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ABSTRACT Matrix-based computing is ubiquitous in an increasing number of present-day machine
learning applications such as neural networks, regression, and 5G communications. Conventional systems
based on von-Neumann architecture are limited by the energy and latency bottleneck induced by the physical
separation of the processing and memory units. In-memory computing (IMC) is a novel paradigm where
computation is performed directly within the memory, thus eliminating the need for constant data transfer.
IMC has shown exceptional throughput and energy efficiency when coupled with crosspoint arrays of
resistive memory devices in open-loop matrix-vector-multiplication and closed-loop inverse-matrix-vector
multiplication (IMVM) accelerators. However, each application results in a different circuit topology, thus
complicating the development of reconfigurable, general-purpose IMC systems. In this article, we present a
generalized closed-loop IMVM circuit capable of performing any linear matrix operation by proper memory
remapping. We derive closed-form equations for the ideal input-output transfer functions, static error, and
dynamic behavior, introducing a novel continuous-time analytical model allowing for orders-of-magnitude
simulation speedup with respect to SPICE-based solvers. The proposed circuit represents an ideal candidate
for general-purpose accelerators of machine learning.

INDEX TERMS Hardware accelerator, in-memory computing (IMC), linear algebra, linear regression,
machine learning, resistive memory.

I. INTRODUCTION

IN-MEMORY computing (IMC) has gained traction as
a promising candidate to overcome the von-Neumann

bottleneck by eliminating the separation between the mem-
ory and processing units [1]. IMC executes algebraic oper-
ations by physical laws in crosspoint memory arrays, thus
allowing for low-power, high-density, and high-throughput
computation [2]. Machine learning [3], [4], image pro-
cessing [5], combinatorial optimization [6], and baseband
processing [7] are some of the representative examples
demonstrating the IMC potential as next-generation comput-
ing architecture [8]. Experimental demonstrations of IMC
accelerators for matrix–vector multiplication (MVM) have
been reported in the latest years [9] improving the com-
putational complexity toward the attractive O(1) limit [10].
MVM alone is, however, insufficient to build a compre-
hensive IMC algebraic accelerator. In a growing number of

applications, inverse-matrix-vector multiplication (IMVM) is
needed alongside MVM to carry out tasks of increasing com-
plexity. To relieve the dependence of iterative solvers [11]
exploiting open-loop MVM on external coprocessors, sev-
eral memory-agnostic IMC-IMVM accelerators have been
proposed [7], [12], [13], [14], [15], [16] exploiting closed-
loop, feedback-based topologies to implement the inverse
operation. Closed-loop IMVM allows to vastly reduce the
computation complexity of inverse computation from O(n3)
to O(1) [17]. Nonetheless, the different requirements of
inverse problems, ranging from simple matrix inversion [12],
to linear regression [4], [13] and regularized regressions [7],
required the design and implementation of ad hoc topologies,
limiting the generality of the proposed solutions.

In this article, we introduce a general-purpose, recon-
figurable closed-loop IMVM universal circuit, namely the
block circuit, capable of solving any linear matrix operation.
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FIGURE 1. Block-matrix circuit for general-purpose solution of linear algebra problems. Input crosspoint Y is used in the presence of
voltage inputs vin, providing an open-loop MVM primitive. Feedback crosspoint X provides IMVM capability thanks to the closed-loop
configuration with OA arrays Ai . Current inputs are applied directly to the shared rows of the circuit, providing direct signal injection
into the feedback array.

In Section II, we introduce the block circuit and demon-
strate its capability to implement all the previously reported
open-loop MVM and closed-loop IMVM circuit topologies.
In Section III, we provide a model for the static opera-
tion of the circuit, deriving ideal input-output transfer func-
tions and assessing the impact of common error sources. In
Section IV, we study the dynamic behavior of the circuit, pro-
viding stability criteria and deriving closed-form equations
for the time evolution of voltages and currents. The proposed
dynamic model has the same accuracy as a SPICE simulation
while allowing orders-of-magnitude improvement in wall-
clock simulation time.

