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Abstract 

Validation is an essential procedure in the development of a predictive model in 

several engineering fields.  In addition, recent data analysis techniques and the 

increasing availability of data have the potential to provide a deeper understanding 

of experimental data and simulation models. This work proposes a systematic, 

objective, and automatic methodology to validate and analyze experiments and 

models from a high-level perspective. The proposed methodology exploits the 

opportunities offered by the ‘data ecosystem’ concept, combining data and model 

evaluation and providing an integrated set of techniques to produce synthetic but 

comprehensive insights about the experiment and the predictive model. The 

methodology focuses on data assessment of the experiments used in the process, the 

use of a trend similarity comparison index to measure the model performance, and 

data science techniques to systematically extract models’ behavior insight by 

analyzing a large number of validation results and linking them to the experiment 

characteristics. 
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The automated proposed approach follows the generality principle and can be 

extended to different application domains in which predictive models are validated 

against big data in the chemical engineering domain. As a case study, the proposed 

methodology is applied with hundreds of experimental datasets to evaluate a kinetic 

model that describes the pyrolysis and combustion of hydrocarbons. 

Keywords: model validation, model analysis, data science, data mining, big data, 

knowledge extraction 

 

1. Introduction 

Over the past few decades, the progress in computing power, the availability 

of more and more data, and the tendency to share information boosted the 

development of many research and industrial areas [1]. The availability of 5 

predictive models to forecast a system state brought new insights into the 

comprehension of the phenomena, industrial applications, and social benefits, in 

many different sectors, from engineering to social science. In particular, in 

chemical engineering, increasingly complex physical-chemical models are capable 

of predicting at different scales diverse states of a domain [2, 3]. 10 

The generation procedure of complex models, due to a large amount of 

available data, is changing from an approach solely based on first principles to 

data-driven methodologies [4, 5]. In fact, the data collection phase is an 

increasingly fundamental step in a research plan to develop a predictive model 

[6]. In addition to data collection, it is also necessary to support a data preparation 15 

phase, in which the data collected through experimental campaigns and other 

available sources are validated and integrated for subsequent uses. 

As these phases require a considerable effort, and due to the complexity and 

the many possibilities to model a domain, the “many-data many-models” problem 

originated [7]: many models are available to predict the same subject (i.e., the 20 

quantity or property of interest), but they differ in the number and form of 



 

mathematical equations representing the phenomena or in the selection of 

parameters [7, 8]. These degrees of freedom and the “many-data” led to the 

development of many models of various complexity from different research 

groups concerning the same subject but based on a different subset of 25 

experiments. The result was the generation of inconsistent and not general 

models [9]. In addition, a manual evaluation of model quality through comparison 

with experimental data, and a univocal, quantitative ranking of the results, are not 

straightforward operations [10]. 

Therefore, there is a need to organize the available information, conceptualize 30 

the problem in terms of big data, and automate the model validation and analysis 

procedures. This approach can extract knowledge from the data to speed up the 

development process while reducing error-prone tasks [10], defining in practice 

what can be discovered [36, 37].  The validation procedure (or assessment) links 

the development of a complex model to the experimental data computing the 35 

predictive model performances by comparing the model predictions with the 

corresponding experimental measurements. Such comparison is traditionally 

performed manually via a graphical approach: experimental and simulated data 

are plotted together in the same figure, and the researcher evaluates whether the 

predictions are good enough to consider the model acceptable. Even if model 40 

validation is a “poorly posed problem” [7], this approach has two strong 

limitations: (i) it lacks objectivity since the same comparison can be good for 

someone and admissible, or even worse, for others. (ii) the validation is not 

extensive since the availability of human resources highly limits this time-

consuming procedure. 45 

As a consequence, one can easily lose control of the model development since, 

at each modification, it should be re-validated against a large number of 

experimental data to verify that the changes have not negatively impacted other 

model areas. This problem is known as the “short blanket” dilemma. As a side 

result, manual validation can not extract systematic features about the model 50 
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behavior based on large quantities of data, which could be helpful in providing 

suggestions for the next model improvement. 

A numerical procedure to execute the model validation accounts for the first 

problem since it provides an unbiased model performance assessment. Some of 

these methodologies take only into account the distance between measurements 55 

and predictions, with metrics such as mean square error [27-29], R2 [30, 31], or 

customization of them based on the application, referred to as objective error 

function [32]; others also consider the dissimilarities and similarities among the 

shapes of the experimental and simulated data curves [33, 34]. However, there is 

the need to develop a more comprehensive approach to compare and analyze 60 

different numerical model validations on very large quantities of data, in addition 

to new ways of analyzing in-depth critical cases when identified, exploiting all 

available data. Therefore, an information system is essential to manage analyses 

of big data automatically. Over time, there were several initiatives aimed at 

collecting experimental data in frameworks or data ecosystems. Their typical 65 

challenges are the involvement of the scientific community in data sharing, 

providing services to users, and the standardization of data representation in 

agreed formats [11]. 

In the combustion domain, since the first example of the PrIMe (Process 

Informatics Model) system [12], these frameworks do not exist only as scientific 70 

data repositories but offer other domain-related services. PrIMe, in particular, 

also had the purpose of collecting predictive models and generating them based 

on specific user requests (e.g., operating conditions), providing services to control 

the consistency of the experimental data [13, 14], and validating the models [15]. 

The Bound-to-Bound Data Collaboration (B2BDC) methodology is a part of the 75 

PrIMe framework. It is rooted around the concept of consistency, and it is the first 

methodology that uses data to define constraints to bound a feasible space of 

variables [16]. The B2BDC casts the problem of model validation in an 

optimization setting inside the feasible space [13]. A model, in this space, can be 

generated, validated [15, 17], optimized, and the model uncertainty quantified 80 



 

and analyzed [18-21]. As an evolution of PrIMe, CloudFlame was proposed [22, 

23]. It offers cloud simulation computing capabilities, a data repository, and a 

model generation feature. Another framework is ReSpecTh which contains 

reaction kinetics, high-resolution molecular spectroscopy, and thermochemistry 

data [24]. It offers different functionalities, such as starting and running multiple 85 

simulations, visualizing data, and automatically validating models [24]. 

By leveraging a newly-conceived data ecosystem, this work proposes a 

systematic and automatic end-to-end methodology that first assesses the data 

used for validation, objectively validates the model and then analyzes the 

validation results with a data science approach to derive model behavior insights. 90 

The outcomes of such methodology are essential to guide the automatic and 

intelligent generation of new complex predictive models. Therefore, the proposed 

methodology aims at  identifying a common direction, driving the scientific 

community toward an objective and uniquely consistent approach to define 

model quality, then fostering their further improvement. The methodology 95 

outcomes are synthetic analysis results that provide suggestions about ”which”, 

”where”, ”why”, and ”how much” the model predictions are not satisfactory from 

a high-level perspective, together with a synthetic performance index of the 

model. The procedure does not rely upon or connect the prediction results to the 

application-specific component of a mechanism, thus keeping its generality. 100 

Instead, in the analyses, it links the model performances to the experiment 

characteristic (or metadata) to derive explainable model insights. A new data 

mining technique called interval analysis has also been implemented to estimate 

precisely ”how much” the model deviates from the experiments. Model 

component-level tools and analyses can be used as other sources of information 105 

to enrich the analysis accordingly to the applicative domain. For each step of the 

proposed approach, the current pitfalls and their mitigations are explained, 

together with the opportunities in terms of trustworthiness, comprehension, and 

development process improvement of the model that data science methodologies 

can bring to the field. 110 
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With the spread of frameworks for model generation, validation, and experiment 

collection, the growing number of increasingly complex models has involved 

development of several initiatives such as CaRMeN (Catalytic Reaction 

Mechanism Network) [10], those proposed by West et al. [25] or by Killingsworth 

et al. [26], which offered tools to check the physical consistency of predictive 115 

models, identify errors, and compare their performance. 

Other successful applications in chemical engineering have shown the advantage 

of using data science [38, 29] or, more in general, computer science, such as PCA 

or Knowledge Graph approaches to extract new knowledge from data [39, 40] or 

inside an optimization procedure of existing models [32]. Furthermore, since 120 

many machine learning applications are spreading in this research area [41-46], 

it is important to apply and adapt to the chemical engineering domain the existing 

expertise in the computer science community to avoid well-known issues. One of 

the most important is related to the overfitting of the data during the model 

generation, which leads to a biased model [47]. 125 

Finally, as a case study, while this manuscript and the proposed methodology 

do not focus on a specific chemical engineering domain, the paper provided 

examples in the domain of chemical kinetics to illustrate the end-to-end 

methodology for data assessment, model validation, and analysis. In particular, 

the methodology is applied on a detailed kinetic mechanism describing the 130 

pyrolysis and combustion of conventional as well as next-generation fuels, like 

hydrogen, methane, and their blends, which can be derived from bio-feedstocks, 

using SciExpeM as data ecosystem [48]. 

