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Background: Real-world data (RWD) are routinely collected in clinical practice during therapeutic interventions. Data
warehouses (DWHs) represent the primary source of RWD in which electronic health records (EHRs) can be rapidly
analyzed via natural language processing. This study illustrates an analytic framework that systematically exploits
RWD and methods to generate real-world evidence (RWE) about innovative cancer drugs. The framework has been
applied to investigate real-world treatment patterns and clinical outcomes of patients with advanced non-small-cell
lung cancer (aNSCLC) treated with tyrosine kinase inhibitors (TKIs).
Materials and methods: Data from a cohort of 190 epidermal growth factor receptor-positive mutation (EGFRm)
patients with aNSCLC were retrospectively collected in an Italian cancer institute between 2014 and 2022. Patients
were treated in first-line (1L) with osimertinib or other TKIs (non-osimertinib). A text-mining algorithm was
implemented to retrieve RWD from EHRs. Survival endpoints were median time to treatment discontinuation
(mTTD) and median overall survival (mOS) estimated with KaplaneMeier curves. Time-dependent multivariate Cox
analysis was carried out to overcome immortal time bias.
Results: Approximately 38% of patients received 1L osimertinib, while the remaining 62% received previous-
generation TKIs. Longer mTTD [15 months; 95% confidence interval (CI) 11.9-26.4 months] was found for patients
treated with 1L osimertinib compared with non-osimertinib (10 months; 95% CI 7.9-13.1 months). In multivariate
analysis, osimertinib was an independent protective factor regardless of bone and brain metastases and local
radiotherapy. mOS was 27 months (95% CI 21.4-39.5 months) for osimertinib versus 20.2 months (95% CI 17.6-
23.1 months) for non-osimertinib.
Conclusions: Data analytics frameworks are useful tools to integrate RWE in cancer research and data-driven models
are suitable to process large amounts of RWD. This study demonstrates that real-world treatment patterns and
outcomes of TKIs are comparable with those found in both clinical trials and other real-world studies. RWE
studies can support clinicians in investigating the best treatment strategy and decision makers to drive new
health policies.
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INTRODUCTION

Real-world data (RWD), collected routinely by hospitals’
data systems, serve as a complementary information source
to randomized controlled trials (RCTs). RCTs still represent
the gold standard for determining drug efficacy and
securing regulatory approvals. However, limited by high
costs, strict eligibility criteria, and controlled conditions they
do not always reflect real-world settings.
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RWD generate real-world evidence (RWE), which pro-
vides insights into the real-world benefits and risks of
medical interventions, supporting clinical decision making.

RWD primarily originate from electronic health records
(EHRs) in hospital data warehouses (DWHs), where 80% of
information is in unstructured text.1 However, EHRs pose
challenges due to their high dimensionality, inconsistency,
and bias. Consequently, health care systems need data
analytics frameworks to systematically collect, organize, and
analyze RWD, bridging the gap between RCTs and RWE.
These frameworks integrate data from diverse hospital
departments, though data extraction, linkage, and quality
assessments remain challenging.

Recent advancements in data collection, information
sharing, and data transfer technologies have greatly
enhanced the ability to implement analytical frameworks
based on RWD in health care. Additionally, the growing
availability of statistical and machine learning algorithms
enables efficient processing of large datasets, making it
easier to generate valuable insights and new knowledge in
the health care sector.

For instance, natural language processing (NLP) uses text-
mining algorithms to identify, extract, and analyze relevant
information from unstructured data formulated in human
language.2 Although NLP algorithms require data quality
assessment to evaluate the accuracy of information
retrieval, they offer more efficient and scalable methods for
generating RWD than alternatives based on manual
extractions.

