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Abstract
We report the concept and demonstration of a double-negative, resonant metamaterial
characterized by both dynamic negative mass and stiffness for negative refraction of flexural
wave modes by means of a lens designed using this concept. The negative equivalent material
properties are obtained in the subwavelength regime by concurrently exploiting both the effect
of mechanical resonators (negative mass) and of piezoelectric patches with inductive resonant
shunts (negative stiffness), leading to double-negative behavior. Following the theoretical
foundations based on a modal framework, we analytically derive the frequency-dependent mass
and stiffness properties as a function of the electromechanical parameters. The findings are
corroborated by numerical computation of dispersion properties and simulations showing the
focusing of a point source. As a case study, energy harvesting performance enhancement by
exploiting the piezoelectric effect at the focal spot is also discussed.

Supplementary material for this article is available online

Keywords: piezoelectric, metamaterials, negative refraction, double-negative, Veselago lens

1. Introduction: file preparation and submission

The early work of Veselago (1968) [1] is commonly recog-
nized to be the first suggesting the pioneering idea that a mater-
ial exhibiting at the same time both negative dielectric permit-
tivity and negative magnetic permeability leads to a negative
refractive index. The actual implementation of such an idea
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was demonstrated much later (2000) [2–6], with the advent
of the concept of ‘metamaterial’, when Pendry and coworkers
showed that the required double-negative effective properties
could be achieved by combining split ring resonators and peri-
odic arrangements of wires. In his seminal paper [3], Pendry
also pointed out that a flat lens made by a slab of such material
could overcome the diffraction limit, i.e. generate images with
details smaller than the wavelength as a ‘superlens’.

Negative refraction has also been sought for elastic waves
in natural crystals exhibiting strong anisotropy in the slowness
surface [7, 8], such that group velocity and wavevectors are
not aligned. In a similar fashion, artificial photonic [9–13] and
phononic crystals [8, 14] have been designed to exhibit neg-
ative refraction, exploiting negative group velocities arising in
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second branches near the Γ point in reciprocal space, or fold-
ing of the first branch near the boundaries of the first Brillouin
zone. For example, lattices of steel rods [15, 16] or coated
tungsten bars [17] in water have been used to experimentally
show negative refraction of ultrasound waves in water. Norris
and coworkers [18] showed that a bi-mode material designed
to be transparent in water in the long wavelength regime, actu-
ally exhibits an optical branch that can be used to obtain neg-
ative refraction too.

Other than acoustic waves in fluids, Morvan et al [19]
showed that a phononic crystal made by cylindrical air cav-
ities in a solid matrix can be used for transverse elastic waves,
while steel rods arrangements in epoxy [20] were used to
demonstrate negative refraction for longitudinal elastic waves.
More than that, there have also been efforts to design phononic
crystals whose dispersion relation unlocks the possibility to
achieve flat lensing for elastic waves in waveguides where
energy is confined between two free surfaces, i.e. for shear
horizontal [21] and antisymmetric (A) [22–25] Lamb wave
modes.

Much less work has been done on focusing phonons fol-
lowing the original idea of Veselago, i.e. implementing a
metamaterial exhibiting both negative mass and modulus. For
example, Oh et al [26] showed that a spring mass network can
be finely designed such that isotropic negative refraction index
can be achieved through double-negative equivalent proper-
ties for in-plane motion, to then use such scheme to design a
unit cell made by beams and blocks in an aluminum plate to
focus the S0 Lamb mode. Zhu et al [27] used simultaneous
in-plane rotational and translational resonances observed in a
chiral metamaterial to show a similar result.