 

2. Materials and methods 135 

This section presents the proposed end-to-end methodology with the related 

techniques and tools, to validate and analyze a predictive model. The goal of the 

approach is to provide an objective and systematic procedure as illustrated in the 

following. An objective procedure implies that the model performance 



 

assessment, i.e., the similarity measurements between the experimental and the 140 

corresponding simulated data, must be based on numerical approaches. There is 

a need to compare different numerical approaches and to select the more 

adequate ones in the different phases of the analysis, considering also 

computational constraints. In addition, the validation should include a large 

amount of experimental data with a certain quality and diversity; this would avoid 145 

the bias in relying on a predictive model that is tested only against a few 

experiments that cover sporadic environmental conditions with poor data quality. 

To this purpose, techniques for appropriate data selection and data quality 

assessment are needed. Finally, being objective suggests that the validation and 

the analysis procedures have to be defined as a detailed and replicable sequence 150 

of steps that will make the results reusable and the predictive models comparable 

while enhancing the trustworthiness of a new model release. On the other hand, a 

systematic procedure leverages the model validation results to detect recurring 

characteristics and patterns of the model predictive capability. Such methodology 

needs the largest available quantities of data; thus, the overall procedure should 155 

be automated. 

This methodology compares the model’s outcomes with experiments to 

provide knowledge on model behavior under a wide range of conditions. Other 

sources of information should enhance the analysis to improve the predictive 

capability of a model. For example, in the combustion fields, the use of well-known 160 

instruments, such as parameter sensitivity analysis and flux analysis, are a valid 

source of model component-level data [49, 27] 

Therefore, this section presents (i) an approach oriented toward an automatic, 

standardized, and unbiased validation of the predictive model and (ii) data 

science-based techniques to analyze the model behavior providing suggestions 165 

for its later improvement, laying down the first stones for a machine learning-

oriented predictive model development. 

Section 2.1 introduces the characteristics that a data ecosystem should include 

to support this approach in terms of collecting, storing, and analyzing 
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experiments, simulations, and complex models. Section 2.2 presents a general 170 

overview of the methodology and the data science techniques used to assess a 

model’s predictive performance and extract knowledge about the model behavior 

systematically. Finally, the techniques and tools proposed and developed to 

support the methodology are described in detail. Section 2.3 focuses on data 

assessment, while Section 2.4 and Section 2.5 describe the proposed validation 175 

and analysis tools respectively. 

2.1. Data Management System 

A data ecosystem (DE) has various characteristics and services, but the most 

important functionality is the capability to manage a large amount of data 

considering different aspects. This part of the system is also known as data 180 

management system. A DE for the development of a predictive model speeds up 

two important aspects. First, it stores experimental and simulated data together 

with models in the same place. As a result, it optimizes the reuse of resources, 

saves time in the search for experiments, and encourages data sharing among 

different researchers according to the Findable, Accessible, Interoperable, and 185 

Reusable (FAIR) principles [50]. Second, it is able to automatically manage large 

quantities of data and apply data science techniques, such as data mining, machine 

learning, and statistical analysis. This kind of study allows a deeper examination 

of the model and the collection of systematic insights from a broader set of data 

that could not be manually observable. 190 

The automatic analysis of a larger amount of data is a game-changer in the 

predictive model development process, not only in the chemical engineering field: 

the researchers need to have a synthetic yet exhaustive overview of the model 

performances in many different conditions without the risk of overfitting the 

model only on the few data that they can manually handle. At the same time, such 195 

analysis can provide model developers with suggestions about where, why, and 

how much a model requires some improvements. Another advantage of a DE is in 

the “design of experiment” phase. Since the experiments are all stored and 



 

categorized in a database, it is possible to know which domain area(s) lack 

experiments or suggest in which there are few, and the predictive model 200 

performances are not good enough; thus, other data are needed to comprehend 

better the phenomena. 

A DE with these purposes must manage four data types: experiments, 

simulations, models, and analysis results. Each data type is linked to the other, 

such that each of them can be used to validate the other. For instance, to validate 205 

an experimental observation, it is possible to use both the chemistry theory data 

and the simulations, but also vice-versa. Therefore, a DE is a data-centralized 

structure that has the advantage of sharing and managing the knowledge between 

all the data sources. The drawback of this approach is a fast propagation of an 

error, but if proper data quality rules are set (see Section 2.3.1), this hazard can 210 

be managed. Moreover, having all the data in the same place incentivize more 

users to use the DE, enhancing the trustworthiness of the data and of the system 

itself. The more the system is trustworthy the more users are likely to use it; a 

positive vicious cycle is started. 

The term experiment (or experimental data) is used in this work to refer to 215 

both a set of experimental observations about a specific target or measured 

property as well as data from chemical theory, given specific environmental 

conditions (or experimental setting). Similarly, a simulation (or simulated dataset, 

or simulated data) is the collection of data points obtained using a model to 

forecast the output of a system given a set of environmental conditions. 220 

2.2. Model Evaluation Methodology 

The model evaluation methodology includes three phases (see Figure 1) that 

follow the principles of objectivity and systematicity explained previously, solving 

the limitations presented in the introduction. 
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 225 

Figure 1: The proposed model evaluation process. 

The first phase is the data assessment, illustrated in Section 2.2.1, which 

evaluates different characteristics of the data used in this process since they 

directly impact the quality of the outcomes. Then, during model validation 

(Section 2.2.2), the similarity (score) between the experimental data and the 230 

model prediction (or simulated data) is properly quantified. The simulation’s 

similarity score (or index) is the similitude, computed according to a score 

function, between the experimental data and the corresponding simulated data. 

The score range is [0,1], where 1 is the perfect similarity. In general, several 

possible scoring methods can be used and compared during the analysis, as 235 

discussed in Section 2.2. Finally, the model analysis described in Section 2.2.3 uses 

the validation results and data science to derive insights about which, where, why, 

and how much a model performs inaccurately. 

A proper data ecosystem is required to implement such an automatic 

procedure to elaborate big data and therefore standardize and significantly 240 

reduce both the time spent and the human-related errors during the steps of the 

overall model development process. 

The model evaluation procedure can be applied both in the case of evaluating 

a single model performances or comparing those of two different ones at the 



 

 Validation Analysis 

        Qualitative    Quantitative Quantitative 

 

  

Coarse 
 

Trend Score 
Pattern Detection 

Statistical 

Fine Visualization 
Point-Wise 

Score∗ 
Interval 

Table 1: Techniques used to validate and analyze a model. ∗ denote a tool that is present in the 245 

literature, but it is not used in our approach. Each tool is quantitative or qualitative and provides 

detailed (Fine grain) or general information (Coarse grain). 

same time. In the first case, the similarity score is used in absolute terms. In the 

latter, the similarity score is used in terms of relative variations, therefore 

evaluating improvements or worsening in the model. In both cases, the overall 250 

evaluation procedure is not different. 

Table 1 reports the available techniques for the model validation, 

distinguishing between quantitative and qualitative approaches. Next to the 

validation tools, the analysis technologies are listed, to provide insights about the 

model behavior systematically. Both validation and analysis techniques are 255 

divided into coarse and fine grain, denoting respectively methodologies capable 

of summarizing multiple aspects and large quantities of data or deeper and 

punctual study. The evaluation procedure presented in this paper considers 

visualization an optional step, useful only to check a few particular cases further. 