This study applies an analytic framework for RWD on
advanced non-small-cell lung cancer (aNSCLC), a leading
global cancer with high mortality.3,4

Tyrosine kinase inhibitors (TKIs) constitute the standard
of care (SoC) in the first-line (1L) treatment of aNSCLC for
patients with epidermal growth factor receptor-positive
mutation (EGFRm), offering superior outcomes in both
quality of life and response rates compared with chemo-
therapy (CTx).5,6

Since 2016, osimertinib, a third-generation TKI, has been
initially approved as a new treatment for patients with
aNSCLC and EGFRm who have progressed after EGFR first/
second-generation TKIs (1st/2nd-gen TKIs). Subsequently,
osimertinib has been extended to 1L treatment, showing
better clinical management than 1st/2nd-gen TKIs in the
phase III FLAURA trial.7

To date, osimertinib remains the SoC offering extended
progression-free survival (PFS) and overall survival (OS)
compared with earlier TKIs.8

Given that real-world treatment involves more frequent
therapy changes than clinical trials, this study complements
extant literature through a data analytics framework
devised to monitor the last decade of real-world patterns
and treatment outcomes of EGFRm patients with aNSCLC
patients treated in 1L with erlotinib/gefinitib (1st-gen TKI),
afatinib (2nd-gen TKI), and osimertinib (3rd-gen TKI).

This study advances robust analytical methods for RWE
studies, using time to treatment discontinuation (TTD) as a
real-world endpoint that reflects treatment dynamics and
2 https://doi.org/10.1016/j.esmorw.2024.100109
disease management in routine care. Unlike PFS, which
relies on standardized disease assessments, and may report
inconsistencies in real-world dataset, TTD is coherently
recorded in EHRs. Therefore, it provides a realistic view of
cancer drug safety and efficacy in the real world aligning
with factors such as toxicity, patient preference and the
common practice of treatment beyond RECIST-defined
progression.9,10

Furthermore, multivariate and time-dependent survival
analyses are introduced in this analytic framework to
address confounding effects and immortal time bias,
commonly occurring in observational cohort studies when
participants cannot experience the study outcome during a
certain period of follow-up.11,12

To the best of our knowledge, the current Italian research
landscape still lacks a data analytics framework setting out
the collection, linkage, and analysis of all the routine health
data. Specifically, this work supports the adoption of NLP to
extract RWD from EHRs stored in hospitals’ DWHs in line
with the European Society for Medical Oncology Guidance
for Reporting Oncology real-World evidence (ESMO-GROW)
recently introduced by the ESMO.11

MATERIALS AND METHODS

Data analytics framework

Figure 1 presents a schematic of the data analytics
framework, consisting of three layers: study design, data
collection, and data analysis.

These steps establish a sequential framework for con-
ducting RWE studies, especially useful for researchers who
are less familiar with this type of analysis. This systematic
approach ensures a robust methodology when analyzing
RWD and is adaptable to a broad spectrum of RWE
questions.

The first layer in designing a real-world study involves
conducting a literature review to establish the study context
and identify existing research gaps. This analysis informs the
formulation of research questions, which define the study’s
aims and objectives. Broadly, research questions may
explore adherence to therapeutic guidelines in real clinical
settings or investigate new epidemiological insights about a
particular disease. Additionally, this phase includes setting
inclusion and exclusion criteria to define the study cohort.

The data layer focuses on identifying suitable data sour-
ces, primarily DWHs, which house structured data and un-
structured data. Data may come from hospital databases
and other referral systems, with variability in the temporal
patterns across sources. This step often requires manual
review to finalize case selection for analysis.

The third layer involves selecting appropriate analytical
methodologies to address the research questions. RWE
research employs various approaches, including NLP for text
mining, descriptive analysis for clinical characteristics, sur-
vival analysis for clinical effectiveness, and health economic
evaluations to assess cost-benefit measures. Data-driven
models are especially effective in analyzing longitudinal
data for RWE studies.
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https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109
https://doi.org/10.1016/j.esmorw.2024.100109


Literature
research

Research
questions

Structured
data

Unstructured
dataData warehouse

Study
population

criteria

Textual analysis

Analysis layer

Data-driven models

Real-world evidence

Decision making

Side-
effects

Descriptive analysis

Survival analysis

Economic analysis

Design layer

Data layer

Study design

... ???

