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Abstract

The increase in clinical text data following the
adoption of electronic health records offers
benefits for medical practice and introduces
challenges in automatic data extraction. Since
manual extraction is often inefficient and
error-prone, with this work, we explore the
use of open, small-scale, Large Language
Models (LLMs) to automate and improve the
extraction of medication and timeline data.
With our experiments, we aim to assess the
effectiveness of different prompting strategies
–zero-shot, few-shots, and sequential prompting–
on LLMs to generate a mixture of structured
and unstructured information starting from a
reference document. The results show that even
a zero-shot learning approach can be sufficient
to extract medication information with high
precision. The main issues in generating the
required information seem to be completeness
and redundancy. However, prompt tuning alone
seems to be sufficient to achieve good results
using these LLMs, even in specific domains like
the medical one. Besides medical information
extraction, in this work, we address the problem
of explainability, introducing a line-number
referencing method to enhance transparency
and trust in the generated results. Finally,
to underscore the viability of applying these
LLM-based solutions to medical information
extraction, we deployed the developed pipelines
within a demo application.

1 Introduction

The rapid integration of digital technologies into
healthcare systems has transformed the landscape
of patient care and management. Electronic Health
Record (EHR) systems have become pivotal in
modern healthcare environments. However, as a
downside, primary care physicians, for example,
face a significant burden of documentation. Re-
search indicates that family medicine physicians
allocate nearly as much time to interacting with
EHR systems as they do to direct patient care (Arndt

et al., 2017), leading to reduced clinical efficiency
and increased risk of clinician burnout.

To address these issues and automate (or semi-
automate) the analysis of these documents and, thus,
reduce clinicians burden, we explore the application
of Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2023; Anil et al., 2023) as a means
to enhance the functionality and efficiency of EHR
systems. LLMs are the pivot of the current advance-
ments in Artificial Intelligence (AI), present promis-
ing solutions for automating routine documentation,
extracting information from unstructured data
and supporting clinical decision-making through
real-time insights from extensive medical databases.

Specifically, with this paper, we explore the
application of small-scale openly-available LLMs
(Touvron et al., 2023; Jiang et al., 2023; Mesnard
et al., 2024) to automate the extraction of medica-
tion information and timeline data from clinical text.
We evaluate LLMs performance in zero-shot learn-
ing, few-shot learning and sequential prompting
scenarios. We selected the latter approach to guide
the LLM through the multiple steps of information
extractions in the cases where the information is
not immediately accessible from the raw text. The
objective of the evaluations is to assess the accuracy
and completeness of the information LLMs
extract, such as dosage, frequency, and mode of
administration of a drug, as well as LLMs ability to
construct patient timelines from clinical narratives.
Through this work, we seek not only to deepen our
understanding of the capabilities and reliability of
LLM-based systems in medical contexts, but also to
offer viable strategies for alleviating the documen-
tation burden that detracts from patient-focused
healthcare that can serve as possible baselines.

We divide this paper into the following sections.
In Section 2, we recap the main results in infor-
mation extraction. In Section 3, we describe the
pipelines we developed for information extraction.
In Section 4, we describe the data sets we used to



evaluate our pipelines. In Section 5, we outline the
experiments we conducted. In Section 6, we report
and comment on the experimental results. Finally,
in Section 7, we summarise our work and present
possible future directions.

2 Related Works

Information Extraction (IE) is one of the main ap-
plications of Natural Language Processing (NLP),
even outside the medical domain. Traditionally,
information extraction encompasses problems
like Named Entities Recognition (NER), Relation
Extraction (RE) or Aspect Classification (AC)
(Jurafsky and Martin, 2024, Chapter 19). NER
involves the extraction of named entities like per-
sons and locations, as well as time expressions and
even drugs. RE is the task of classifying relations
among entities, like the dosage of a specific drug.
AC is the classification of events according to their
internal temporal structure or temporal contour, for
example, identifying whether a patient has been
taking a drug before or after hospitalisation.