2.2.1. Data Assessment 260 

This first phase quantifies the quality and diversity of the validation set of 

experimental data selected for the following model validation and analysis. The 

experimental data collection should be the most extensive, diverse, and high 

quality possible to avoid the hazard of overfitting the model on the selected data 

or providing wrong information during the following phases. This phase can in 265 

part be performed during the model evaluation procedure and in part be 
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supported by the automatic data quality control procedures defined within the 

management of the data ecosystem, independently of the development of a single 

model. As explained in more detail in Section 2.3.1, data quality controls employ a 

combination of rule and threshold approaches to establish if an experiment is 270 

reliable to be used in the data ecosystem. The rule-based approach is independent 

of the quantity of available data, whereas the threshold guarantees more reliable 

results with more data. However, predictive models from different sources can be 

used to make up for the missing data since it is reasonable to think that they are 

not perfect but reliable enough in most cases. 275 

2.2.2. Model Validation 

This phase entails the quantification of the predictive model performances. To 

be objective, the procedure employs a quantitative approach that, by measuring 

the similarity between the trend (Trend score) of the experimental data points as 

a whole against the corresponding simulated data, provides a synthetic index of 280 

the model’s performance. It is fair to point out that deciding which objective 

metric to use is not subjective. In fact, based on the specific application domain, 

some metrics are proved to be better than others. In chemical engineering, most 

models are evaluated not only on the prediction capabilities to forecast a single 

point, but also on the ability to apprehend the trend of point series as in a 285 

parametric analysis. For this reason, generally speaking, comparing the trend is a 

safe choice since it also includes a point-wise comparison. Moreover, the 

similarity score must account for the experimental uncertainty when comparing 

the experiment to the simulations. 

The similarity score is automatically computed for each experimental and 290 

simulated data pair. Once this operation is concluded, the model validation is 

completed: a general and synthetic performance overview of the model is now 

available as an average of all similarity indexes. Instead, when comparing two 

models, the percentage variation between them is evaluated. 



 

2.2.3. Model Analysis 295 

The third and last macro phase of the evaluation procedure consists of 

analyzing the similarity indexes computed during the model validation. The 

model analysis leverages data science techniques to collect knowledge about the 

predictive model’s behavior systematically. Notwithstanding that the proper 

interpretation of analysis results is dependent on the type of application. 300 

As in many computer science applications, also in this case there is a need to 

address what is known as the “curse of dimensionality” [51]. In fact, for the model 

validation, for each pair of experimental and simulated data is computed a 

similarity score, and an average of all of them is a fair indicator of the general 

model performance. However, such an average is not able to provide detailed 305 

information about the behavior of the predictive model since it depends on many 

variables. The application of data science techniques allows managing the many 

dimensions that define a domain and the thousands of similarity indexes 

computed during validation to extract insights automatically. 

The analysis phase is characterized by the following three steps that can be used 310 

to study the model simulation results more and more in depth: statistical analysis, 

pattern detection, and interval analysis. 

Statistical Analysis. Experimental data are provided with additional information 

(also referred to as characteristics, metadata, or properties) that can be leveraged 

to statistically analyze the model performances in a complex and 315 

multidimensional domain. First, it is possible to group the similarity indexes 

based on common characteristics of the experiment to know which combination 

of them indicates the worst model performance. Second, using correlation on the 

experiment metadata, it is possible to investigate why the model does not perform 

well enough, i.e., outside the experimental uncertainties, or in other words, the 320 

contributing causes. 

First of all, a collection of experiments is filtered based on their similarity 

score, whether it is below the first quartile (25th percentile or 1st quartile). 
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The percentile is computed with respect to the global distribution of similarity 

 325 
Average of similarity scores of the experiments with combination of properties A=A2, B=B3, C=C3  

Figure 2: Subdivision and average of the similarity scores of the experiments with the same combination 

of categorical attributes (A, B, C). 

scores. In such a way, the focus is immediately shifted to the experiments with the 

associated worst predictive model performance. 330 

However, it is necessary to find out which combinations of the properties of 

the experiments correspond to such behavior. Without losing generality, let us 

assume that each experiment is characterized by the values assumed in 

correspondence of three categorical properties A,B,C. Since each property is 

categorical, only a precise set of values can be assumed, and not all combinations 335 

of property values are possible in a domain. Let us assume, for instance, that the 

values for each category are defined as follows:  

A = {A1,A2} B = {B1,B2,B3,B4}, C = {C1,...,C5}. 

Following the idea pictured in Figure 2, it is possible to compute the average 

(or other statistical measures) of the similarity scores of the experiment that have 340 

a precise combination of experimental properties. Then the combinations of 

properties that are statistically relevant are observed. A combination is 

statistically relevant whether it has a considerable number of cases in the quartile 



 

and a high percentage of them with respect to the total number of existing ones 

with that combination of properties. In a second moment, a correlation analysis 345 

between all the experiments metadata, such as type of experiment and 

environmental conditions, together with the similarity score, suggests, for 

example, that the model performance is due the use of particular conditions (like 

equipment) when a specific variable (species for example) is measured. To this 

purpose, both clustering and classification techniques can be adopted to analyze 350 

the results on a large scale. 

Pattern Detection. Pattern detection algorithms, such as clustering, applied to the 

similarity index, together with (numerical and continuous) physical properties 

associated with an experiment such as temperature and pressure, can 

automatically distinguish the portions of the domain where the model does show 355 

larger mispredictions. In fact, clustering algorithms group similar experiments in 

the same cluster: taking the most representative cluster(s) with the lowest 

variation of the associated performance scores, it is possible to know which 

combination of physical property range is responsible for the worst performance. 

Interval Analysis. Once the analysis has been identified for which combination(s) 360 

of metadata and where the model is more deficient, with the developed ad-hoc 

analysis of the intervals, it is possible to quantify (how much) the average 

deviation of the experimental curve from the simulated one. 

In the following sections, the approaches proposed in this paper for data 

assessment and to validate and analyze the model through the techniques 365 

mentioned above are described in detail. 

2.3. Data assessment techniques 

Data assessment is related to the evaluation of the quality of the dataset used 

in the subsequent validation and analysis phase, but also in all the phases of the 

model development process. The dataset is considered in terms of both the quality 370 

of the data and the representativeness (coverage) with respect to a domain. 
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2.3.1. Data Quality 

Data have an increasingly central role in all data-driven applications, and their 

quality is critical since it directly influences the reliability of all the downstream 

uses [52]. If the Data Quality rules are properly set, they mitigate the typical 375 

”garbage-in garbage-out” hazard of all data-driven applications and fast spread of 

wrong information in data centralized architecture. In the last decades, research 

on Data Quality has defined analysis dimensions and metrics to define and assess 

the quality of data. Data Quality identifies different characteristics of a dataset and 

presents quantitative measures of the corresponding quality dimensions. In the 380 

end, Data Quality quantifies and highlights the strengths and criticalities of a 

dataset. Over time, hundreds of different data quality dimensions were defined, 

each quantifying a different quality aspect of the data [53]. A DE that hosts 

thousands of experimental and simulated data points must automatically ensure 

a certain quality of the repository by assessing the proper dimensions of data 385 

quality. Following the fitness for use concept [53], a DE for the development of 

data-driven models based on experimental data needs to consider completeness, 

consistency, and accuracy as data quality dimensions since they are the most 

widely used across different domains and provide a good assessment of the 

quality of data products. 390 

Completeness. Completeness measures how much mandatory information is 

missing in a database. To ensure this data quality aspect, it is sufficient to define 

the mandatory database fields as a set of rules. An example is the measurement 

unit of a quantity. 

Consistency. Consistency, through the definition of a list of rules, quantifies 395 

whether the information stored in different parts of the database, but 

semantically connected to each other and regarding the same experiment, is 

congruent. Given the type of a measured property and the unit of measurement 

stored in two different database fields regarding the same experiment, an example 

of a consistency rule is the plausibility of the unit of measurement regarding the 400 



 

reported property. In other words, if the type of the measured property is 

“pressure”, possible units of measurement are “atm”, “Pa” (Pascal), “bar”, etc., but 

not “K” (Kelvin), for instance. 

Accuracy. Accuracy is related to the precision of the data in representing real 

world values. Given a ground truth, accuracy measures the discrepancy between 405 

the value reported in the database with respect to the real one. Following the 

previous example, a bunch of valid units is plausible for “pressure”, but only one 

value is correct for a measured value given the unit of measurement. However, 

accuracy is also strictly connected to experimental uncertainty (that, 

unfortunately, is not always provided together with experimental data [54]). 410 

Measuring accuracy is not an easy task since a ground truth is needed for its 

evaluation. For numerical values, the accuracy is determined using difference data 

sources and thresholds. An exhaustive discussion on how this dimension could be 

quantified is out of the scope of this work; as an example, Section 3.1 discusses 

more in detail how the accuracy is handled for a case study. In our scenario, the 415 

concept of accuracy is also related to the Data Quality dimension of consistency 

(or agreement) of different experiments concerning the same (or similar) 

experimental observation. Therefore, evaluating the consistency between 

different experiments regarding the same condition can be reduced to their 

accuracy evaluation. 420 

2.3.2. Database Coverage 

The reliability of the predictive model validation and analysis does not depend 

only on the quantity and quality of the experimental data. It is essential to be 

aware of the diversity of the data involved in terms of coverage of the domain that 

the model aims to represent. This discipline is known as database coverage (or 425 

diversity) [47]. For instance, having many experiments to be used for validation, 

all representing the same portion of the domain, may not be enough to establish 

whether the result of the model validation is sufficiently reliable. In fact, if a model 

is not validated in many different environmental conditions, its performance may 
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worsen unexpectedly when used to predict an unexplored (untested) but 430 

physically relevant portion of the domain. Generally speaking, not only in 

chemical engineering, a lack of adequate coverage in the dataset, thus a non 

extensive testing of the generality capabilities of a model, can result in a biased 

reliability of the model validation [55]. Therefore, it is important to have a 

collection of experiments, the largest and most diverse as possible against which 435 

the model can be validated. 