....

.......

Real-world data

$

Figure 1. Data analytics framework. Graphical illustration of the three layers comprising the data analytics framework.
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Study design and population

This is a real-world study conducted in an Italian cancer
institute. The study was approved by the hospital ethics
committee. Data were retrospectively collected for patients
who fulfilled the eligibility criteria. The following inclusion
criteria were applied to identify the real-world population:
age �18 years; Eastern Cooperative Oncology Group per-
formance status (ECOG PS) 0-4; histologically or cytologi-
cally diagnosed with stage IIIB/IV NSCLC treated in 1L with
first-, second-, or third-generation of EGFR-TKIs. Conversely,
the exclusion criteria were administration of 1L treatment
different from EGFR-TKIs; any EGFR-TKI initiation was sug-
gested in our hospital but carried out in other institutions.
The study index date was defined as the date of initiation of
the 1L treatment between 2014 and 2022. Patients were
observed until death, loss to follow-up, or study cut-off date
(27 July 2023), whichever occurred first.

Real-world data collection and extraction

INT Data Warehouse. The INT DWH is a real-world patient-
oriented database that exploits heterogeneous data sources
including the information contained in EHRs and combines
them into a single and unified system. Among the main
features of a DWH are integration, consistency, and repre-
sentation of temporal evolution. In particular, integration
and consistency are fundamental aspects to ensure the
correct management of several data sources, which come
from different hospital departments or external information
systems. Unlike standard hospital EHR systems that focus on
admissions and outpatient data, the INT DWH centralizes
Volume 7 - Issue C - 2025
information from multiple clinical applications (e.g.
pathology, radiology, admissions, surgery, chemotherapy,
radiotherapy), enabling researchers to query data across
these systems for research purposes. At first access in the
institute, each patient is assigned to a unique and un-
changing INT patient identification code, with which the
hospital centrally manages the patient’s records. Neither
image nor omics data are currently stored in INT DWH.
More details about DWH governance, ownership, and
accessibility are reported in Supplementary Material, Sec-
tion 1.1, available at https://doi.org/10.1016/j.esmorw.
2024.100109. Patient extraction from DWH is described in
detail in Figure 2.

Data extraction via SQL and text mining. Clinical informa-
tion was extracted from the INT DWH by querying patient
health records for baseline data. Data sources included the
Cartella Clinica Elettronica (CCE) and Rete Oncologica
Lombarda (ROL), both stored in the DWH (see
Supplementary Material, Section 1.2, Supplementary Figure
S1, and Supplementary Table S1, available at https://doi.
org/10.1016/j.esmorw.2024.100109). Two methods were
used: Structured Query Language (SQL) queries addressed
anatomical names and clinical acronyms, while a rule-based
named entity recognition (NER) technique extracted com-
plex medical entities. Details on the algorithm are provided
in Supplementary Material, Section 2.1, available at https://
doi.org/10.1016/j.esmorw.2024.100109, and the extraction
process is shown in Figure 3.