Initially, these problems have been approached
with either rule-based systems or classification
models combined with Conditional Random Fields
(CRF) (Jurafsky and Martin, 2024, Chapter 19).
Rule-based techniques are known for their preci-
sion in entity recognition or relation extraction,
particularly when they are meticulously crafted
to align with specific data types. These methods
typically analyse sentence structures and leverage
Part-of-Speech (PoS) tags to enhance NER. Both
rule-based systems and classification models relied
on hand-crafted features and lexical resources to
identify medical entities (Landolsi et al., 2024).
While they are less flexible and harder to scale, they
perform reasonably on well-defined problems.

The advances introduced by word embeddings
combined with sequence processing techniques
based on deep learning like Recurrent Neural Net-
works (Elman, 1990; Hochreiter and Schmidhuber,
1997) and Transformer Networks (Vaswani et al.,
2017) helped push forward significantly state of
the art for IE. In fact, even now, many approaches
often favour a combination of Bi-directional
Long Short-Term Memory (BiLSTM) (an RNN
variant) and CRF models or more recent fine-tuned
Transformers (Symeonidou et al., 2019; Yang et al.,
2020; Kafikang and Hendawi, 2023). Bi-directional
models (both recurrent and Transformer) excel in
capturing high-quality features due to their ability

to account for contextual dependencies in both
forward and backward directions. Meanwhile,
CRF enhances the process by optimising sequence
tagging with these features (Çelkmasat et al., 2022).
These models exploit a Begin-Inside-Outside
(BIO) tagging system which allows segmenting an
input document into multiple pieces (delineating
entity boundaries, for example) while labelling
those same pieces (thus, recognising the type of
entity, for example). Contextual models like RNN
and Transformers play a crucial role in medical
information extraction especially when pre-trained
on medical texts so that they can incorporate domain
knowledge (Lee et al., 2020; Landolsi et al., 2024).

As with many other NLP tasks, LLMs have rev-
olutionised IE as well, offering near state-of-the-art
performances out of the box. The in-context learn-
ing capabilities of LLMs like GPT-4 (OpenAI, 2023)
or Gemini (Anil et al., 2023) have shown promising
directions for biomedical NER and RE, especially
in scenarios lacking labelled data. Despite these
advancements, these LLMs still do not outperform
consistently smaller models fine-tuned on task-
specific datasets yet (Tian et al., 2023). Additionally,
the use of LLMs in IE faces several challenges: For
instance, the generative nature of these models may
alter the phrasing of recognised entities or predicted
relationships, complicating the verification process.
Moreover, these LLMs are prone to hallucinations
that may lead to the generation of entities and rela-
tionships that appear plausible but are not factually
accurate. Furthermore, finding suitable prompts
for NER and RE tasks can be difficult. These issues
underscore the need for further research to explore
and develop more effective methods for effectively
using LLMs in IE. In this paper, we focus on the
medical domain, and we explore solutions for
medical IE from patients’ records.

3 Methodology

In this section, we describe the two pipelines we
propose for medical information extraction from
clinical documents. We provide an overview of the
pipelines and information extraction approaches in
Section 3.1, and then we provide additional details
on the explainability in Section 3.2. Finally, we pro-
vide practical details on the two tasks of medication
extraction and timeline extraction in Section 3.3.
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Figure 1: Information extraction pipelines.

3.1 Information extraction overview
The pipeline (depicted in Figure 1) we propose
is designed to give a reference medical document
(e.g., a discharge letter) as input to an LLM and
use the LLM to extract the desired information
from the document according to user-provided
instructions. As premised, in this work, we focus
on medication extraction (i.e., the extraction of
information about the drug regime for a patient)
and timeline extraction (i.e., the sequence of events
characterising a patient’s clinical history). The
pipeline includes the generation of the required
information from the text, the parsing of the
generated unstructured text and the rendering of
the structured data selected from parsing. An
additional passage that enriches our pipeline is that
of explainability to justify the generated content.