In the literature [55-57], the most common techniques for quantifying the 

coverage of a database concerning a domain share a similar set-up phase and then 

differ in the method of calculating such coverage. The first step of the set-up phase 

entails the identification of the dimensions that define a domain. Subsequently, 440 

for each dimension (or axis), the possible values that can be assumed are 

specified, discretizing them in the case of continuous numerical values, or dividing 

them into categories in the case of literal (or categorical) values. After that, having 

defined the dimensions, a corresponding multidimensional matrix M is 

constructed [56]. This solution allows gathering different levels of granularity 445 

about the database coverage as needed in the analysis. Leveraging bucketization, 

the matrix is populated with the number of experiments available in a given 

region of the domain that corresponds to one or more cells (or boxes) of the 

multidimensional matrix. Bucketization consists in having all similar values in the 

same bucket. For example, if a dimension has been split into buckets with values 450 

0,5,10,15, a data with the value for that dimension of 2 is associated with bucket 

0, 3 with 5, 8 and 12 with bucket 10. It is worth mentioning that there is no 

constraint on how the buckets are defined, for example, whether they should 

follow a linear division in the case of a numerical axis. The buckets definition is 

domain-dependent. Then, each entry of the database can be associated to a cell of 455 

the matrix M, i.e., a sub-portion of the domain. Finally, the coverage of the database 

can be measured, given a threshold t as the ratio between the number of different 

cells that have at least t associated experiments or data |cells(t)|, over the total 



 

amount of cells in the matrix M, as in Equation (1). Therefore, the database 

coverage definition is resilient to multiple experiments associated with the same 460 

 
Figure 3: An example of the coverage of a database is computed: first the domain is divided in blocks 

according to dimensions that are defined by the metadata (properties) of the experiments, then, using 

bucketization, each experiment is associated to a block. The coverage C(k) is the percentage of blocks 

that have at least k associated experiments. 465 

bucket that could not bring any additional information in terms of the 

extensiveness of the model testing. 

 𝐶(𝑡) =
|𝑐𝑒𝑙𝑙𝑠(𝑡)|

|𝑀|
 (1) 

One or multiple multidimensional matrices can be used to represent the 

diversity of a database according to different situations. 470 

 

Experiment T [K] P [bar] E Box 

A 508 1.2 E1 1 

B 540 1.2 E2 7 

C 537 1.1 E2 8 

D 520 1.3 E1 1 

Table 2: The experimental data set used for the running example in Figure 3. 
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Box [T, P, E] Cardinality 

1 [(500, 525), (1.0, 1.5), E1] 2 

2 [(500, 525), (1.5, 2.0), E1] 0 

3 [(500, 525), (1.0, 1.5), E2] 0 

4 [(500, 525), (1.5, 2.0), E2] 0 

5 [(525, 550), (1.0, 1.5), E1] 0 

6 [(525, 550), (1.5, 2.0), E1] 0 

7 [(525, 550), (1.0, 1.5), E2] 1 

8 [(525, 550), (1.5, 2.0), E2] 1 

Table 3: The results of bucketization for the running example in Figure 3 using as data set Table 2. 

In Figure 3, a “small world” example is represented, where the dimensions are 

temperature (T), pressure (P), and experiment type (E) that mark the diversity of 475 

the dataset. In this scenario, each experiment in the dataset is characterized by a 

value property (dimension) that will place it in a specific position of the domain. 

These dimensions range respectively from 500K to 550K, 1 bar to 2 bar, and the 

possible experiment types are ‘E1’ and ‘E2’. In this case, each numerical dimension 

is divided equally into two buckets, but this is not mandatory in the general case. 480 

Instead, the categorical properties (as ‘experimental type’ in the example) define 

themselves the number of buckets. As we can see from Figure 3, this configuration 

determines eight cells of the matrix (or boxes) that partition the “small word” 

domain. Table 2 reports the experimental data set used, containing four 

experiments, each with its own features in terms of temperature, pressure, and 485 

experiment type. In a second moment, using bucketization, each experiment is 

associated with a box (Table 3). Finally, the number of boxes with at least 1 

associated experiment is 3, therefore the coverage index in this case C(1) = 3/8 ∼ 

38%, and if the threshold is 2 the coverage index will therefore be C(2) = 1/8 ∼ 

13%. 490 



 

2.4. Model validation techniques 

Qualitative and quantitative are the two macro families of model validation 

techniques used in the literature to compare experiments to simulations. Some of 

these techniques rely on Cubic spline interpolation to derive a continuous function 

from a discrete data set like in parametric experimental measurements. Cubic 495 

spline interpolation defines piecewise function using third-order polynomials, 

which pass through the given set of data points [58]. 

Visualization is a subjective, and thus qualitative, comparison of the 

experiments against the simulated data. The users evaluate, based on their 

expertise, the predictive model performance without quantifying the prediction 500 

quality. Moreover, different experts could have dissimilar opinions on the same 

experimental and simulated pair comparison. 

Point-wise approaches define a set of score functions to measure quantitatively 

the similarity between the experimental and simulated data-set evaluating the 

error point by point. This approach requires that both the datasets are defined 505 

over the same points on the x-axis. To overcome this assumption, in the general 

case, usually a spline is computed for the simulated dataset, and the error is 

computed over a set of x-values defined in the experimental dataset. These 

approaches are fast to compute, but they miss the fact that the points are not 

stand-alone but belong to a set, a chemical-physical trend of measurements. So, 510 

even if the score is quite high, the trend between the two datasets could be quite 

different; thus, the approach is objective, automatable, but misleading. In Figure 

4a an example of this pitfall: even if the trend of the simulated data point of Model 

1 is quite different from Model 2, the point-wise error of the models when 

computed against the experimental data is the same. In such a family of scores, 515 

one of the most frequently used is the following function. 
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(a) The pitfall of using point-wise approaches 

to compute the similarity be- tween the models 

and the experimental data. This kind of 

similarity functions could report the same 

score for the two models even if the trend is 

different. 

(b) Curve matching of f and g functions that 

differ for a vertical translation |a−b|. This 

setting can be understood a posteriori by 

looking at the curve matching indexes since 

the d0
L2  0 and d1

L2 = 0. 

(c) Curve matching of two symmetric 

monotone functions. Except for the sign, they 

share the same first derivative, in fact d0Pe = −1 

and d1Pe = −1. 

(d) Curve matching of two functions that differ 
only for a multiplicative factor. In fact d0

Pe=1 and 
d1Pe=1.  

 

Figure 4. Pitfall of the point-wise approaches (Figure 4a), and same explanatory examples of 
curve matching between two functions (Figures 4b to 4d). 

Definition 2.1 (Sum Squared Error (SSE)). SSE computes the sum of the squared 

difference between the experimental 𝑓 and the simulated 𝑔 data-points. 520 

 

 𝑆𝑆𝐸 = ∑(𝑓(𝑥𝑖) − 𝑔(𝑥𝑖))2 (2) 

 

Similar definitions are provided for other score functions such as Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Root-Mean-Square Error (RMSE). 525 



 

Curve Matching (CM) is a quantitative trend approach, that overcomes the 

limitations of the point-wise approaches, accounting also for the fact that each 

data point is a part of the trend. CM measures the similarity of two functions f and 

g with a score ∈ [0,1], where 1 is the perfect similarity, after normalization. 

A detailed description of the CM definition is available in the work by Pelucchi 530 

et al. [33]. 

Given the following definitions: 

• F and G, i.e., the continuous curves generated using the cubic spline 

interpolation, representing experiment and model data points, respectively, 

and F′ and G′ their derivatives 535 

• D, i.e. the intersection of the domains of F and G 

• ∥h∥, i.e. the norm of a generic curve h in the L2 space: 

 

 

 ||ℎ|| = √∫ ℎ(𝑥)2
𝐷

𝑑𝑥  (3) 540 

 

It is possible to define the following dissimilarity measurements. 