The following clinical variables were extracted with SQL:
smoking habits, programmed death-ligand 1 (PD-L1) gene
https://doi.org/10.1016/j.esmorw.2024.100109 3
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Figure 2. ESMO-GROW flowchart. Process of patient extraction from the INT DWH.
TKI, tyrosine kinase inhibitor.
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expression, histology, sites of metastases, and staging.
ECOG PS was the only clinical field in CCE and ROL recorded
as structured data. Other clinical variables, like EGFR mu-
tation type, oligoprogressive diseases (OPDs), and Response
Evaluation Criteria in Solid Tumors (RECIST)-based treat-
ment response, were manually annotated. Survival end-
points, such as treatment discontinuation and death status,
were also manually curated from clinician notes. A rule-
based NER algorithm extracted drug toxicity data by iden-
tifying toxicity episodes through specific clinical terms and
associating them with treatment initiation (erlotinib, gefi-
tinib, afatinib, or osimertinib), ensuring toxicity was linked
to the treatment. This approach captures toxicity events
occurring closest in time to the start of therapy thus
reflecting the variable as a single observation per patient at
baseline. No formal split training/validation was created,
but rules were manually crafted based on domain knowl-
edge. Finally, extractions were validated against a manually
labeled ground truth of 20 patients, with 70% accuracy (n ¼
14 correctly labeled, 30% incorrect/missing). The algorithm
was only applied to records matched to each patient’s
follow-up start date.

The rule-based NER algorithm was implemented with the
‘re’ library available in Python version 3.13

Statistical analysis

Time variables, such as mTTD and mOS, were reported as
medians with 95% confidence interval (CI) obtained with
the KaplaneMeier (KM) method.

Demographics and clinical-pathological characteristics
were described using frequencies and percentages for cat-
egorical data, and medians with interquartile range (IQR)
for continuous data. Group differences were tested with
4 https://doi.org/10.1016/j.esmorw.2024.100109
chi-Square and Wilcoxon rank sum tests for categorical and
continuous variables, respectively.

Follow-up was defined from the first TKI administration
(1L therapy) to last contact or death. TTD was defined from
1L start to treatment end for any reason (e.g. progression,
toxicity, patient choice, or death), with patients censored if
no discontinuation was observed by the cut-off date. OS
was from 1L start to death, with censored cases for those
alive at last follow-up or cut-off.

Median TTD and OS (mTTD and mOS) were reported with
95% CI using KaplaneMeier (KM) estimates. Cox propor-
tional hazard (PH) models identified survival prognostic
factors, adjusting for confounders through hazard ratios
(HRs). To avoid immortal time bias, time-dependent anal-
ysis, for OS estimation, was implemented by specifying the
treatment as a longitudinal variable.11,14 Moreover, clinical
outcomes were presented as adjusted survival curves from
the Cox model, accounting for explanatory variables.

PH assumptions were verified with Schoenfeld’s residual
test, and P values < 0.05 were considered statistically
significant.

Statistical analyses were conducted with R software
(version 4.1.3)15 using survival16,17 and survminer18 packages.
RESULTS

Patient baseline characteristics

A cohort of 190 patients treated with 1L EGFR-TKIs was
enrolled, with 38% (n ¼ 73) receiving osimertinib (defined
as the ‘osimertinib group’ or 3rd-gen TKI) and 62% (n ¼ 117)
receiving 1st/2nd-gen TKIs (the ‘non-osimertinib group’).
Demographic and clinical-pathological characteristics are
summarized in Table 1. Age, gender, ECOG PS, and smoking
Volume 7 - Issue C - 2025
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habits were similar between the two groups. NSCLC
adenocarcinoma was the most common subtype, with PD-
L1 <1% in most patients. The non-osimertinib group
showed a higher number of metastatic sites (P ¼ 0.048),
including brain metastases (P ¼ 0.06). Metastatic sites were
assessed exclusively at baseline, representing the status at
the initiation of treatment. Moreover, the non-osimertinib
group received more subsequent chemotherapy lines (P ¼
0.022) compared with the osimertinib group.

No significant differences in toxicity related to TKI
administration were found. The osimertinib group was also
characterized by EGFR mutation type, OPDs (defined as
limited metastatic areas progressing amenable to locore-
gional treatment together with an ongoing therapy contin-
uation), and treatment response per RECIST criteria [RECIST
criteria was applied only subsequently to data extraction, to
provide an unbiased evaluation of the information extracted
about disease progressions. In particular, progressions were
defined as the appearance of one or more new lesions or an
increase in pre-existing lesions (so that a change in therapy
and/or locoregional treatment was needed)].19

Real-world treatment patterns

Within the osimertinib and non-osimertinib groups, 38.3%
and 38.4% of patients received a single line of treatment
before death (i.e. only 1L osimertinib or non-osimertinib
before death without any other therapy change), respec-
tively (see Supplementary Figure S2, available at https://
doi.org/10.1016/j.esmorw.2024.100109).

