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Drug delivery & mathematical modeling
Mathematical theories applied to drug delivery represent an extremely interesting field of increasing academic and
industrial importance with tremendous consequences for the future due to the possibility of predicting and tuning
the release of drugs [1,2]. Thanks to significant advances in computer science and electronics, the optimization
of drug delivery systems using computational approaches can be expected to successfully improve the ease and
accuracy of application [3,4]. Similar to what is happening in other disciplines that seem far removed from the drug
delivery field, such as aviation or reactive systems, computational efforts are becoming fundamental to research
into future improvements in pharmaceutical technology [5,6]. Taking into consideration the type of administration,
the active principle of the cargo and the desired release kinetics, the predictions obtained from in silico studies
can be used to estimate the optimized formulation, shape and manufacturing procedure of the dosage form to
be produced. In this respect, mathematical models used in the optimization of drug delivery devices can help to
save time and reduce expenses [7,8]. In fact, predictions obtained from theoretical studies can reduce the number
of experiments needed to develop or optimize drug delivery devices. Furthermore, the correct knowledge of all
the phenomena (mass and energy) that can take place in controlled drug delivery systems can be another key
point in convincing the audience of the importance of this study. In particular, it could help to improve the safety
and efficacy of new pharmaceutical therapies, which is a prerequisite for their development, underlining once
again the importance not only from an academic but also from an industrial perspective [9]. It is indeed true that
knowing what is happening in a system, instead of considering it as a ‘black box’, is fundamental in the whole
decision-making process, starting from the laboratory formulation and procedures through good manufacturing
practice (GMP) production to clinical trials and commercialization. This approach is fundamental in determining
which device characteristics are critical to achieving the system performance required by medicine. In the last
decades, many different models have been developed and are available in the literature [10–12], but most of them are
still lacking in ease and accuracy of operation. The pioneer of theories applied to the transport of drug molecules
through polymeric devices is Professor Higuchi (1918–1987), followed more recently by Professors Peppas and
Siepmann [10]. In 1961, Professor Higuchi published his famous equation, which allowed an unexpectedly simple
description of drug release using semi-empirical parameters depending on the geometry studied [13,14]. This was
the beginning of understanding how drugs could be released from pharmaceutical forms.

To date, many different models have been described, including semi-empirical/empirical models and mechanistic
realistic models. In the first case, the mathematics is purely descriptive and not strictly related to real natural, physical
and/or chemical phenomena. As a result, these models provide only very limited insight into the mechanisms of
delivery through the devices, and their predictive ability is very low. However, they can be useful if the information
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required is limited to a comparison between different delivery modes on a single parameter. Their use should
be approached with great caution if mechanistic conclusions are drawn or predictions expected. In contrast,
mechanistic mathematical models are developed considering real physical and/or chemical phenomena such as
diffusion, swelling and degradation (erosion or bulk-based) [15,16]. Moreover, in the last years, strong attention was
also dedicated to simulate what is happening in delivery systems where the release is driven by external stimuli like
pH, enzymes or hydrolysis of cleavable bonds [17]. These different theories guarantee that system-specific parameters
are obtained, which enable a good understanding of the mechanisms behind drug release. Their use can, for example,
help to understand the relative importance of one of these phenomena compared with the others. Indeed, drug
delivery devices are not treated as a ‘black box’ but as real physical delivery systems. During product development,
these theories allow quantitative prediction of the role of material, formulation and process parameters on the
resulting drug delivery. Therefore, information on the geometry, size and composition required to achieve specific
device performances is predictable. In addition, problems encountered during device manufacture can be addressed
knowing exactly what is happening in the delivery systems. When developing mathematical models to simulate
and then predict the release of drug molecules from pharmaceutical devices, various aspects should be considered:

- In order to obtain an accurate mathematical model, it is generally necessary to increase the complexity, so as a
rule, more phenomena are considered and more realistic predictions can be obtained as a result. However, great
care should be taken to avoid overly complex models in which negligible mechanisms are also considered. This
is because these theories are difficult to use as they require many parameters that are not easy to measure (from
experiments). Therefore, when developing new theories, a great deal of effort should be put into understanding
the system, and consequently only the physico-chemical phenomena that play a key role should be considered.

- It is necessary to compare the outcomes obtained from in silico studies with experimental results. There are two
possible types of comparison: models fitted with experimental results or compared with results obtained from
experiments independently of calculations. In the first case, some model parameters are optimized to minimize
the discrepancy between models and experiments. This approach should be used with great caution because good
agreement will be found even if the model is not well written and robust, especially when fitting many different
parameters at the same time.