Definition 2.2 (d0L2). It is a generalization of the SSE to the continuous case. 

𝑑𝐿2

0 (𝐹, 𝐺) =
1

1+
||𝐹−𝐺||

𝐷

∈ (0,1)                  (4) 

Definition 2.3 (d1L2). It is the generalization of the SSE to the continuous case of 545 

the first derivative. If F(x) = G(x)+k, where k ∈ R, then d1L2 = 0. So d1L2 is invariant 

to vertical translations, but quantify if the two functions have similar slope. 

 𝑑𝐿2

1 (𝐹, 𝐺) =
1

1+
||𝐹′−𝐺′||

𝐷

∈ (0,1) (5) 

Definition 2.4 (d0Pe). It is the Pearson correlation index that measures whether 

the trend of a function is in agreement or disagreement with the other. In other 550 

words, if F(x) = G(x)∗k+a, where k,a ∈ R, then d0Pe = 1. The Pearson index, 
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in fact, is invariant to translation and dilatation. 

 𝑑𝑃𝑒
0 (𝐹, 𝐺) = 1 −

1

2
||

𝐹

||𝐹||
−

𝐺

||𝐺||
|| ∈ (0,1) (6) 

 

Definition 2.5 (d1Pe). It is similar to Eq. 6, but on the first derivative of the 555 

functions. 

 𝑑𝑃𝑒
1 (𝐹, 𝐺) = 1 −

1

2
||

𝐹′

||𝐹′||
−

𝐺′

||𝐺′||
|| ∈ (0,1) (7) 

Definition 2.6 (S). The shift S measures the dissimilarities in terms of horizontal 

shift between the two functions, as follows. 

 𝑆 = max (1 −
δ

𝐷
, 0)   ∈ (0,1) (8) 560 

Where δ is the horizontal shift between the two curves, obtained maximizing 

the sum of Eqs. (4) to (7): 

 δ = argmaxδ(𝑑𝐿2

0 + 𝑑𝐿2

1 + 𝑑𝑃𝑒
0 + 𝑑𝑃𝑒

1 ) (9) 

From a modeling point of view, using these indices has different advantages. 

The Pearson indexes and the SSE computed on both the function and the first 565 

derivative capture whether the model trend agrees or disagrees with the 

experimental data, while the SSE on the function still quantifies the difference 

point-to-point. The shift instead measures if the two functions are horizontally 

translated. 

Therefore, CM is defined as the arithmetic average of five indexes, d0L2, d1L2, 570 

d0Pe, d1Pe, S, where S is weighted twice since it accounts both for the left and 

right horizontal shift. 

Definition 2.7 (Curve Matching (CM)). 

 

 𝐶𝑀(𝑓, 𝑔) =
𝑑𝐿2

0 +𝑑𝐿2
1 +𝑑𝑃𝑒

0 +𝑑𝑃𝑒
1 +2𝑆

6
  (10) 575 

 



 

Figure 4b to 4d show examples curves’ comparison using the same indexes used 

by CM without normalizing neither the values of the indexes or that of the curves. 

In all the examples, for simplicity, but without losing generality, the axes are 

adimensional and the x-values range from 0 to 1. 580 

Curve Matching also accounts for experimental uncertainty, using a 

bootstrapping procedure [33]. If the uncertainty is not provided, Curve Matching 

uses a default uncertainty as suggested in the work of Olm et al. [28]. 

2.5. Model Analysis techniques 

This section presents more details of the techniques used for the model 585 

analysis phase presented in Section 2.2. 

The arithmetic mean, median, and standard deviation are mainly used as 

statistical indexes for this work. In addition, the Pearson correlation [59], the 

point-biserial [60] and the logistic regression [61] are used when it is needed to 

correlate two variables that could be continuous or categorical. All correlation 590 

indexes range from -1 to 1, where 1 indicates two closely and positively correlated 

variables. 

Data mining is a field of data science that applies a series of techniques to 

extract hidden features from large quantities of data. In particular, pattern 

detection or recognition is the process of discovering patterns and regularities in 595 

the data. Clustering is a typical unsupervised machine learning algorithm that 

allows examining a collection of data and, given a measure of distance, groups 

them into clusters based on their similarity. Once the data are organized in 

clusters, it is possible to analyze their common features and understand the 

pattern, the discriminant that has brought the data together. The clustering 600 

algorithms can be divided into two large classes. The main difference is that the 

first class of algorithms, known as hierarchical, start from the definition of a 

cluster for each point and then gradually merge the clusters until a stop criterion 

is reached. On the other hand, the second class of algorithms start from a 

predetermined number of clusters, and assign the other points to them based on 605 
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their similarity. In this work, Affinity Propagation [62] is used as a hierarchical 

clustering algorithm. Affinity Propagation selects a number of samples from the 

dataset as representatives of all the others. The algorithm exchanges a message 

between pairs of samples to determine which one is suitable to represent the 

other one. Representatives are continuously selected until convergence, at which 610 

point the final clusters are given. Affinity Propagation, by definition, establishes 

the number of clusters based on the data provided. However, two parameters 

need to be set: the preference, which controls how many exemplars are used, and 

the damping factor, which controls the message flow, damping some of them to 

avoid numerical oscillations. 615 

CM, working with a large number of data, provides a synthetic score about how 

good a model is. However, this synthetic result hides the detailed behavior of a 

predictive model. Instead, interval analysis, given a set of experimental and 

simulated data, computes the error of the model in predicting specific targets, in 

terms of quantitative overestimation and underestimation, in different ranges of 620 

a physical property (e.g., temperature). The basic idea of dividing the physical 

domain into intervals for different purposes has been used several times in the 

literature. However, either they use a point-wise similarity score to assess the 

model performance in an interval [27], or, leveraging the concept of data 

consistency and constraint definition [63, 64], they identify a region in the domain 625 

called ”feasible set” in which a model can be generated and optimized [65, 66]. 

Interval analysis, instead, uses a trend similarity score and measures the model 

performance in each interval for model validation purposes. In other words, curve 

matching summarizes the similarity between two curves, while the interval 

analysis maintains the axial dimension and quantifies the overestimation or 630 

underestimation of one curve with respect to the other. The disadvantage of 

maintaining a physical dimension comes with the curse of dimensionality. 

However, in the procedure proposed in this paper, this algorithm is used as the 

last step. The previous analyses have identified the single physical dimension and 



 

group of experiments (in terms of common features) that significantly impact the 635 

model performance. 

Given as input a set of experimental and simulated data pairs having the same 

variable on the abscissa and ordinate axes as input, the interval analysis algorithm 

is divided into four phases. Firstly (Figure 5a), given the independent variable 

operative domain, it is divided into n parts. The division could be equally 640 

distributed or not. For example, if the independent variable is the temperature 

and has an operating domain from 500K to 2500K, this dimension can be divided 

into 200 sectors or bins, each of 10K, such as (500K, 510K), (510K, 520K), and so 

on until the last one (2490K, 2500K). Secondly (Figure 5b), for each pair of 

experimental and simulated data, their corresponding splines are generated. 645 

Subsequently (Figure 5c), for each bin in which the experimental and simulated 

splines are defined, the area underlying the sub-portion of the domain delimited 

by the bin’s ends is calculated. Then the ratio of the two areas is calculated and 

stored, providing a precise quantification of overestimation or underestimation 

of the simulated data concerning the experimental data. Finally (Figure 5d), once 650 

each pair is analyzed, following the previously described procedure, the model 

behavior can be summarized by averaging the ratios for each bin, distinguishing 

for each case whether it is an underestimation or an overestimation. The result of 

such analysis provides punctual information about the model behavior as the 

value on the x-axis changes. 655 
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(a) Step 1. Division of the x-axis dimension 
(Temperature, in this case) into bins, while 
the y-axis measures a given property (H2 
composition, in this case) 

 

(b) Step 2. Starting from the experimental and 
simulated data points, the experimental and 
simulated splines are generated. 

(c) Step 3. Zoom-in on a portion of the x- axis 
of the example in Step 2. The ratio between 
the experimental and simulated area under 
the curve for each bin is computed. The 
simulation overestimates (in green) the 
experimental data if the ratio is bigger than 
one. Otherwise, it is underestimating (in 
red). Steps 2 and 3 are repeated for every 
available pair (in this case, T vs. H2) in the 
database. 

 

(d) Step 4. All the results of Step 3 are 
aggregated in order to know, on average, the 
amount of overestimation or underestimation 
in each bin. Error bars represent the standard 
deviation from the mean value. Bar plot 
represents the number of available pairs in a 
bin. In this case, the model tends to 
overestimate by a factor 3 in the low 
temperature, while at higher temperature 
underestimates. 