In this paper, we follow another path to obtain double-
negative properties. It is long known that the inertial contri-
bution of mechanical resonators near the resonance can be
understood as an equivalent negative dynamic mass [28]. We
exploit this effect on the lowest antisymmetric Lamb mode of
a plate by covering its surface with a periodic arrangement of
mechanical harmonic oscillators. We combine this effect with
that of an equivalent negative stiffness which is obtained by
bonding piezoelectric elements shunted to inductive resonant
circuits, thereby exploiting an electromechanical resonance.
The use of piezo patches with shunting circuits has a long his-
tory of applications starting from vibration control [29] and
energy harvesting [30] to the more recent applications as in
resonant metastructures for bandgap formation [31–34] and
wave steering [35, 36] or for tunable topologically protected
edge waves [37] graded index focusing [38] time modulation
of stiffness properties [39] and rainbow trapping [40]. Sugino
et al [33] first underlined that merging mechanical and elec-
tromechanical bandgaps in a 1D beam resulted in the annihil-
ation of the two stop bands while later Gao and Wang [41]
used mechanical resonators and piezoelectric patches shunted
with a non-resonant synthetic negative capacitance circuit to
obtain a doubly negative metamaterial. Nonetheless, the elec-
tromechanical resonators have not yet been exploited in con-
junction with mechanical ones in a way that their resonance
frequency is finely tuned such that both negative properties
occur in the same frequency range, resulting in a negative

slope pass-band in the dispersion relation. One advantage of
this method of obtaining negative refraction flat lensing is that
the frequency associated with the resonators can be moved
to low values in order to work in the subwavelength regime,
thus obtaining a very compact device. Moreover, the conver-
sion between mechanical and electrical energy that naturally
occurs in the piezoelectric elements, opens the chance to har-
vest vibration energy, especially exploiting the amplification
that is observed around the image that forms inside the lens.

In the next section, a recent electromechanical framework
[34] is here adopted to show the individual contribution of
both types of resonators in creating the homogenized double-
negative material properties making use of Kirchhoff’s theory
of flexural waves in thin plates, to which the lowest antisym-
metric Lamb mode converges when dealing with thin struc-
tures at low frequencies. The aforementioned method has been
shown to provide reliable estimates of the frequency range
where the double-negative properties are expected [32, 34,
42] and validated against both three-dimensional (3D) finite
element models [34], the plane wave expansion method [33],
and experiments [42] (for this reason, being the focus of the
work restricted to thin structures, we will loosely use the terms
‘flexural wave’ both in the context of the thin plate theory
and when dealing with 3D finite elements waveguides). The
numerical dispersion relation is thus computed and associated
modes are analyzed, before assessing the performance of the
flat lens with a case study on energy harvesting. Finally, con-
clusions are drawn regarding this new class of negative refrac-
tion metamaterials.

2. Governing equations and equivalent
double-negative properties

Figure 1 illustrates the layout of the metastructure adopted to
obtain the double-negative effective material properties: a sub-
strate metallic plate is sandwiched between two piezoelectric
plates of the same shape and thickness hp = hs. Both piezo-
electric elements are poled in the same direction, with the pol-
ing axis oriented along the thickness of the laminate. The alu-
minum substrate works as an electrode for the inner faces of
the piezoelectric patches, which are grounded and shorted to
the outer ones, except for the areas covered by a hexagonal
pattern of thin circular metallic electrodes, each one used to
create an electric parallel connection to an inductor, as shown
in the inset in figure 1. At each lattice point, a mechanical res-
onator is also added. According to Kirchhoff’s theory of in
thin plates, the partial differential equation governing the out-
of-plane flexural motion w(P, t) of the sandwich reads:

 DE∇4w(P, t)+mp
∂2w(P, t)

∂t2
− θ∇2v(P, t)= f(P, t) (1a)

Ĉp
∂v(P, t)

∂t
+ θ

∂

∂t
∇2w(P, t)= J(P, t) (1b)

where v(P, t) is the voltage across the electrodes, J(P, t) is the
density of current, and P is the position vector. The source
distribution f(P, t) will be used to take into account the iner-
tial effect of the resonators. The other coefficients appearing
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Figure 1. Schematic of the unit cell comprising the mechanical and electromechanical resonators. The inset shows the wiring scheme used
to connect the piezos to the inductive shunt circuit.

in the equations can be computed from the physical and geo-

metrical properties of the plates adopted: DE =
Esh

3
s

12(1−νs)2
+

c̄E11
(
1
6hp(4h

2
p + 6hphs+ 3h2s )

)
, mp = ρshs+ 2ρphp, Ĉp = 2 ε̄S33

hp
,

θ = ē31(hs+ hp) where ρp, c̄E11, ē31 and ε̄S33 are the density,
the equivalent short circuit elastic constant, the equivalent
piezoelectric coupling coefficient and the equivalent strain free
dielectric permittivity of the piezo plates [34]. The voltage dis-
tribution can be approximated as [34]:

v(P, t) =
s∑

j=1

vj (t)dj (P) , (2)

where dj(P) is the indicator function for the surface of the elec-
trodes, i.e.