The remaining 61.6% in the osimertinib group included
38.3% of patients continuing osimertinib and 23.2% moving
to 2L therapy. In the non-osimertinib group, 2.5% stayed on
Volume 7 - Issue C - 2025
1L 1st/2nd-gen TKIs, while 58.9% moved to 2L. Among
osimertinib patients receiving 2L (n ¼ 17), all received CTx.
In the non-osimertinib group’s 2L (n ¼ 69), 33.3% received
osimertinib alone, 20.2% received osimertinib followed by
third-line (3L) CTx, 30.4% received CTx only, and 15.9%
received CTx followed by 3L osimertinib. Sequential therapy
use was common; notably, 25.2% (n ¼ 48) of all patients
switched from 1L 1st/2nd-gen TKIs to 2L osimertinib, similar
to cross-over in RCTs.
Real-world treatment efficacy

In this section, treatment effect analysis is represented as
KM curves and multivariate Cox models.

Time to treatment discontinuation. At data cut-off, median
follow-up was 18.42 months (IQR 11.96-23.27 months) for
the osimertinib group and 24.09 months (IQR 10.59-43.50
months) for the non-osimertinib group. According to
guidelines, additional EGFR-TKI lines are permitted for OPDs
with possible local-regional treatments.

Among patients with treatment discontinuation (n ¼
166), 53.6% (n ¼ 89) continued beyond progression, with
30.3% (n ¼ 27) remaining on therapy for 3 months or more
after progression, 70.3% (n ¼ 19) of whom were in the
osimertinib group. Conversely, 24% (n ¼ 13) discontinued
early (>3 months before progression).

mTTD was 15 months (95% CI 11.97-26.40 months)
in the osimertinib group versus 10.1 months (95% CI
7.93-13.5 months) in the non-osimertinib group, with a
HR of 0.58 (95% CI 0.41-0.81) (see Figure 4 A).

All covariates, including toxicity associated with treat-
ment initiation, bone metastases, and brain metastases,
https://doi.org/10.1016/j.esmorw.2024.100109 5
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Table 1. Demographic features and clinical-pathological characteristics of
the study population

Variable n Non-osimertinib,
n [ 117

Osimertinib,
n [ 73

P
value

Age 190 68 (58-73) 63 (58-73) >0.9
Gender 190 0.4
Female 73 (62) 50 (68)
Male 44 (38) 23 (32)

ECOG PS, n (%) 129 0.7
0 31 (38) 18 (38)
1 35 (43) 20 (43)
2 14 (17) 6 (13)
3 2 (2) 2 (4)
4 0 (0) 1 (2)
Unknown 35 26

Smoking habits 178 >0.9
Never 49 (46) 32 (44)
Current 10 (10) 8 (12)
Former Unknown 47 (44) 32 (44)

11 1
Histology 190 0.5
Adenocarcinoma 113 (97%) 68 (93)
Sarcomatoid
carcinoma

1 (0.9) 1 (1.4)

Squamous carcinoma 3 (2.1) 4 (5.6)
Staging 190 0.6
III 2 (2) 2 (3)
IV 115 (98) 71 (97)

PD-L1 112 0.071
<1% 21 (42) 29 (47)
1%-49% 13 (26) 24 (38)
>50% 16 (32) 9 (15)
Unknown 67 11

EGFR mutation 71 d
del19 d 37 (52)
ex18 d 5 (7)
ex21 d 28 (40)
Other d 1 (1)
Unknown d 2