Figure 5. The four steps of the interval analysis procedure. 

 

3. Results and discussion 660 

The methodology presented in Section 2.2 was applied to analyze and validate 

a detailed kinetic model for combustion applications. Generally speaking, a 

detailed kinetic model is an ensemble of thousands of reactions that describe the 

overall chemical conversion of a specific fuel into the final products. In particular, 



 

the model describes the formation and consumption of each species represented 665 

by means of mathematical equations involving Arrhenius rate parameters. 

Moreover, since combustion experiments can be carried out in a wide range of 

conditions (i.e., operating conditions, geometry of the equipment, pressure and 

temperature ranges spanned, and so on), the model must be able to predict the 

combustion evolution in such a variety of conditions. 670 

The overall development procedure of such kind of models follows two main 

principles: hierarchy and modularity. Hierarchy means that the simplest 

subsystems must be included in all the more complex ones. Modularity leverages 

the already defined basic elementary steps to define more complex fuels [67]. 

The design of a reaction mechanism can vary a lot depending on the 675 

elementary steps taken into account by different research groups [68-71]. This 

aspect, coupled with the ever increasing number of experimental data, led to the 

scope of this work applied to combustion kinetics. 

Therefore, this case study focuses on the critical aspects of the kinetic 

modeling activity for combustion applications validating and analyzing the latest 680 

model (hereafter referred to as CRECK 2100 release) developed by CRECK 

modeling group [72]. All the numerical simulations were carried out using the 

OpenSMOKE++ framework as a numerical solver [73]. The CRECK 2100 release 

hereinafter presented consists of 365 species and 11,887 reactions which 

describe through different merged sub-models the chemical evolution of different 685 

fuels, from H2, with no C-atoms, to complex Polycyclic Aromatic Hydrocarbons 

(PAHs), with up to 20 C-atoms. 

3.1. Data assesment case study 

This case study used SciExpeM 1 , a freely available data ecosystem with a 

micro-service structure to manage scientific and simulated data together with 690 

predictive models and analysis results. The purpose of SciExpeM is to offer 

                                                                    
1 https://sciexpem.polimi.it 
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different data collection, management, and analysis services through a REST 

Application Program Interface (API) 1  that makes all these functionalities 

programming language-independent and versatile for many different uses, 

combining or integrating them in other systems, according to the user 695 

preferences. 

The combustion modeling activity involves many quantities of interest 

expressed in different conditions. This domain is intrinsically complex since it is 

composed of many experimental structures. More generally, experimental data 

can be categorized based on the type of experiment that states which phenomena 700 

are of interest during the experimental measurement. Furthermore, only a precise 

set of reactors, i.e., the experimental facilities in which the measurements was 

carried out, are possible for each experiment type. Appendix C reports the reactor-

experiment type association adopted within SciExpeM, which reflects the one 

proposed by Varga et al. [24]. Other categorical properties that characterize an 705 

experiment are the fuel and the target. 

Ignition Delay Time measurements (IDTM) involve all the experiments types 

where the Ignition Delay Time, which is the time interval between the end of 

compression for Rapid Compression Machine (RCM) or the arrival of the reflected 

shock wave in Shock Tubes (ST), and the beginning of combustion, which is 710 

determined by pressure measurements or peak of CH and OH emission. 

Speciation Measurement (SM) is the set of experimental activities in which 

inside ideal reactors such as shock Tube, jet stirred and plug flow reactors, are 

used to measure, at a specific experimental condition, the final concentration or 

the time evolution of mole fraction of a species. 715 

Laminar Burning Velocity Measurement (LBVM) reports the laminar burning 

velocity (also referred as “laminar flame speed” or “speed”) of an experimental 

setting which is the velocity of a steady one-dimensional adiabatic free flame 

propagating in the doubly infinite domain. Usually, the laminar flame speed is 

                                                                    
1 https://pypi.org/project/SciExpeM-API/ 



 

studied against the equivalence ratio of the reacting mixture which is defined as 720 

the ratio of the fuel-to-oxidizer ratio to the stoichiometric fuel-to-oxidizer ratio, 

denoted as ϕ. It is important to highlight that the Laminar Burning Velocity is 

never measured directly, but it is derived from other measurements such as flame 

speed or inlet gas velocity. 

For this work, a subset of the experimental data collected available in Sci- 725 

ExpeM was used. Specifically, 438 experimental datasets containing more than 

10,000 data points. This collection of experiments involves ignition delay times, 

outlet concentration measurements, concentration time profile measurements 

and laminar burning velocity measurements. Appendix A shows a complete and 

detailed overview of the experiments used, including type of experiment, type of 730 

reactor, and starting fuel. 

The data quality dimensions as presented in Section 2.3 are ensured by using 

SciExpeM not accepting data that does not meet the rules of completeness, 

consistency, and accuracy. In particular, regarding experimental uncertainty, if 

available, it is accounted with bootstrapping procedures [74, 33]. In addition, 735 

SciExpeM implements two automatic strategies. First, its data management 

system can verify if multiple experiments in the same conditions are present in 

the database; thus, the uncertainty can be estimated as the standard deviation of 

the reported measurements [75, 76], and verify the consistency between different 

experimental observations. Second, to detect evident outliers, but also in the case 740 

of no duplicated observations or to disambiguate inconsistent experiments, it 

leverages the idea that experimental data are used to validate a predictive model, 

but also a predictive model can be used to validate the experimental data [77]. A 

significant discrepancy, i.e., a similarity index below the first quartile of similarity 

indexes computed with the model, between the experimental and simulated data 745 

suggests an unreliable experiment or model. Multiple models developed by 

different research groups can be used to repeat the same procedure and 

disambiguate whether the experiment is unreliable or not. 
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In combustion kinetics the physical properties that characterise an 

experiment are Temperature, Pressure and Equivalence ratio [78], therefore, they 750 

define the dimensions of the coverage index. The coverage of the collection of 

experiment used during this case study is C(1) ∼ 40%, C(2) ∼ 33% as shown in 

Figure 6d (for more details see Appendix D). The coverage index is not 

exceptionally high, but some considerations about this data assessment 

procedure have to be made. During the computation of the database coverage, in 755 

a real-world domain, not all possible combinations of properties are meaningful 

or experimental data are available. Moreover, the coverage index depends on the 

setting of the algorithm, such as the number and distribution of the buckets. 

However, providing all this information properly creates awareness and 

trustworthiness for the model end-user. In addition, if the settings are 760 

standardized, then all the model release performances will be easily comparable. 

Figure 6 shows some characteristics of the experimental data used. The 

majority of the experiments are recent (Figure 6a) and mainly involve H2,CH4,H2 + 

CO as fuels (Figure 6b). The main measured quantities (i.e., subjects or targets) 

are ignition delay time, laminar flame speed, and mole fraction of H2,O2,H2O,CO 765 

(Figure 6c). 

3.2. Model Validation case study 

Model validation, as presented in Section 2.2, was carried out by comparing 

the experimental and simulated data through the calculated Curve Matching 

(CM) indexes as similarity score. In the present case study, the CM indexes of 770 

997 experimental-simulated pairs belonging to 438 experiments were computed. 

Table 4 reports the five CM indices of the predictions of the CRECK 2100 release 

along with the Score (also referred with ”general score”), which represents the 

global performance index computed following Definition 2.7. 



 

(a) Bar plot of the number of experiments 
published in each year 

(b) Bar plot of the number of experiments for 
each fuel. 

(c) Bar plot of the number of experiments for 
each target. Each specie name at the top of the 
bins is intended to be representative of the 
mole fraction of the specie. 

(d) Visualization of the database coverage of 
the employed experiments collection. 

 

Figure 6 775 

In general, the results show a good agreement between the experimental and 

simulated data, with an overall score higher than 0.8. In particular, the d0L2 and d1L2 

represent the adjacency of the model simulation profiles and their first derivative 

with respect to the corresponding experimental ones. In kinetic models, 

discrepancies of such curves representing, for instance, concentration profiles, 780 

suggest inaccurate or wrong activation energy of reactions governing the 

chemical evolution of related species. On the other hand, the low value on d0Pe and 

d1Pe suggests a mismatch in the estimation of intermediate reaction products. 



35 

Finally, the Shift index estimates the horizontal misalignments with the 

experimental data suggesting a revision of the reaction rate or a not accounted 785 

experimental uncertainty among the x-axis. 