dj (P) =

{
1 P ∈ Dj

0 otherwise
(3)

with Dj indicating the surface of the jth electrode. Defining as
Cp,j the capacitance associated to the same jth electrode:

Cp,j =

ˆ
Dj

ĈpdD= Ĉp∆Dj (4)

where∆Dj is the area of the jth electrode, and definingˆ
Dj

J(P, t)dDj =−Yj [vj (t)] (5)

the current associated with each electrode (that depends upon
vj through the operator Yj), by integrating the electrical
equation (1b) over the area of each electrode, one obtains an
equation in the form:

Cp,jv̇j (t)+Yj [vj (t)]+ θ
∂

∂t

ˆ
Dj

∇2w(P, t)dDj = 0 (6)

for each electrode. To include mechanical resonators, consider
the force f(P, t) to be the sum of an external force f1(P, t) and
the force exchanged with the resonators:

fres (P, t) =
s∑

j=1

kuj (t)δ (P−Pj) , (7)

where δ(P) is the Dirac delta distribution, Pj the position of
the jth resonator, k is the stiffness of the resonator, and uj(t) is
the relative displacement of the resonator with respect to the
laminate, governed by:

mjüj (t)+ kjuj (t)+mjẅ(Pj, t) = 0. (8)

Substituting equation (7) into (1a) and using (6) and (8), we
obtain:



DE∇4w(P, t)+mpẅ(P, t)− θ
s∑

j=1

vj∇2dj (P, t)

+
s∑

j=1

mj (üj+ ẅ(P, t))δ (P−Pj) = f1 (P, t)

(9a)

Cp,jv̇j+Yj [vj (t)]+ θ
∂

∂t

ˆ
Dj

∇2w(P, t)dDj = 0 (9b)

mjüj+ kjuj+mjẅ(Pj, t) = 0. (9c)

Adopting the modal decomposition w(P, t) =∑N
r=1ϕr(P)ηr(t), with ϕr(P) the eigenmodes of the plate

computed for short circuit of each electrode pair (vj = 0):

3
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

DE
N∑
r=1

∇4ϕr (P)ηr (t)+mp

N∑
r=1

ϕr (P) η̈r (t)− θ
s∑

j=1

vj∇2dj (P, t)+
s∑

j=1

mj

(̈
uj+

N∑
r=1

ϕr (P) η̈r (t)

)
δ (P−Pj) = f1 (P, t) (10a)

Cp,jv̇j+Yj [vj (t)]+ θ
N∑
r=1

η̇r

ˆ
∇2ϕr (P, t)dDj = 0 (10b)

mjüj+ kjuj+mj

N∑
r=1

ϕr (Pj) η̈r (t) = 0. (10c)

Multiplying the first equation by a given mode, integrating
over the whole structure, and exploiting the orthogonality con-
ditions:

ˆ
D
ϕr (P)mpϕs (P)dD= δrs

ˆ
D
DEϕr (P)∇4ϕs (P)dD= ωrδrs,

(11)

being δrs the Kronecker delta, and ωr the natural circular fre-
quency associated to the rth mode, one obtains N equations in
the form:

η̈r (t)+ω2
r η (t)− θ

s∑
j=1

vj

ˆ
D
ϕr (P)∇2dj (P, t)dD+

s∑
J=1

mjüϕr (Pj)

+

s∑
J=1

µ∆Dj

N∑
k=1

ϕr (Pj)mpϕk (Pj) η̈r (t) =
ˆ
D
f1ϕr (P)dD

(12)

where mj = µ∆Djmp has been used, with µ=∑s
j=1mj/(mp∆D) i.e. the ratio between the total mass of

the resonators over the total mass of the beam. Assuming a
harmonic forcing qr =

´
f1ϕrdD= QrejΩt, a harmonic motion

of the type:

η (t) = Hre
jΩt, vj = VJe

jΩt, uj = Uje
jΩt (13)

is obtained. The system can thus be rewritten as:



(
−Ω2 −ω2

r

)
Hr− θ

s∑
j=1

VjΓrj−
s∑

J=1

mjΩ
2Ujϕr (Pj)

+

s∑
j=1

µ∆Dj

N∑
k=1

ϕr (Pj)mpϕk (Pj)
(
−Ω2

)
Hk = Qr

(14a)

Cp,jVjjΩ+ YjVj+ θ

N∑
r=1

jΩHrΓr,j = 0 (14b)

(
−mjΩ

2 + kj
)
Uj+mj

N∑
r=1

ϕr (Pj)
(
−Ω2

)
Hr = 0 (14c)

where

Γr,j =

ˆ
dj (P)∇2ϕr (P)dD (15)

and Yj represents the electrical admittance of the shunt circuit.
Expressing the voltage from equation (14b) the following is
found:

Vj =−
θ
∑N

r=1 jΩΓrjHr

Cpj ( jΩ+ Yj/Cpj)
. (16)

In the same way, the equation (14c) is used to express the dis-
placement of the resonator:

Uj =
Ω
∑N

r=1ϕr (Pj)Hr

ω2
m −Ω2

(17)

where ω2
m = kj/mj is the natural circular frequency of the

mechanical resonator. Substituting equations (16) and (17)
into (14a), we get:

(
ω2
r −Ω2

)
Hr+

θ2jΩ
Cp,j ( jΩ+ Yj/Cp,j)

s,N∑
j, k=1

ΓrjΓkjHk−µ∆DjΩ
2

×
s,N∑

j, k=1

ϕr (Pj)mpϕk (Pj)
ω2
m −Ω2

Ω2Hk−Ω2µ∆Dj

s,N∑
j, k=1

ϕr (Pj)

×mpϕk (Pj)Hk = Qr. (18)

Using

α=
θ2

DEĈp
=

θ2

DECp,j
∆Dj (19)

and, considering that for the average theorem there exists a
point Prj such that:

Γrj
∆Dj

=
1

∆Dj

ˆ
∇2ϕr (P)dD=∇2ϕr (Prj) . (20)

Equation (18) can be rewritten as:

(
ω2
r −Ω2

)
Hr+

αjΩ
jΩ+ Yj/Cpj

s,N∑
j, k=1

∇2ϕr (Prj)D
E∇2ϕk (Pkj)

×∆DjHk+−µΩ2 ω2
m

ω2
m −Ω2

s,N∑
j, k=1

ϕr (Pj)mpϕk (Pj)∆DjHk = 0.

(21)

4
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Considering now to increase the number of resonators to
infinite, while taking the size of the structure to be fixed,
i.e. shrinking the size of each resonator to zero:

lim
s→∞

s∑
j=1

∇2ϕr (Prj)DE∇2ϕk (Pkj)∆Dj =

ˆ
∇2ϕr (P)DE∇2ϕk

× (P)dD= ω2
r δrk

lim
s→∞

s∑
j=1

ϕr (Pj)mpϕk (Pj)∆Dj =

ˆ
ϕr (P)mpϕk (P)dD= δrk,

(22)

the equation finally becomes

(
ω2
r −Ω2

)
Hr+

αjΩ
jΩ+ Yj/Cp,j

ω2
rHr−µΩ2 ω2

m

ω2
m −Ω2

Hr = Qr

(23)
or[
ωr

(
1+

αjΩ
jΩ+ Yj/Cp,j

)
−Ω2

(
1+µ

ω2
m

ω2
m −Ω2

)]
Hr = Qr.

(24)
When a purely inductive shunt is used:

Yj/Cp,j =
ω2
e

jΩ
(25)

with ωe the resonance frequency of the electromechanical res-
onator, we finally write:[

ωr

(
1− αΩ2

ω2
e −Ω2

)
−Ω2

(
1+µ

ω2
m

ω2
m −Ω2

)]
Hr = Qr

(26)
or

Hr

Qr
=

1
[K( jΩ)ω2

r −M( jΩ)Ω2]
(27)

with

K( jΩ) = 1− αΩ2

ω2
e −Ω2

M( jΩ) = 1+µ
ω2
m

ω2
m −Ω2

.

