.

[4] Microsoft Corporation. 2023. Debugging Functions. https://learn.microsoft.com/
en-us/windows/win32/debug/debugging-functions

[5] Gabriele Digregorio, Roberto Alessandro Bertolini, Francesco Panebianco, and
Mario Polino. 2024. libdebug: Build Your Own Debugger. https://doi.org/10.5281/
zenodo.13151549

[6] Python Software Foundation. 2024. Extending Python with C or C++. https:
//docs.python.org/3/extending/extending.html

[7] Simon Kagstrom. 2010. kcov. https://bcov.sourceforge.net/
[8] Thomas Neumann. 2007. bcov. https://bcov.sourceforge.net/
[9] Omar Sandoval. 2023. Live userspace process debugging #320. https://github.

com/osandov/drgn/issues/320
[10] Omar Sandoval. 2024. drgn. https://github.com/osandov/drgn
[11] Richard Stallman, Roland Pesch, Stan Shebs, and others. 1988. Debugging with

GDB. Free Software Foundation, Inc. 675 (1988).
[12] Cass Stephen. 2023. The Top Programming Languages 2023. https://spectrum.

ieee.org/the-top-programming-languages-2023
[13] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Morgan

Kaufmann.
[14] Andreas Zeller. 2024. The Debugging Book. CISPA Helmholtz Center for Informa-

tion Security. https://www.debuggingbook.org/
[15] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A

Survey for Roadmap. ACM Comput. Surv. 54, 11s (Sept. 2022). https://doi.org/10.
1145/3512345 Place: New York, NY, USA Publisher: Association for Computing
Machinery.

https://github.com/libdebug/libdebug/tree/0.5.4/test/benchmarks
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/torvalds/linux/blob/master/kernel/ptrace.c
https://github.com/torvalds/linux/blob/master/kernel/ptrace.c
https://learn.microsoft.com/en-us/windows/win32/debug/debugging-functions
https://learn.microsoft.com/en-us/windows/win32/debug/debugging-functions
https://doi.org/10.5281/zenodo.13151549
https://doi.org/10.5281/zenodo.13151549
https://docs.python.org/3/extending/extending.html
https://docs.python.org/3/extending/extending.html
https://bcov.sourceforge.net/
https://bcov.sourceforge.net/
https://github.com/osandov/drgn/issues/320
https://github.com/osandov/drgn/issues/320
https://github.com/osandov/drgn
https://spectrum.ieee.org/the-top-programming-languages-2023
https://spectrum.ieee.org/the-top-programming-languages-2023
https://www.debuggingbook.org/
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Your Own Debugger
	3 Use Cases
	4 Benchmarks
	5 Conclusions
	References