This can cause errors in the decision-making process because the predictions are not reliable. Therefore, to avoid
this problem, it is strongly recommended to fit only one parameter at a time, using a minimum of 10 points obtained
from experiments. If the fitting involved experimentally measured kinetic data, it is extremely important to take
into account the entire profile and not only a portion (e.g. burst release, plateau or intermediate phase). The second
case, which is much more reliable and generic, is the comparison between model predictions and experimental
results, both obtained independently. In this framework, all the specific (physical and chemical) parameters of the
system are fitted using different experimental results. When all the required parameters are known, the impact of
formulation, microstructure and processing parameters are predicted in silico to tune device performance (e.g. drug
molecule delivery kinetics). Consequently, the decision-making process can take place during the manufacture of
a final device, where the predicted performance is verified by experiments and, if necessary, tuned;

- The absence of a generic model valid for all the controlled delivery systems. Depending on the assumptions
made, some of them can be applied to a limited number of devices, while others can be applied to a wider range
of them.

- Even if there is good agreement between independent results obtained from experiments and mathematical
calculations, the advice is to be very prudent. Indeed, it is obvious that a mathematical model is a good
simplification of a real system, and so it is fundamental to avoid oversimplification and try to use the same models
for different systems (see advice on generic models above).

Can mathematical models improve the performance of drug delivery devices?
Mathematical models play a key role in the in-depth knowledge of all the transport phenomena that lie behind the
release of active ingredients from controlled drug delivery systems. The proper design of controlled drug delivery
devices is helped by the use of mathematical predictions, which can be derived from very simple and empirical
models or from probabilistic or molecular models [18,19]. Indeed, starting from the use of transient descriptions and
steady state of mass transport using Fick’s law, the theories have considered micro-scale properties such as polymer

10.4155/tde-2023-0125 Ther. Deliv. (Epub ahead of print)



Mathematical modeling in drug delivery Commentary

microstructure, relaxation of polymer chains, glass/rubber transitions, crystallinity of polymers and effect in the
environment together with macro-scale device properties such as shape and geometry. One of the key gaps between
experiments and mathematical theories that still remains in the field of drug delivery is the need to find and measure
transport, thermodynamic and molecular properties with a high degree of accuracy. To solve this problem, efforts
should be devoted to a fruitful collaboration between experimental studies (material and analytical) and theoretical
ones, with the ultimate aim of filling this gap. In general, kinetic data from release studies are used to compare
theory with experimental results.

These data represent the cumulative effect of various physical and chemical phenomena and polymer properties
and structures. It therefore makes sense to validate the models against experiments that measure these microstructure,
interaction and mass transport phenomena. In this context, for example, microscopy (scanning electron and
transmission electron), nuclear magnetic resonance and mechanical properties should be used to measure polymer
microstructures and compare them with mathematical models. The key weakness of this models is that they can
properly simulate what is happening in vitro but to allow reliable prediction of what is happening in vivo also
pharmacokinetics and pharmacodynamics contribution should be considered. These contributions complicate the
theories and so the mathematical equation that should be used. A novel frontier is so represented by a proper
consideration of all the mechanisms that take place within the human body when a pharmacological active
ingredient is administered. In addition we should underline that the next generation of drug delivery systems will
focus on the delivery of cargo to specific targets within cells to a lesser extent. These include the need to deliver
pharmaceutics to organelles to regulate degenerative diseases, DNA to nuclei to tune gene expression and antigens
to cytosolic sites as systems for vaccine delivery. For all these possibilities, there is a great need to understand the
key players in the delivery phenomena of both the intracellular and extracellular compartments. Mathematical
theories can so play a key role in improving the rational design of release systems that can deliver the right amount
of their content at the right time and in the right place [20]. Today, many of the drug delivery models currently in
use focus on the release of active ingredients with a low molecular weight, but the next frontier is the transition to
biomolecules such as proteins or antibodies. Here, in-depth modeling activities are required to study and optimise
their possible modification caused by manufacturing methods or interactions with the carrier during their release.
To summarize, the correct use of mathematical models can optimise the number of experiments required and help
develop formulations to improve the pharmacodynamic (efficacy) and pharmacokinetic (adsorption, distribution,
metabolism and excretion) effects associated with new pharmacological therapies.
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