Metastases sites 166 0.048
1 39 (40) 35 (52)
2 25 (25) 20 (30)
þ3 35 (35) 12 (18)
Unknown 18 6

Brain metastases 166 39 (39) 17 (25) 0.061
Unknown 18 6

Bone metastases 166 48 (48) 40 (60) 0.2
Unknown 18 6

Chemotherapy 190 46 (39) 17 (23) 0.022
Radiotherapy 190 73 (62) 43 (59) 0.6
Toxicity 125 21 (30) 12 (21) 0.3
Unknown 48 17

OPD 71 d
No d 55 (77.5)
Yes unknown d 16 (22.5)

d 2
RECIST response 67 d
PR d 47 (70)
PD d 3 (4.5)
SD d 16 (24)
CR d 1 (1.4)
Unknown d 6

Median (IQR) for continuous variables; n (%) for categorical variables.
CR, complete response; ECOG, Eastern Cooperative Oncology Group; EGFR,
epidermal growth factor receptor; IQR, interquartile range; OPD, oligoprogressive
disease; PD, progressive disease; PD-L1, programmed death-ligand 1; PR, partial
response; PS, performance status; SD, stable disease.

ESMO Real World Data and Digital Oncology L. Mazzeo et al.

6 https://doi.org/10.1016/j.esmorw.2024.100109
were treated as baseline covariates in this analysis. No
covariates were treated as time-varying in the TTD analysis.

Adjusted models showed longer mTTD for osimertinib
(see Supplementary Figure S3, available at https://doi.org/
10.1016/j.esmorw.2024.100109) in both the bone metas-
tases group (13.04 versus 8.89 months) and brain metas-
tases group (11.97 versus 7.84 months) (see Supplementary
Figure S4, available at https://doi.org/10.1016/j.esmorw.
2024.100109).

The protective effect of osimertinib on treatment discon-
tinuation was also supported by the multivariate Cox model
(see Supplementary Material, Section 4.1 and Supplementary
Figure S4, available at https://doi.org/10.1016/j.esmorw.
2024.100109), where radiotherapy emerged as a protective
factor (HR 0.66, 95% CI 0.46-0.94), while bone (HR 1.45) and
brain metastases (HR 1.51) were risk factors, adjusted for age
and gender. No significant effect was observed for toxicity.
The PH assumption for the TTD model was confirmed
(Schoenfeld’s test P ¼ 0.4).

Overall survival. To evaluate the real-world impact of osi-
mertinib on OS, osimertinib treatment was codified as a
time-varying variable. This approach ensures that patients
switching to osimertinib in later lines contribute to the risk
set for osimertinib only after they start receiving it, avoiding
immortal time bias. Therefore, this analysis reflects the
clinical question whether osimertinib, administered at any
point during the treatment course, might improve OS.

All covariates were considered at baseline except for
treatment that was codified as a dichotomous time-varying
variable, with osimertinib as the treatment of interest.

The mOS (see Figure 4B) for the osimertinib group was 27
months (95% CI 21.4-39.5 months) versus 20.2 months
(95% CI 17.6-23.2 months) in the non-osimertinib group (HR
0.66, 95% CI 0.47-0.93).

Adjusted OS curves were also reported for the two risk
groups accounting for bone and brain metastases (see
Supplementary Figure S6, available at https://doi.org/10.
1016/j.esmorw.2024.100109).

As for TTD, a multivariate time-dependent Cox model for
OS was employed (see Supplementary Figure S7, available
at https://doi.org/10.1016/j.esmorw.2024.100109). Osi-
mertinib treatment remained a significant protective factor
for OS (HR 0.56, 95% CI 0.39-0.82), even if adjusting for
gender, age, and bone (HR 1.43) and brain metastases (HR
1.55) which are conversely significant risk factors for sur-
vival. However, toxicity did not result as a significant risk
factor for patients’ survival.
DISCUSSION

This study introduces a data analytics framework to inte-
grate RWE into cancer research, focusing on a systematic
approach to design, collection, and analysis of RWD.
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Emphasis was placed on extracting and analyzing RWD from
DWHs, with an application to a cohort of patients with
aNSCLC with EGFR mutations. The main research questions
were to analyze treatment patterns and outcomes of EGFR-
TKIs, particularly examining osimertinib compared with first-
and second-generation TKIs.