In the following, we adopt the Householder notation [18],
where bold capital letters A,B denote matrices, bold low-
ercase letters a,b denote vectors and lowercase letters a, b
denote scalars. × denotes matrix–vector multiplication, AT

is the transpose of A, ∥ · ∥p is the vector p-norm and |||·|||p
the induced operator p-norm. A Hermitian positive (negative)
semidefinite matrix satisfies A ⪰ 0 (A ⪯ 0) and its singular
values are σ1(A) ≥ . . . ≥ σn(A). The condition number of A
is κA = σ1(A)/σn(A). In is the identity matrix of size n × n,
0n is the matrix of all zeros of size n × n. Size subscripts are
omitted whenever the size is deducible from context.

II. BLOCK-MATRIX CIRCUIT
Fig. 1 shows the universal circuit for general-purpose solu-
tions of linear algebra problems, such as matrix inver-
sion, matrix-vector multiplication, and regression. The circuit
includes two crosspoint arrays, namely the input crosspoint
array Y and the feedback crosspoint array X, sharing con-
nections on rows. Operational amplifiers (OAs) are used
to realize a closed-loop feedback configuration around X,
by connecting their inputs to the shared rows, and their out-
puts to columns of matrix X. Input signals are applied to the
circuit either through current generators iin connected to the
shared rows, or voltage generators vin connected to columns
of matrix Y. Matrix Y thus acts as an MVM pre-processing

with respect to vin, whereas X provides IMVM capability as
in [12] and [15].

Matrices X and Y are further arbitrarily partitioned in
blocks in Fig. 1 where, for the sake of simplicity, we have
considered a 2 × 2 partitioning. The OA array is similarly
split into blocks, with each block collecting as many OAs
as the rows of the corresponding feedback block. In this
sense, block Xij represents the matrix connection between
the outputs of OA array Aj and inputs of OA array Ai.
A larger number of blocks are possible, provided splitting
is performed consistently across all constituent matrices and
vectors. Similarly, row connection to the OAs may either be
realized to the inverting node, as shown in Fig. 1, or to the
non-inverting node, provided all OAs belonging to the same
block share the same input connection.

The proposed circuit can perform all previously demon-
strated operations using analog in-memory matrix computing
by suitably mapping either the input or feedback matrices.
The mapping operation can be seen as a circuit rearrange-
ment, thus preserving the same nodal equations. In the follow-
ing, we report the block matrices corresponding to previously
presented circuits of the IMC framework, namelyMVM [10],
positive-definite linear system solver [12], and linear [13],
generalized [15], and ridge regression [7].

A. MATRIX-VECTOR MULTIPLICATION
Typical MVM circuits [10] perform read-out of the currents
induced on a target matrix Y by an array of voltage inputs vin
through an array of transimpedance amplifiers (TIAs) with
transconductance k as shown in Fig. 2(a). The equivalent
block-matrix circuit is shown in Fig. 2(d), where the input
array is used to map Y and the feedback array is used to map
the transimpedance configuration of each amplifier, resulting
in a diagonal feedback matrix kI.

An alternative mapping, relying on the feedback array only
and current inputs, is shown in Fig. 2(e), corresponding to
the circuit in Fig. 2(b). Here, current inputs are converted to
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FIGURE 2. MVM and IMVM and their equivalent block-matrix circuits. (a) Standard MVM circuit, where an array of voltage generators is
connected to the columns of a conductance matrix Y whose rows are fed to an array of TIAs with gain k, allowing for current
collection and conversion to voltage. (b) An alternative scheme for matrix-vector multiplication employing current inputs, converted
to a voltage by a first array of TIAs with conductance k1 and applied to the target matrix Y. MVM currents are collected and converted
by a second array of TIAs with tunable gain k2. (c) Positive-definite linear system solver. Input currents are applied to the shared rows
between matrices M+,M−. Conductances k1,k2 allow tuning the inverting gain applied to matrix M−, which is generally set to −1.
(d) Block-circuit of (a), exploiting both the input and feedback matrix to map Y and the k-conductance TIAs, respectively.
(e) Block-circuit of (b), exploiting the feedback array only to perform MVM, at the cost of increased matrix size. (f) Block-circuit of (c).