(28)

It is thus shown that the mass becomes negative when

ωm < Ω< ωm

√
1+µ (29)

and the stiffness becomes negative when

ωe√
1+α

< Ω< ωe. (30)

The two different types of resonators (mechanical and elec-
tromechanical) can be thus adjusted to obtain double-negative
effective material properties.

3. Hybrid electromechanical unit cell design

The commercial software COMSOL Multiphysics is used to
compute via the finite element method the dispersion band dia-
gram of an infinite repetition of unit cells as the one depic-
ted in figure 1, in order to verify the behavior of an infin-
ite structure designed by the use of the formulas derived in
the previous. To do so, a full 3D model of the substrate and
the piezoelectric patches composing a unit cell is adopted,
while both the shunt circuit and the mechanical resonator are
modeled by means of lumped parameters systems, with the
spring-mass resonator attached to the mesh node at the center
of the top surface of the unit cell. Opposite boundaries of the
hexagonal cell are linked with periodic boundary conditions,
according to Bloch theorem, looking for the dispersion rela-
tion of elastic waves confined between two free surfaces. The
resulting eigenvalue problem is solved for wavenumbers along
the irreducible Brillouin zone, which is depicted in figure 2(a).
The material considered for the substrate plate is aluminum,
while PZT-5H is adopted as piezoelectric material. Physical
and geometrical parameters adopted in the computations are
listed in table 1. Note that practical implementations of the
electrical circuit can benefit from synthetic impedance circuits
[43, 44], so that analog inductors are not required. The res-
ulting band structure is reported in figure 2(b). A bandgap is
created at the edges of the Brillouin zone due to Bragg scat-
tering at approximately 1 kHz for the flexural mode, i.e. the
one characterized by quadratic dispersion. Below that fre-
quency, a band showing a negative slope can be inspected just
above 300Hz. Indeed, with the parameter’s choice as repor-
ted in table 1, the dynamic mass is predicted to be negative in
the range 300< f< 410Hz, and the dynamic stiffness in the
range 294< f< 350Hz. Figure 3 shows a detail of the disper-
sion relation along the ΓM direction, along with the computed
mode belonging to the first and second branches. Although
the computational domain is restricted to one unit cell only,
the mode can be plotted on an assembly of cells by exploiting
the nature of the Bloch solution, i.e. the ratio of the displace-
ment vector computed on points in space that are separated by
a linear combination of lattice vectors aibi, ai ∈ Z is equal to
eκ·(aibi), κ being the wavevector. Gray arrows in figure 3 rep-
resent the wavevector, while superimposed on the distribution
of the out-of-plane displacements, black arrows indicate the
component of the Poynting vector along the direction of the
wavevector. As it can be seen from the figure, the first branch
is characterized by the typical long wavelength flexural mode,
with Poynting vector and wavevector κ pointing in the same
direction. In contrast, the negative slope branch shows a back-
ward antisymmetric mode with black arrows pointing in the
opposite direction of κ, witnessing that energy flows in the
opposite direction. The displacement of the center of each cell
moving counter phase with respect to the others witnesses the
out-of-phase relativemotion of themechanical resonators with
respect to the plate.

5
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Figure 2. (a) Diagram showing a small region with removed electrodes between the circular electrode and the grounded area used in the
numerical computations to avoid discontinuities in the electrical quantities [34]. The radial thickness is dr= 0.025a, with a the length of the
lattice vectors. The inset shows the Brillouin zone and the associated irreducible Brillouin zone. (b) Dispersion diagram along the
boundaries of the irreducible Brillouin zone.

Table 1. Physical and geometrical parameters of the unit cell.

d= 5 (cm) Side length of the hexagonal cell
a= ( 32d)/cos(π/6) Length of lattice vectors
r= 0.45a Radius of the electrodes
hs = hp = 1 (mm) Thickness of substrate and piezo plates
Es = 69.8 (GPa) Young’s modulus aluminum
νs = 0.33 Poisson’s ratio aluminum
ρs = 2700 (kgm−3) Density aluminum
ρp = 7500 (kgm−3) Density piezo
c̄E11 = 66.2 (GPa) Equivalent shunt circuit elastic constant
ε̄S33 = 17.29 (nFm−1) Equivalent strain free dielectric permittivity
ē31 =−23.38 (Cm−1) Equivalent piezoelectric coupling
ωm = 300(2π) (rad s−1) Natural angular frequency of mechanical resonators
mres = 0.1 (kg) Mass of mechanical resonators
Lres = 1.25 (H) Inductor of shunting circuit

Figure 3. Detail of the dispersion diagram along the ΓM direction, showing the band characterized by negative group velocity. The
out-of-plane displacement associated with the first and second bands is also displayed for the same wavenumber κ (represented in the insets
as a gray arrow). Black arrows represent the component of the Poynting vector along the wavenumber direction, showing the direction of
the energy flux.