 

Average 0.84 0.88 0.83 0.88 0.76 0.82 

Median 0.87 0.98 0.97 0.92 0.79 0.88 

Min 0.34 0.07 0.00 0.01 0.02 0.00 

Max 0.97 0.99 0.99 0.98 0.99 0.99 

St. Dev 0.11 0.17 0.22 0.16 0.13 0.17 

Variance 0.01 0.03 0.04 0.02 0.01 0.03 

P25 0.79 0.80 0.79 0.82 0.78 0.78 

P75 0.92 0.98 0.98 0.97 0.96 0.96 

Table 4: Curve Matching indixes and global score for the 993 experimental-simulated pair for the 

CRECK model 2100 release. In the table are illustrated their minimum (min), maximum (max), 

average, median (P50), standard deviation (St. Dev.), variance, and the 25th,50th,75th percentile 790 

(P25,P50,P75, respectively). 

3.3. Model analysis case study 

3.3.1. Statistical analysis 

As stated previously, a typical experiment of combustion study is 

characterized by the following properties: experiment type, reactor, fuel, and 795 

target. Curve Matching general scores range from 0.34 to 0.97, with the first 

quartile P25 = 0.79, i.e., the scores of all the worst performing model simulations is 

< 0.79, as shown in Table 4. Therefore, the 997 CM scores are filtered accordingly 

to the P25. With such collection of pairs (and related experiments), it is possible to 

identify the combinations among the properties of the available experiments that 800 

determine the worst model performance. In the present case study, all the ∼ 

20,000 possible combinations are evaluated, while in Appendix A only those with 

Score  0 
 2  1 

 2  0 
  1 

 Shift 



 

at least three cases (of experimental-simulated pairs, i.e., corresponding to CM 

scores) are reported. As the table suggests, the most numerous cases regard IDTM 

as experiment type, and fuels H2, H2 + CO, or CH4. Moreover, the percentage of such 805 

cases in the P25 percentile with respect with the total number of existing ones 

(%
#𝑃25

#𝑇𝑜𝑡𝑎𝑙
) is particularly high: 45%, 37%, and 62% respectively. At the same time, 

although there is no statistically significant combination of the whole experiment 

properties in Appendix A, there are several cases with fuel C6H6 whose model 

performances are not satisfactory, also confirmed by the tables in Appendix A. 810 

These evidences, therefore, highlight the areas of intervention of the model to 

improve the predictive capabilities. 

 

Figure 7: Correlation matrix between numerical and categorical property of the experiments. 

The correlation matrix is computed within the similarity indexes within the first quartile. 815 

Correlating the properties of the experiments and the global performance index 

of Curve Matching allows identifying contributing factors to better understand 

the model behavior. Since from the previous analysis the ignition delay 

measurements are an improvable aspect of the model, in this phase, the 

experiment metadata were enriched with a new property to establish which 820 

species was used to detect the ignition. Figure 7 shows the correlation matrix 

between the experiment metadata such as reactor, experiment type, fuel, target, 
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experiment publication year, type of IDT, and the CM score of each experimental-

simulated data pair. It is immediate to notice the interdependence between the 

Ignition Delay Time types, the year, and the similarity score. The moderate 825 

correlation between the score and the year suggests that the “oldest” 

experimental data are the ones that show a larger discrepancy to the model, 

probably due to the lower accuracy of the measured value with older instruments. 

Moreover, the moderate correlation between the reactor and score suggests that 

the prediction of some reactor is worse than for others. This fact is supported by 830 

the link between the IDT type and the score that implies that there are species to 

detect the ignition on which the model does not perform well. A further 

investigation revealed that inside the older experiments the ignition delay time 

was defined and therefore computed as the minimum baseline intercept of CO2, 

this probably led to more inaccurate measurements. 835 

Cluster # Exp. T[K] P[Bar] Eq. Ratio [-] CM Score 

A 10   1466-1700   2-15 1-2 0.77 

B 10   1165-1383   3-31 1-1 0.72 

C 7   1774-1956   0-20 0-2 0.497 

D 9   1786-1995   1-15 0-6 0.593 

E 6   1756-1800   7-11 1-4 0.582 

Table 5: Results of the clustering algorithm. In the table the five most statistically representative clusters 

are reported. 

3.3.2. Pattern Detection 

In this scenario, the clustering algorithm is applied to the experimental-

simulated pairs belonging to the first quartile. The algorithm clusters the data 840 

based on the similarity score and the physical properties that collocate an 

experiment in the domain. In combustion kinetics, the physical properties that 

characterize and experiment are temperature, pressure, and equivalence ratio. 

This analysis considers only the most statistically relevant cluster, i.e., the cluster 



 

with at least six associated experiments with low variance in terms of their 845 

similarity scores. Consequently, it is ensured that a cluster contains the pairs in 

which the model performs similarly, and the experiments are physically located 

closely in the domain. 

Clustering results are summarized in Table 5. The first two columns report 

respectively the five most statistically relevant clusters and the number of 850 

experiments belonging to a specific cluster. Moreover, the table shows the average 

ranges of temperature, pressure, and equivalence ratio of the experiments that 

belong to a cluster and the arithmetic average of the global performance index 

computed for each experimental-simulated pair belonging to the same cluster. By 

looking at the Table 5, it is clear that generally, the experiments at a high 855 

temperature (approximately from 1,700 K to 2,000 K, i.e., Cluster C, D, E) are 

predicted less accurately. Looking at the values for the pressure, no particular 

trend is observed since several values for the pressure are covered by the 

experiments with very different performances. Therefore, a variation in the 

pressure is not a discriminant factor for the model performance. From what 860 

concerns the equivalence ratio instead, it is possible to observe a pattern with the 

temperature. The performances at a low equivalence ratio and high temperature 

(Cluster A) are worse than at a similar equivalence ratio but at lower 

temperatures (Cluster B); thus, the temperature has a critical impact on such a 

range of equivalence ratio. In summary, inside the first quartile, the worst 865 

performances are associated with the experiments at elevated temperatures. 

However, if we consider the entire set of experiments on which the analysis is 

carried on, it is not true. These results would require further investigation with 

appropriate, domain-specific tools (Rate Of Production Analysis, Sensitivity 

Analysis, Elemental Flux Analysis) to understand the real source of deviation in 870 

model components. 
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3.3.3. Interval Analysis 

Finally, the Interval Analysis was applied to the collection of experiments 

regarding the ignition delay times pre-selected by the first quartile previously 

analyzed when the fuels is CH4 (see Appendix A). Figure 8 reports a possible result 875 

of interval analysis. Inside the plot, two different curves are reported: the one at 

the top accounting for the overestimation, the other for the underestimation of 

the model with respect to the experimental data. Moreover, in the background, 

the histogram accounts for the number of experimental datasets inside each 

interval. It can be clearly observed an underestimation by a factor of up to 3 at 880 

elevated temperatures (T > 1650K), while at lower temperatures the model 

performs accurately, i.e., within the typical experimental uncertainty of 10% [28]. 

This result is congruent with the results of the previous analyses. 

 

Figure 8: Results of the Interval Analysis when applied to a set of IDT experiments selected by the first 885 

quartile when the fuel is methane. 



 

4. Concluding remarks 

This work proposes an end-to-end validation and analysis methodology 

supported by an integrated set of tools to assess and comprehend the model 

performance.  It leverages the increasing amount of data and (hidden) 890 

information to improve the predictive model further. Therefore, this paper 

proposes a model evaluation technique that combines methodologies and 

technologies from big data, data science, and data management fields. The result 

is a three-phased systematic, objective, and automatic procedure: (i) Following 

the data ecosystem concept, it is necessary to develop a data management system 895 

that facilitates the sharing of scientific data between researchers, the reuse of 

resources, while ensuring a certain data quality level and diversity of the 

repository to mitigate as much as possible the risk of delivering a model based on 

unreliable data or overfitted; (ii) Using numerical methods, abandoning the 

typical visual, subjective, and error-prone data comparison, the model validation 900 

is conducted, and the results are presented as a synthetic performance overview 

to the model developer; (iii) Applying data science and developed ad-hoc 

techniques such as interval analysis, it is possible to leverage the model validation 

results to analyze the model behavior in many different conditions, providing 

suggestions in terms of where, why, how much, and in which situations of the 905 

domain the model needs to be improved. Finally, the methodology is applied to a 

combustion kinetic model release to demonstrate the opportunities and 

effectiveness of such an approach. 