a voltage by a first TIA array with gain k1. The outputs of
the first TIA array are applied to matrix Y, inducing currents
that are converted to a voltage by a second TIA array with
gain k2. The equivalent block-matrix mapping of the circuit
consists of a 2 × 2 partitioning, where local feedback blocks
k1I, k2I describe the TIA connection of the first and second
OA array, respectively. AsY is connected between the outputs
of A1 and the inputs of A2, its corresponding block in the
feedback matrix is (2, 1). On the other hand, since there is
no direct connection between outputs of A2 and inputs of
A1, block (1, 2) is set to 0. Finally, outputs are probed on
amplifier set A2 as in the original circuit. Additional inputs
i2 and outputs vout,1 of the block-matrix circuit are unused in
this configuration.

B. LINEAR SYSTEM SOLVER
Fig. 2(c) shows the linear system solver [12], which is com-
posed of two amplifier sets in the inverting configuration,
A1 and A2 both of n OAs, and two n × n feedback matrices
M+ = (1/2)(|M| + M), M− = (1/2)(|M| − M). The
circuit can operate on positive-definite matrices only [17].
Analog inverting couplers, realized by means of additional
OAs with trimmable transconductances k1, k2, provide inter-
mediate voltage inversion and scaling for matrix M− [19].
The main circuit equation is

vout = − (M+ − M−)−1 i1. (1)

The corresponding 2 × 2 block-matrix circuit is shown in
Fig. 2(f). Block (1, 1) maps connection from A1 output to its
own input, corresponding to matrix M+. Block (1, 2) maps

connection from A2 output to A1 input, corresponding to
matrix M−. Block (2, 1) maps connection from A1 output
to A2 input, corresponding to k1I. Finally, block (2, 2) maps
connection from A2 output to its own input, described by
k2I. All blocks have equal size n × n, such that the overall
feedbackmatrix has size 2n× 2n. Since no voltage generators
are used, the input array is set entirely to 0 and thus neglected.
Similarly, additional current inputs i2 and outputs vout,2 are
unused in this configuration.

C. LINEAR REGRESSION CIRCUIT
Fig. 3(a) shows the linear regression circuit [13], which is
composed of two amplifier sets, A1 of m OAs in inverting
configuration andA2 of nOAs in non-inverting configuration.
Two feedback matrices, both mapping m × n matrix M, are
connected between the outputs ofA1 and inputs ofA2 and vice
versa. Local feedback on A1 is provided by conductances kf ,
whereas no local feedback connection is set on A2. The main
circuit equations are [15]

v1 = −
1
kf
(I − M(MTM)−1MT )i1 (2)

v2 = −(MTM)−1MT i1. (3)

Fig. 3(d) shows the corresponding 2 × 2 block-matrix cir-
cuit. Blocks (1, 1) of size m × m and (2, 2) of size n × n
map local feedback connections on A1 and A2, amounting
to kf I and 0 respectively. Block (1, 2) of size m × n maps
connection from A2 output to A1 input, corresponding to
M. Due to A1 outputs being connected on rows of matrix
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FIGURE 3. Regression circuits and their equivalent block-matrix circuits. (a) Linear regression or pseudoinverse circuit, consisting of
two crosspoint arrays both mapping matrix M, an array of TIAs with feedback conductance kf and an array of non-inverting OAs
closing the global feedback. (b) Generalized regression circuit, sharing the same structure as (a). Matrix F allows encoding additional
information on data covariance in linear regression operation or acts as a preconditioner when the circuit is used to solve the linear
system. (c) Ridge regression circuit, consisting of a linear regression circuit with an additional negative feedback branch on the
noninverting OAs. (d) Block-circuit equivalent of the linear regression circuit, using a 2 × 2 non-square partitioning. (e) Block-circuit
equivalent of the generalized regression circuit. (f) Block-circuit equivalent of the ridge regression circuit, using a 3 × 3 non-square
partitioning.