4. Design of the flat lens with negative refraction

Next, we aim at designing a flat lens that exploits the double-
negative material properties as introduced in the previous
sections. First of all, in figure 4(a) the dispersion relation of
the metamaterial is superimposed to that of the same piezo–
substrate–piezo laminate, but with removedmechanical reson-
ators and removed electrodes and circuit. At 321Hz the flex-
ural mode of the homogeneous laminate crosses the second

branch of the double-negative metamaterial: at that frequency,
they both show the same phase speed but opposite group velo-
city, thus enabling negative refraction. To obtain all-angle neg-
ative refraction, the isofrequency contour at the coupling fre-
quency should be as isotropic as possible. The hexagonal lat-
tice has indeed been chosen to exploit the maximum available
crystal symmetry. Figure 4(b) shows the second branch of the
dispersion relation over the first Brillouin zone between 310
and 330Hz, along with the isofrequency contour at 321Hz

6



Smart Mater. Struct. 33 (2024) 025005 D E Quadrelli et al

Figure 4. (a) Detail of the dispersion relation of the double-negative unit cell, superimposed to that of an open aluminum–piezo laminate
with no electrodes and no mechanical resonators, showing the coupling between the flexural mode and the branch characterized by negative
group velocity. (b) Isofrequency contour (blue) at 321Hz of the second branch, which almost overlaps with the isotropic flexural mode of
the bare aluminum–piezo laminate (red).

Figure 5. (a) Layout of the Veselago lens. (b) Out of plane displacement. (c) The absolute value of the out-of-plane displacement. (d)
Voltage distribution of the piezo elements. (e) Out-of-plane displacement (3D).

which almost overlaps with the circular one of the homogen-
eous laminate.

A finite-element (COMSOL) model of a flat lens surroun-
ded by homogeneous regions is thus built as illustrated in
the scheme in figure 5(a) and a point force is applied act-
ing perpendicularly to the plate as a point source for flex-
ural waves. Note that the overall structure is simply made by
an aluminum plate covered uniformly above and below by
two equally sized piezo patches, and the lens is just obtained

by attaching in the central region a finite lattice of 8× 20
mechanical resonators and shunted segmented electrodes. The
number of unit cells in the propagation direction was chosen to
be sufficiently high for the effects of periodicity to be observed
as per prior work [31, 42, 45], where the effect of the num-
ber of mechanical/electromechanical resonators on bandgap
formation in locally resonant metamaterials is explored. Based
on such efforts, eight resonators were deemed sufficient in
the propagation direction. As for the perpendicular direction,
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it governs the lens aperture, which can affect aspects like
focal spot size, as further discussed below. The computational
domain is surrounded on all sides by a perfectly matched layer,
in order to suppress scattering thus mimicking an unboun-
ded domain. The obtained out-of-plane displacement field is
shown in figures 5(b)–(e), where both the image inside the lens
and in the homogeneous regions can be observed. The max-
imum displacement in the image outside the lens is measured
at a distance from the source equal to 1.86 times the size of the
lens. The full width at half maximum evaluated along a vertical
line passing across the maximum is equal to 0.59λ, where λ
is the wavelength at 321Hz, as computed from the dispersion
relation. These discrepancies from the theoretically expected
results (i.e. the distance between image and source being dif-
ferent from two times the size of the lens and the size of the
image being greater than half the wavelength) can be attrib-
uted to (i) the isofrequency contours not being exactly circu-
lar, with waves traveling along the ΓK direction being faster
than those traveling along the ΓM one, and thus not focaliz-
ing all in the same point, (ii) the finite size of the lens in the
direction perpendicular to propagation. Another matter of con-
cern regards the fact that there are modes in the lens other than
the backward one at the selected frequency, though their coup-
ling with the wave in the exterior plate is expected to be very
low. Figure 5(c) shows the amplitude of the out-of-plane vibra-
tions, while figure 5(d) shows the absolute value of the electric
potential on the outer surface of the piezo patch. Note that in
terms of out-of-plane displacement, the image inside the lens
is less strong than the image outside it. This is related to the fact
that part of the energy is converted to the electrical domain, as
shown in figure 5(d), where the value of the electric potential
shows a strong maximum near the image. Note that the distri-
bution of electric potential shows high values inside the ‘cone’
whose aperture is defined by the set of rays that impinge on the
right-hand side of the lens, i.e. the rays that are focalized in the
image outside the lens.