This work exploited a rule-based NER algorithm to
accelerate data collection and improve the quality pre-
venting erroneous and incomplete data. EHRs were queried
via SQL and text-mining algorithms. In particular, a rule-
based NER algorithm was used to retrieve information
about drug toxicity.

A formal data quality assessment was carried out only for
the NER algorithm, which achieved 70% accuracy on manu-
ally labeled texts. For other clinical variables, the SQL-based
pipeline was semi-automatic, with a final manual extraction
step. Automating extraction significantly accelerated data
collection and minimized manual review in both experiments.

The cohort analyzed reflects the treatment landscape for
EGFR mutation-positive patients over the past decade.

For patients with aNSCLC, the acquisition of the T790M
mutation represents the condition to switch to osimertinib
after prior 1L 1st/2nd-gen TKIs. According to recent litera-
ture, a percentage of 50% is expected to acquire this mu-
tation after previous-generation TKIs.20

In this cohort, data revealed that 53.6% of patients
initially receiving 1st/2nd-gen TKIs switched to osimertinib
in 2L therapy or subsequent treatments (15.9%). Among
patients in the osimertinib group, only 23.2% transitioned
to subsequent therapies, with chemotherapy as the main
option. These treatment patterns are coherent with those
described by Ramalingam et al. in the FLAURA trial.8

For studying clinical outcomes, two endpoints, namely
TTD and OS, are investigated with different statistical
methodologies, including Cox regression model and time-
dependent analysis. At this time, EGFR-TKIs are occasion-
ally maintained beyond RECIST-defined progressions.
Volume 7 - Issue C - 2025
Many studies have demonstrated that carrying out EGFR-
TKI maintenance, along with local radiotherapy, produces
clinical benefits in patients with OPDs.21-23 Therefore, TTD
can be reported as a potential proxy of clinical outcomes for
RWE studies, showing a high correlation with PFS found in
clinical trials.9 Moreover, outcomes such as TTD usually do
not require a review-like process of clinical charts; thus a
larger amount of data can be easily collected, increasing the
study sample size and thus lowering study costs.24 The
importance of using TTD as a measure of real-world benefit
was also stated in several systematic reviews.9,25 For the
estimation of TTD, a Cox analysis with time-fixed covariates
is adopted.

Furthermore, the long follow-up of this study has also
allowed the estimation of OS. In case of long-term effects
estimated via RWD, immortal time bias can significantly
affect the results. In this cohort, a significant percentage of
patients in the 1L non-osimertinib group crossed over the
osimertinib group, at the time of T790M mutation acqui-
sition. However, unlike intention-to-treat analyses used in
clinical trials, this study assessed the impact of osimertinib
administered at any time during the treatment course. By
treating osimertinib as a time-dependent variable in OS
analysis, we correctly accounted for real-world treatment
switching in later lines of therapy. In fact, with osimertinib
being the exposition factor of interest, time-fixed analysis
would have assigned to the unexposed patients (non-osi-
mertinib patients who switched to osimertinib later) a
spurious survival advantage as if they had been assigned to
the exposed group (osimertinib) since study initiation. This
bias that happens very frequently in cohort studies using
EHRs was also studied in pharmaco-epidemiology
literature.14,26,27

To obtain an unbiased estimation of mOS, this work
adopted a time-dependent Cox model.9,11 Specifically, the
treatment constituted the only time-dependent covariate.
All the other covariates were considered as baseline
https://doi.org/10.1016/j.esmorw.2024.100109 7
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features, since no measurements at different time points
were available. Finally, multivariate analyses and adjusted
survival curves were also used to minimize confounding
effects.