M, and A2 inputs being connected on columns, the equiv-
alent matrix to be mapped in block (2, 1) is MT with a
block size n × m. The overall feedback matrix has thus size
(m + n) × (m + n). Finally, A2 is set in a noninverting
configuration, whereas additional inputs i2 are unused in this
configuration.

D. GENERALIZED REGRESSION CIRCUIT
Fig. 3(b) shows the generalized regression circuit [15]. The
main difference with respect to the linear regression circuit
is represented by matrix F, placed in feedback configuration
on amplifiers A1. Note that, when matrix F is diagonal,
a weighted linear regression is obtained, which becomes
equal to the linear regression in Fig. 3(a) for equal feedback
conductance values. The input-output circuit equations for
the circuit of Fig. 3(b) are [15]

v1 = −F−1(I − M(MTF−1M)−1MTF−1)i1 (4)

v2 = −(MTF−1M)−1MTF−1i1. (5)

The corresponding block-matrix circuit is shown in Fig. 3(e),
which is similar to the linear regression block-matrix circuit
except for block (1, 1), which now maps matrix F, retaining
the same m × m block size. Consequently, the overall size of
the feedback matrix is still (m+ n) × (m+ n).

E. RIDGE REGRESSION CIRCUIT
Fig. 3(c) shows the ridge regression circuit [7]. Starting from
a linear regression circuit, a local feedback branch is added
on A2 by means of an inverting analog buffer and an array of

conductances kd . The main circuit equations are thus

v1 = −
1
kf
(I − M(MTM + kf kd I)−1MT )i1 (6)

v2 = −(MTM + kf kd I)−1MT i1. (7)

The corresponding block-matrix circuit is shown in Fig. 3(f).
The block matrix is organized in a 3 × 3 configuration,
where blocks (1, 1), (1, 2), (2, 1), and (2, 2) are the same as
the linear regression circuit since the corresponding con-
nections are unchanged. Similar to the linear system solver
case, analog inverting buffers are realized by inverting stages
with −1 gain requiring additional amplifiers A3. Block (3, 1)
thus maps direct connections from A1 output to A3 input,
corresponding to a zero matrix 0. Block (3, 2) corresponds
to the connection from A2 output to A3 input. For the sake
of simplicity, we consider unitary connections, thus resulting
in a n × n block I. To preserve the unitary gain, the same
matrix describes the local feedback connection around A3.
The n outputs of A3 are connected to the n A2 inputs through
conductances kd . Consequently, the n× n block (2, 3) is kd I.
Finally, as no direct connection is present between the n buffer
outputs and the m A1 inputs, the m × n block (1, 3) is 0. The
overall feedback matrix size is thus (m + 2n) × (m + 2n).
Additional inputs i2, i3 are unused in this configuration.

III. STATIC OPERATION MODEL
A. CIRCUIT MATRICES DEFINITION
To study the operation of the circuit, we define block-matrices
Y and X for the input and feedback crosspoint array con-
ductances, and block-vectors i, vin and vout corresponding to
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FIGURE 4. Prototype single-pole OA model. An α0 gain stage
models DC gain, whereas an RC network emulates the
dominant pole of the OA with time constant τ0 = RC. A unitary
output buffer provides decoupling from load resistance. The
effective DC gain sign depends on whether the input is applied
to the inverting input (−α0) or to the non-inverting input (+α0),
grounding the other terminal.

input currents, input voltages, and output voltages, respec-
tively. For instance, in the case of the 2 × 2 partitioning of
Fig. 1, the block matrices and block vectors read

X =

[
X11 X12
X21 X22

]
Y =

[
Y11 Y12
Y21 Y22

]
(8)

i =

[
i1
i2

]
vin =

[
vin,1
vin,2

]
v =

[
v1
v2

]
. (9)