Figure 6 shows the sensitivity of the solution to various
levels of structural damping. Absorption in the simulation is
introduced via the use of an isotropic loss factor, both in the
aluminum substrate (ηal) and in the piezoelectric patches (ηp).
It can be seen how damping in the substrate has little to no
effect on the solution, since increasing by a factor of 10 ηal
has no appreciable impact on the focusing capabilities of the
lens. Conversely, the solution is more sensitive to damping in
the piezo patches. Nonetheless, it has been shown [43] that
there are ways to reduce absorption in piezo patches by adding
negative damping via synthetic shunt circuits. This means that
while the behavior is sensitive to losses, this could be still com-
pensated in cases where losses would be too high.

5. Case study on energy harvesting

The focusing of energy inside the lens exhibited in the elec-
trical field in figure 5(d) suggests that part of that energy could

Figure 6. Influence of various levels of damping on the solution: ηal
stands for the loss factor in the substrate, while ηp is the isotropic
loss factor used for the piezo patches.

be harvested as a demonstrative case study. To check the per-
formance of the system with respect to energy harvesting,
a resistor is placed in parallel to each inductor in the shunt
circuit, as a representative load that is powered by the lens.
The shunting circuit can now be characterized by the dimen-
sionless number τωe where τ = RCp,j is the time constant.
Figure 7 shows the out-of-plane displacements and the elec-
tric power P= |V|2/R collected by each electrode, for vari-
ous values of τωe, obtained varying R from 275Ω to 27.5MΩ.
As it can be seen, for low values of the resistor, the inductor
is short-circuited, and the electrical resonance basically does
not happen. As a result, the assembly of unit cells does not
behave anymore as a double-negative metamaterial, but as an
elastic metamaterial with a locally resonant bandgap, result-
ing from the negative mass associated with mechanical res-
onators. As a result, for low values of the resistance the lens
behaves as a mirror instead, and the maximum power is col-
lected near the interface with the background plate in the first
row of unit cells, where the amplitude of the evanescent waves
excited inside the mirror is at its maximum. For the value of
τωe tending to infinite, the resistor behaves as an open cir-
cuit, and the behavior tends to the one depicted in figure 5.
Note that when one changes the order of magnitude for τωe

not only does the distribution of the power inside the lens
change but also the maximum harvested power for each elec-
trode changes the order of magnitude. Figure 8 shows themax-
imum power observed among the electrodes and the overall
power harvested obtained as a sum of the power of every single
electrode as a function of the τωe parameters. A peak max-
imum is observed for both curves, around a range of resist-
ance in between the two extreme conditions of open and short
circuit.
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Figure 7. Out of plane displacement and electric power fields for various values of τωe.

Figure 8. Maximum and overall harvested electrical power as a
function of the dimensionless load resistance τωe.

6. Conclusions

In this work, mechanical and electromechanical resonances
have been combined in order to obtain effective double-
negative material properties in the sub-wavelength regime. An
analytical method to compute the frequency range in which

both the dynamic effective mass and stiffness take negative
values has been introduced, and finite element computation of
the dispersion relation has been used to validate such formu-
las. Indeed, a branch characterized by negative group velocity
appears in the frequency range in which the bandgap gener-
ated by negative mass and negative stiffness overlap. The sub-
wavelength nature of such unit cells is key for obtaining com-
pact flat lenses that exploit negative refraction to focus flexural
waves in plates. As a case study, the designed flat lens is used
for vibration energy harvesting.
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