Future work is related to leverage such information to build a predictive model 

starting from the domain variables intrinsic relationships present in the data 

laying down the foundations for a model development process based on artificial 

intelligence. Moreover, thanks to the use of such a data ecosystem as a repository 

of information, future work will regard the estimation of experimental 

uncertainty, leveraging multiple model predictions as a “ground truth” and 
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experiments in similar conditions present in the database to evaluate their 

accuracy using both statistical analysis and machine learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix A. Curve Matching Result 

Exp. Type Reactor Fuel Target #P25 Average Min Max Median St.Dev Var. %
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 

Ignition 

Delay Time 

Measurement Shock Tube 

H2 + CO 

Ignition 

Delay 

Time 

21 0.74 0.59 0.79 0.74 0.05 0.00 37 

C2H4 3 0.68 0.59 0.74 0.72 0.08 0.01 100 

CH4 62 0.61 0.35 0.79 0.66 0.14 0.02 62 

C10H7CH3 4 0.77 0.74 0.78 0.77 0.02 0.00 80 

C5H6 3 0.56 0.52 0.62 0.53 0.05 0.00 100 

C6H6 4 0.65 0.55 0.73 0.65 0.08 0.01 40 

H2 25 0.72 0.59 0.79 0.74 0.06 0.00 45 

Speciation 

Measurement 

C6H6 C6H6 5 0.56 0.34 0.70 0.61 0.14 0.02 100 

Plug Flow C6H6 

C6H6 3 0.72 0.68 0.76 0.71 0.04 0.00 100 

C5H6 3 0.66 0.62 0.73 0.64 0.06 0.00 100 

C2H2 3 0.73 0.69 0.76 0.75 0.04 0.00 100 

C2H4 3 0.73 0.69 0.76 0.75 0.04 0.00 100 

Jet Stirred 

CH4 C2H4 4 0.57 0.43 0.67 0.58 0.10 0.01 56 

C10H7CH3 
NC6H12 3 0.71 0.65 0.74 0.74 0.05 0.00 100 

NC10H22 5 0.76 0.75 0.77 0.76 0.01 0.00 71 

C6H6 C3H6 3 0.67 0.48 0.79 0.73 0.17 0.03 75 

Plug Flow CH4 O2 3 0.76 0.72 0.78 0.78 0.04 0.00 23 

Shock Tube C6H6 C4H2 3 0.67 0.60 0.78 0.64 0.10 0.01 100 

LBVM Flame C7H8 Speed 6 0.64 0.51 0.70 0.68 0.08 0.01 100 

 

Table A.6: The combination of properties of the experiments in terms of experiment type (Exp. Type), 

reactor, fuel, and target, whose CM scores (below P25) are at least 3 cases. The table shows the average, 

min, max, median, standard deviation (St. Dev.), and Variance (Var.) of the associated scores. Moreover, 

%
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 accounts for the proportion of pairs with a particular combination of properties below P25 respect 

with the number of existing ones. 
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Appendix B. P25 Analysis 

 

Fuel Average Min Max Median St.Dev Var #P25 % P25 #Total % Total %
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 

C10H7CH3 0.69 0.39 0.79 0.73 0.1 0.01 33 13 204 20 16 

C2H4 0.68 0.59 0.74 0.72 0.08 0.01 3 1 3 0 100 

C5H6 0.56 0.52 0.62 0.53 0.05 0.00 3 1 3 0 100 

C6H6 0.7 0.34 0.79 0.73 0.09 0.01 58 24 165 17 35 

C7H8 0.63 0.46 0.79 0.67 0.12 0.01 20 8 125 13 16 

CH4 0.62 0.35 0.79 0.66 0.14 0.02 78 32 207 21 38 

CO 0.74 0.7 0.78 0.74 0.06 0.00 2 1 12 1 17 

H2 + CO 0.74 0.59 0.79 0.74 0.05 0.00 21 9 60 6 35 

H2 0.72 0.59 0.79 0.74 0.06 0.00 25 10 102 10 25 

 

Table B.7: A detailed first quartile analysis for 8 fuels (out of the existing 16) with at least 2 cases. The 

table reports the average, min, max, median, standard deviation (St.Dev.), and Variance(Var.) of the 

CM scores with a particular fuel. Moreover, #P25 is the number of experimental-simulated pairs (or 

cases). % P25 is the corresponding percentage value. #Total accounts for how many pairs with a given 

fuel are existing in total (therefore, also with CM score above the P25). % Total represents the 

corresponding percentage. %
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 measures the proportion of pairs below P25 respect with the 

number of existing ones. 

 

 

 

 

 

 

 

 

 

 

 



 

Target Average Min Max Median St.Dev Var #P25 % P25 #Total % Total %
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 

C2H2 0.71 0.63 0.76 0.73 0.05 0.00 7 3 33 3 21 

C2H4 0.65 0.43 0.76 0.67 0.11 0.01 9 4 52 5 17 

C2H6 0.63 0.44 0.78 0.66 0.14 0.02 4 2 25 3 16 

C3H6 0.67 0.48 0.79 0.73 0.17 0.03 3 1 11 1 27 

C4H2 0.71 0.6 0.78 0.75 0.09 0.01 5 2 6 1 83 

C4H4 0.77 0.75 0.78 0.78 0.02 0.00 3 1 14 1 21 

C4H6 0.76 0.74 0.78 0.76 0.01 0.00 6 2 17 2 35 

C5H6 0.66 0.62 0.73 0.64 0.06 0.00 3 1 14 1 21 

C6H5OH 0.71 0.67 0.78 0.67 0.06 0.00 3 1 10 1 30 

C6H6 0.64 0.34 0.79 0.67 0.13 0.02 10 4 30 3 33 

CH4 0.76 0.67 0.79 0.78 0.06 0.00 4 2 60 6 7 

CO2 0.71 0.64 0.77 0.71 0.07 0.01 4 2 58 6 7 

CO 0.74 0.7 0.78 0.74 0.03 0.00 8 3 77 8 10 

INDENE 0.72 0.68 0.77 0.72 0.04 0.00 3 1 8 1 38 

NC10H22 0.76 0.75 0.77 0.76 0.01 0.00 5 2 7 1 71 

NC6H12 0.71 0.65 0.74 0.74 0.05 0.00 3 1 3 0 100 

O2 0.76 0.72 0.78 0.78 0.03 0.00 5 2 44 4 11 

Speed 0.64 0.51 0.7 0.68 0.08 0.01 6 2 42 4 14 

IDT 0.66 0.35 0.79 0.7 0.13 0.02 126 51 248 25 51 

Table B.8: A detailed first quartile analysis for 19 targets (out of the existing 48) with at least 3 cases. 

The table reports the average, min, max, median, standard deviation (St.Dev.), and Variance(Var.) of 

the CM scores with a particular target. Moreover, #P25 is the number of experimental-simulated pairs 

(or cases). % P25 is the corresponding percentage value. #Total accounts for how many pairs with a 

given target are existing in total (therefore, also with CM score above the P25). % Total represents the 

corresponding percentage. %
#𝑷𝟐𝟓

#𝑻𝒐𝒕𝒂𝒍
 measures the proportion of pairs below P25 respect with the 

number of existing ones. 
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Appendix C. Experiment types and reactors 

 

 

Shock Tube ✓ ✓  

Rapid Compression Machine ✓ ✓  

Jet Stirred  ✓  

Plug Flow  ✓  

Premixed Laminar Flame  ✓ ✓ 

Table C.9: Possible reactors for each type of experiment according to Varga et al. [24]. 

Appendix D. Database Coverage 

The database coverage was computed using the following buckets values. 

• Temperature (K) T = {500,750,1000,1250,1500,2000,2250,2500} 

• Pressure (bar) P = {0,1,2,5,10,25,50,75} 

• Equivalence ratio ϕ = {0,0.25,0.75,1,2,5,10,50} 

The selection of the buckets for each dimension has a direct impact on the 

coverage index. Since the bucket definition depends on each applicative domain, 

providing a general rule to define the buckets is challenging. For example, some 

combinations of properties value, and therefore, the corresponding “boxes” could 

not be physically admissible in a domain, and they will be empty, affecting the 

coverage index. A proper selection of the buckets’ values mitigates this problem. 

Therefore, each scientific community in each chemical engineering sector should 

reach an agreement on the buckets definition. Doing so will make the predictive 

model performances immediately comparable. In the meanwhile, providing 

supplementary materials about the buckets definition with the model validation 

Reactor 

Exp.Type Ignition 

DelayTime 
Speciation 

Laminar Burning 

Velocity 



 

results, it will make the user model aware of the extensiveness of the validation 

test, thus the reliability of the predictive model. 
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