OAs are modeled assuming the single-pole amplifier struc-
ture of Fig. 4, consisting of a first amplifying block with gain
ŝα0, an RC network whose time constant is τ0 = RC , and a
unity gain buffer. The transfer between the input and output
voltages v̂i, vout,i of the i-th amplifier is thus described by

vout,i (s) = αi (s) v̂i (s) (10)

with

αi (s) = ŝi
α0,i

1 + sτ0,i
(11)

where s = jω is the Laplace frequency, and ŝi, α0,i, and τ0,i
are the sign, open-loop DC gain, and intrinsic time-constant
of the i-th OA, respectively. Correspondingly, the i-th OA
dynamics in the time domain are described by the differential
equation

τ0,i
dvout,i
dt

+ vout,i = ŝiα0,iv̂i. (12)

The entire set of amplifiers may thus be described in the
frequency domain by a diagonal matrix A

A = (I + sT0)
−1 SA0, (13)

where S is a diagonal matrix mapping the sign of the corre-
sponding row amplifier, i.e., Sii = −1 if the i-th amplifier is in
the inverting configuration, or Sii = +1 if the i-th amplifier
is in noninverting configuration, A0 is the diagonal matrix
of the absolute dc gain of the OAs, i.e., A0,ii = α0,i, and
similarly T0 is the diagonal matrix of OAs time constants,
i.e., T0,ii = τ0,i, such that Aii = αi(s). The transfer between
the OA input voltage vector v̂ and OA output voltage vector
vout is thus given by

vout = Av̂. (14)

Similarly, the entire set of amplifiers is described in the time
domain by the corresponding system of differential equations

T0
dvout
dt

+ vout = SA0ṽ (15)

where v̂ and vout are the OA input and output voltage vectors,
respectively.

B. IDEAL STEADY-STATE TRANSFER FUNCTION
To compute the transfer functions in ideal conditions, i.e.,
assuming infinite DC gain α0 of the OA, we consider Kirch-
hoff’s law at the input nodes of the OAs in Fig. 1, from which

Xvout + Yvin + i = 0. (16)

By applying the superposition principle, we first consider the
case vin = 0. In this case, the ideal output voltage is given
by[

vout,i,1
vout,i,2

]
= −X−1i = −

[(
X−1

)
11

(
X−1

)
12(

X−1
)
21

(
X−1

)
22

] [
i1
i2

]
(17)

where blocks of the inverse matrix X−1 may be written in
terms of blocks of matrix X by using the block-inversion
lemma [18]. We then consider the case with i = 0, for which
we write[

vout,v,1
vout,v,2

]
=

[(
X−1

)
11

(
X−1

)
12(

X−1
)
21

(
X−1

)
22

]
×

[
Y11 Y12
Y21 Y22

] [
vin,1
vin,2

]
. (18)

The overall output voltage is thus given by the summation of
both contributions, namely

vout = vout,i + vout,v. (19)

C. OUTPUT STATIC ERROR
The block-matrix model can be used to evaluate the out-
put error arising from various sources. Perturbations of the
feedback matrix δX, input matrix δY, input currents δi, and
input voltages δvin inevitably introduce deviations δvout of
the output voltages from ideal state equations. To quantify the
impact of these perturbations, we define the relative error ε

ε =
∥δvout∥2
∥vout∥2

. (20)

Perturbations may arise from many different sources, such
as quantization, finite amplifier gain, and device variability.
For simplicity, we study each perturbation individually. For
the i-th perturbation, we derive a maximum relative error ε̄i
and define upper (ε̄↑

i ) and lower bounds (ε̄↓

i ). The overall
maximum relative error is then bounded by√∑

i(ε̄
↓

i )
2 ≲ ε̄i ≲

√∑
i(ε̄

↑

i )
2. (21)

Table 1 summarizes the main dependences of the upper
and lower bounds for the considered sources of perturbation.
Additional details on bounds computation are provided in
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TABLE 1. Error bounds for various sources of perturbation.