We considered three different approaches to deal
with the information extraction, independently of
the actual task:

Zero-shot learning where we provide the LLM
with the instructions of the task to complete
and a description of the expected output;

Few-shots learning where we provide the same
instruction as zero-shot learning, but before
asking for the current sample, we append some
examples of input and expected output to help
guide the generation process;

Sequential prompting where we have the same
settings of zero-shot learning, but we break
down the task into multiple steps to help the

LLM build the solution one piece at a time and
keep it aligned with the desired behaviour.

All the aforementioned pieces are deployed as
part of a web app demonstrating AI solutions for
healthcare (see Figure 2). The demo is agnostic
of the underlying LLM. It allows the loading of a
reference document and separately generating the ta-
ble with the medication information, generating the
timeline and asking questions to the chatbot about
the document. The raw outputs of information ex-
traction are parsed to be converted into structured in-
formation and then displayed on the demo web page.

3.2 Explainability

Explainability has become a more and more
important step in developing and deploying deep
learning-based systems. Explainability helps in
understanding where model predictions come from.
When it comes to healthcare, the attention to this
information is even more crucial.

In our tool, we suggested a simple yet effective
solution to explain the results of information
extraction. We have a separate pipeline ingesting
the clinical document to analyse decorated with the
rows numbers. In this way, we can interrogate the
LLM automatically asking to point out the number
of the row connected to a specific extraction (e.g.,
where is a specific drug mentioned or where is a
specific event mentioned).

This additional explanation can be useful for the
clinician. In fact, on one side, having an explanation
helps ground the predicted information. On the
other side, it helps spot possible errors due to
LLM faults, preventing the misinformation of the
clinician.

3.3 Medications and Timeline extraction

As premised, in the deployed demo, we approach
both medication information extraction and timeline
extraction. We approach medication extraction with
a zero-shot learning approach and timeline extrac-
tion with sequential prompting. We selected these
approaches given the results of the experiments we
conducted. In both tasks we use the model in assis-
tant chatbot format (Scotti et al., 2024), composing a
sequence of messages to explain and solve the tasks.

Concerning medication extraction, we task the
model to extract all the information at once from a
reference document. We provide the reference doc-
ument to the model as part of the system message,
we then append a user message describing the task,



Figure 2: Demo tool using the pipeline to extract medications and medical events from a reference document.

and, finally, we force the answer of the assistant to
start with the raw text content of the CSV file we
want as output. We get the LLM to generate starting
from these messages. The CSV table contains the
following information about the medication: name,
dose (the specified amount of medication), mode
(intended as mode of administration), frequency
(how many times or how often to take the medica-
tion), line (line in the text where the medication
information is mentioned, for explainability).

Concerning the timeline extraction, we follow
a sequential prompting approach. We broke down
the task into three steps: counting the events
mentioned in the document, generating a JSON
array with the chronologically ordered events and
generating the line number for each event on the
array. As for the other task, we provide the reference
document as part of the system message and then
we alternate user messages with the instructions
for the current step and model responses for that
step. The elements of the JSON array with the
chronological order are dateValue (date in the
format "YYYY-MM-DD"), dateString (the string
mentioning the date as it appeared in the original
document) and event (a short description of what the
event that occurred at that time point). Each element
is decorated in the last step with the line number for
explainability. We found empirically these steps
to be the most effective to generate the timeline.

4 Data

One of the challenges of working in the healthcare
domain is gathering usable data. Given the nature of
the task, we focused on finding data sets containing
similar samples to what the model would encounter
in real-world scenarios. For this project, we resorted
to two existing data sets, one for medication extrac-
tion and one for timeline extraction (we describe
them respectively in Section 4.1 and Section 4.1),
and we generated a third additional data set syntheti-
cally (we describe this third data set in Section 4.1).