A significantly longer mTTD equal to 15 months was
found for patients treated with osimertinib compared with
10 months for 1st/2nd-gen TKIs in line with other real-world
studies.28-30 The beneficial effect of osimertinib in terms of
treatment discontinuation was also demonstrated by
multivariate Cox analysis, in which the risk of treatment
failure for osimertinib was reduced by half compared with
other TKIs. Moreover, this model established the favorable
role of osimertinib regardless of local radiotherapy. This is a
result of relevant clinical interest for treatment choice in
clinical practice.

Finally, TTD was analyzed in comparison to PFS, demon-
strating that TTD represents a significant and practical
endpoint in real-world studies. Specifically, for osimertinib,
the analysis showed a median PFS of 13 months
(Supplementary Material, Section 4.2 and Supplementary
Figure S5, available at https://doi.org/10.1016/j.esmorw.
2024.100109), with TTD aligning closely as an upper-
bound measure. These results support the utility of TTD
as a reliable and pragmatic outcome in real-world studies,
offering a complementary perspective on treatment effec-
tiveness. While TTD is not yet widely adopted, its advan-
tages make it a valuable tool for RWE generation.31-37

Median OS estimated by time-dependent Cox model was
27 and 20.2 months for the osimertinib group and non-
osimertinib groups, respectively. This result confirms the
recent study proposed by Wells et al.38 in which outcomes
of patients not eligible for the FLAURA trial have been
analyzed. Multivariate analysis proved that the risk of death
for osimertinib was significantly reduced even when
adjusting for gender, age, and bone and brain metastases
which were conversely significant risk factors for survival.

The data analytics framework introduced in this study
demonstrates scalability, making it applicable to a range of
RWE studies beyond the oncology field. This approach aligns
with ESMO-GROW guidelines for RWE reporting11 and en-
ables systematic monitoring of real-world drug efficacy and
safety. By applying robust analytic methods, including NER
and statistical modeling, this framework effectively in-
tegrates diverse data sources to inform clinical practice and
health policy.

While the framework has shown promising results, there
are some limitations. This is a retrospective study with a
single-institution dataset which may limit generalizability of
the results. Notably, this cohort included a significant pro-
portion of frail patients with ECOG PS of 2-3, who would not
typically meet clinical trial criteria, yet their inclusion offers
valuable insight into real-world treatment responses.

Moreover, clinical variables were treated mainly as
baseline covariates in the survival models. In particular, due
to the design of the NER algorithm, toxicity was analyzed as
a baseline covariate capturing adverse events only at the
initiation of first-line treatment. While this approach pro-
vides insights into the impact of early toxicity on treatment
8 https://doi.org/10.1016/j.esmorw.2024.100109
outcomes, it does not account for the potential dynamic
effects of toxicity over time.

A further limitation in the current framework regards the
manual review to supplement the extraction of clinical
events from electronic records such as treatment discon-
tinuation. Further attempts could be made also to improve
the methodology, especially in terms of statistical analysis
and text-mining techniques. As the application of NER al-
gorithms is challenging for health records due to the doc-
tor’s writing styles, different forms of medical terms, and
ambiguity in abbreviations, alternative more advanced
machine learning algorithms could be compared to improve
the performance in terms of automatic clinical event
retrieval, missing values, and percentage of wrong/incom-
plete extractions.

In conclusion, this data analytics framework highlights
the potential of RWE for guiding treatment decisions and
policy development in oncology. RWD-informed models,
capable of processing large volumes of routinely collected
health data, are essential for assessing treatment strategies
aimed at enhancing life expectancy and reducing health
care costs. Despite ongoing challenges in implementing
RWE frameworks, such tools hold promise as practical de-
cision support systems in health care.
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