FIGURE 5. (a) Maximum relative error as a function of the condition number κX for a 100 × 100 feedback matrix X and different
nonidealities, showing a linear dependence on κX. The error was computed by testing 1000 different input vectors with SPICE
simulations. (b) Maximum relative error as a function of the matrix size n for a feedback matrix X with condition number κX = 100. The
error was computed by testing 10 × n different input vectors with SPICE simulations and is mostly independent of the matrix size.

Appendix A. Upper bounds for all sources depend on the
feedbackmatrix condition number κX, which therefore serves
as the primary sensitivity index of the system. Fig. 5(a)
shows simulation results for matrices with increasing con-
dition number κX and fixed size n = 100. Each line traces
the maximum relative error obtained while simulating the
corresponding perturbation. Aside from a multiplicative fac-
tor dictated by the perturbation nature, all errors linearly
increase with κX. On the other hand, the size dependence of
upper bounds might be an excessive overestimation. Fig. 5(b)
reports maximum relative errors for each perturbation as a
function of the matrix size, for a fixed condition number
κX = 10. As the matrix size increases, maximum errors tend
to lose any dependence on the matrix size n, suggesting that
lower bounds of Table 1 may prove more helpful in analyzing
the system from a scaling standpoint.

IV. DYNAMIC OPERATION MODEL
A. FREQUENCY-DOMAIN MODEL
We begin the analysis of the circuit dynamics by studying
its operation in the frequency domain to evaluate the circuit
poles. To this aim, we perform the loop gain analysis in Fig. 6

by removing all voltage/current generators and cutting the
loop at the output of the OAs in Fig. 1. The loop-gain transfer
is the one between the test voltage vector ṽ and the output
voltage vector v.

We first consider the transfer between ṽ and the inter-
mediate voltage v̂, which corresponds to the input voltage
of the OAs. Considering for instance v̂1, the application of
Kirchhoff’s law yields

n∑
j=1

Y1jv̂1 =

n∑
j=1

X1jṽj −
n∑
j=1

X1jv̂1. (22)

Equation (22) can be rewritten in matrix/vector form as

UYv̂ = Xṽ − UXv̂ (23)

where UY and UX are diagonal matrices whose i-th diagonal
element contains the sum of the i-th row of Y and X, respec-
tively. Equation (23) can be rewritten to obtain the closed-
form relation between v̂ and ṽ

v̂ = (UY + UX)−1Xṽ = U−1Xṽ = X̂ṽ (24)

where X̂ is the voltage divider matrix between ṽ and v̂.
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FIGURE 6. Loop gain test schematic for the block-circuit in Fig. 1. Current and voltage sources are removed and replaced with open-
and short-circuits, respectively. The feedback loop is cut at the output of the OAs, and a test voltage vector ṽ is correspondingly
applied on the columns of the feedback array X. The OA output voltage vout is then probed to assess the loop gain.

FIGURE 7. Feedback matrices for (a) linear system solver, (b) linear regression, and (c) ridge regression, and (d)–(f) corresponding
output transients, computed by SPICE simulation (colored lines) and by Eq. (31) in MATLAB (dashed lines). The proposed model
accurately follows the SPICE-based solution, with reduced simulation overhead.

Consequently, the overall transfer between the test vector
ṽ and the OA outputs vout is given by

vout = AX̂ṽ = Gloop (s) ṽ (25)

where Gloop(s) is the frequency-dependent loop-gain matrix.
Poles of the closed-loop system are then found at the
frequencies p for which the test vector ṽ is identically mapped
onto itself, namely

Gloop (p) ṽ = Iṽ. (26)

By expanding A, the previous equation may be rewritten as

SA0X̂ṽ = (I + pT0) ṽ (27)

so that circuit poles can be found by solving

T0
−1(SA0X̂ − I)ṽ = pṽ. (28)

Poles p are thus the eigenvalues of T0
−1(SA0X̂ − I),

where matrix SA0X̂ = Gloop(0) represents the DC loop
gain matrix. For stability, it must hold Re(p) < 0,
i.e., matrix T0

−1(SA0X̂ − I) must be Hurwitz-stable [20],
in accordance with stability criteria for linear time-invariant
systems.