4.1 N2C2

The National NLP Clinical Challenges (N2C2)
data set (Uzuner et al., 2010) is a collection of 1243
de-identified discharge summaries from Partners
Healthcare. This data set was released as part of
a medical annotation challenge. In the challenge,
participants were tasked with extracting medication
information from these summaries and collectively
provided annotations for 251 documents. The
dataset focuses on the identification of medications
and medication-related information, including
dosages, routes (i.e., models of administration), fre-
quencies, durations, and reasons for administration.

The annotations provide the precise location
of each piece of information within the discharge
summaries, facilitating the development and eval-
uation of NLP systems for medication information
extraction. We report examples of input document
(chunk) and corresponding annotations respectively



in Listing 1 and Listing 2. As can be evicted by the
annotations, the target data contain all the desired
details and their reference within the document.

Listing 1: Example of the N2C2 input document with
numbered lines.

41 HASSEL , EDWARDO D. , M.D
42 on o r d e r f o r NEPHROCAPS

PO ( r e f 12327843 )
43 POTENTIALLY

SERIOUS INTERACTION
: SIMVASTATIN NIACIN ,

44 VIT . B−3 Reason
f o r o v e r r i d e : home reg imen

45 P r e v i o u s o v e r r i d e i n f o r m a t i o n :
46 O v e r r i d e added

on 4 / 2 9 / 0 4 by GALIPEAU
, ENRIQUE R . , M.D.

47 DEFINITE
ALLERGY ( OR SENSITIVITY
) t o HMG CoA REDUCTASE

48 INHIBITORS Reason f o r o v e r r i d e
: md aware , home reg imen

49 IMDUR ( ISOSORBIDE MONONIT
. ( SR ) ) 30 MG PO QD

50 Food / Drug
I n t e r a c t i o n I n s t r u c t i o n

51 Give
on an empty s tomach ( g i v e

1 h r b e f o r e o r 2 h r a f t e r

Listing 2: Example of the N2C2 output labels.

m=" n e p h r o c a p s " 42 :3 4 2 : 3 | | do ="
nm " | | mo=" po " 42 :4 4 2 : 4 | | f ="nm
" | | du ="nm " | | r ="nm " | | l n =" l i s t "

m=" n i a c i n " 43 :5
4 3 : 5 | | do ="nm " | | mo="nm " | | f ="nm

" | | du ="nm " | | r ="nm " | | l n =" l i s t "
m=" s i m v a s t a t i n " 43 :3

4 3 : 3 | | do ="nm " | | mo="nm " | | f ="nm
" | | du ="nm " | | r ="nm " | | l n =" l i s t "

m=" v i t . \ b −3" 44 :0
4 4 : 1 | | do ="nm " | | mo="nm " | | f ="nm

" | | du ="nm " | | r ="nm " | | l n =" l i s t "
m=" imdur ( i s o s o r b i d e mononi t

. ( s r ) ) " 49 :0 4 9 : 6 | | do ="30
mg" 49 :7 4 9 : 8 | | mo=" po " 49 :9
4 9 : 9 | | f =" qd " 49 :10 4 9 : 1 0 | |

du ="nm " | | r ="nm " | | l n =" l i s t "

I2B2

The Informatics for Integrating Biology and the
Bedside (I2B2) data set (Sun et al., 2013), released
as part of the homonymous project, consists of
310 discharge summaries annotated with temporal
information. This data set was created to facilitate
the development and evaluation of NLP systems
for temporal reasoning in clinical text.

The annotations focus on three key aspects.
Events, which include clinical concepts (problems,
tests, treatments), clinical departments, evidential
information (source of information), and occur-
rences (e.g., admissions and transfers). Each event
is further categorised by type, polarity (positive or
negated), and modality (factual, proposed, condi-
tional, or possible). Temporal expressions, which
include dates, times, durations, and frequencies,
normalised to the ISO8601 standard. Each temporal
expression is characterised by its type, value,
and modifier (exact or approximate). Temporal
Relations (TLinks), which describe the relation-
ships between events and temporal expressions,
indicating whether one occurred before, after, or
overlapped with another. We report examples of
input document (chunk) and corresponding annota-
tions respectively in Listing 3 and Listing 4. As for
the previous data set, the XML entries containing
the labels are annotated also with the position of the
information withing the source document.