In the particular case of all OAs having the same
time constant τ0, (inverting) sign, and DC open-loop gain α0,
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FIGURE 8. Comparison between SPICE solver and analytical continuous-time model. (a) Mean voltage error between SPICE-based and
model-based transient voltages for 1000 linear system solutions, for increasingly conservative relative SPICE tolerances, namely
10−8 (blue), 10−11 (purple), 10−13 (red). Shading denotes 1 standard deviation. As the accuracy increases, the SPICE-based solution
approaches the model-based. (b) Simulation time comparison between SPICE and the analytical model implemented in MATLAB as a
function of the matrix size n. The analytical model improves both the simulation time and complexity from O(n4) to O(n2).

Eq. (28) reduces to

p = −
1
τ0

(
1 + α0λX̂

)
(29)

consistently with [17].
Inferring the stability of SX̂ from the spectral character-

istics of the feedback matrix X, which are generally known,
is not trivial [21]. As a general criterion, negative-definiteness
of matrix SX is sufficient to determine the stability of SX̂.
Additional details are provided in Appendix B.

B. CONTINUOUS-TIME MODEL
The last step in dynamic modeling is to study the circuit in
the continuous-time domain. Once again, we assume that all
OAs share the same structure of Fig. 4, although each OA
may have a distinct time constant τ0,i, gain α0,i, and sign ŝi.

The time-continuous Kirchhoff equation at the OAs inputs
for the closed-loop system of Fig. 1 reads

i (t) + Yvin (t) = Uv̂ (t) − Xvout (t) (30)

where v̂(t) is the time-continuous voltage vector at the OAs
inputs. A complete analytical derivation for arbitrary initial
conditions and inputs is provided in Appendix C. For current
and voltage step inputs, and considering outputs to be initially
at rest, then the output voltage reads

vout (t) = −

(
I − e

T0
−1

(
SA0X̂−I

)
t
)

× (X + δXα)−1 (i + Yvin) . (31)

Fig. 7 shows examples of solution transient for differ-
ent circuits, namely (a) the linear system solution circuit in
Fig. 2(f), (b) the linear regression circuit in Fig. 3(f), and (c)
the ridge regression circuit in Fig. 3(f), with colored and

dashed lines representing the SPICE-computed and model-
computed voltages, respectively, highlighting the accuracy
of Eq. (31). In particular, Fig. 8(a) shows absolute voltage
errors between the model-based and SPICE-based output
voltage transients for the circuit shown in Fig. 1, for increas-
ingly conservative SPICE tolerance settings. As SPICE is
forced to be more accurate, the solution grows closer to
the one computed by the model, once again demonstrating
the accuracy of Eq. (31). Finally, Fig. 8(b) reports a com-
parison of simulation times for increasing matrix size for
SPICE (red lines) and model in MATLAB (blue lines), show-
ing up to three orders of magnitude reduction. The MAT-
LAB implementation also scales more favorably with size as
O(n2) with respect to theO(n4) dependence of SPICE-based
solvers.

V. CONCLUSION
We present a universal core primitive for analog crossbar-
based IMC. The proposed block circuit is capable of
implementing any linear matrix operation, including but not
limited to MVM, IMVM, and linear and regularized regres-
sion. We derive closed-form equations for the ideal input-
output transfer functions and static error, together with error
bounds that can serve as guidelines for practical implemen-
tations. We provide stability criteria and an analytical model
for the voltage transient in the presence of step inputs, outper-
forming SPICE-based solvers by several orders of magnitude.
The proposed model can be retroactively applied to previous
feedback-based circuit implementations, both open-loop and
closed-loop, and can serve as a generalized framework for
the study of analog-IMC topologies. Owing to its highly
scalable structure, the circuit can represent a complete macro
for matrix-based operations in novel analog processing units
under the IMC paradigm.
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