Listing 3: Example of the N2C2 input document with
numbered lines.

41 Admiss ion Date :
42 0 9 / 2 9 / 1 9 9 3
43 D i s c h a r g e Date :
44 1 0 / 0 4 / 1 9 9 3
45 HISTORY OF PRESENT ILLNESS :
46 The p a t i e n t i s a 28−

year − o l d woman who i s HIV
p o s i t i v e f o r two y e a r s .

47 She p r e s e n t e d
wi th l e f t uppe r q u a d r a n t
p a i n as w e l l a s n au se a
and v o m i t i n g which i s a
long − s t a n d i n g c o m p l a i n t .

48 She was
d i a g n o s e d i n 1991 d u r i n g
t h e b i r t h o f h e r c h i l d .

49 She c l a i m s she does n o t know
why she i s HIV p o s i t i v e .



Listing 4: Example of the I2B2 output labels in XML
format.

< t imex3
i d ="T0" s t a r t ="18" end ="28"
t e x t = " 0 9 / 2 9 / 1 9 9 3 " t y p e ="DATE

" v a l ="1993 −09 −29" mod="NA" / >
< t imex3 i d ="T13 " s t a r t

="2249" end ="2271" t e x t =" t h e
day of d i s c h a r g e . " t y p e ="DATE
" v a l ="1993 −10 −04" mod="NA" / >

< t imex3 i d ="T3 " s t a r t ="290"
end ="294" t e x t ="1991" t y p e

="DATE" v a l ="1991" mod="NA" / >

Synthetic Data Set

Given the reduced size of the I2B2 data set, we
resorted to ChatGPT to generate some additional
data. We refer to this as synthetic data set (SD). We
prompted ChatGPT 4 to create discharge summaries
in both English and Italian1, along with correspond-
ing annotations for relevant medical information.
We report examples of input document (chunk) and
corresponding annotations in Listing 5. Differently
from the previous two data sets, we have a single en-
try containing both the input document and the target
labels, without explicit annotations of the position
of the information within the document (it would
have been unrelialable to use ChatGPT annotations
for this information, which we can extract searching
the matching substrings in the source document)

In general synthesising data offers several ad-
vantages, like personalisation, privacy and control.
From the personalisation perspective, we have that
the content and style of the generated summaries can
be tailored to specific requirements, allowing for
the creation of diverse and representative samples.
Concerning privacy, since the data is synthetic, it
inherently avoids privacy concerns associated with
real patient data. Finally, about control, we have that
the generation process allows for precise control
over the types of medical information included,
enabling targeted testing of specific extraction
challenges. However, it’s important to acknowledge
that synthetic data may not fully capture the nuances
and complexities of real-world clinical documen-
tation. While it serves as a valuable resource for
preliminary testing and development, its limitations
should be considered when interpreting results and

1We worked with Italian documents to fit the requirements
of the project founding this work; for further details, refer to
the acknowledgements at the end of this paper.

generalising findings to real-world scenarios.

Listing 5: Example of the SD input dcoments and output
annotation in JSON format.

{
" t e x t " : "** D i s c h a r g e

Summary : * * \ n \ n P a t i e n t
: Mark Johnson \ nAge : 38
\ nAdmiss ion Date : 03 −20 −2024

\ n D i s c h a r g e Date : 0 3 / 2 8 / 2 4
\ n \ n P a t i e n t H i s t o r y : \ nMr .

Mark Johnson , a 38− year − o l d
male , was a d m i t t e d t o our
f a c i l i t y on March 20 , 2024 ,
p r e s e n t i n g wi th c o m p l a i n t s
o f abdomina l pa in , nausea

, and j a u n d i c e . He has
a p a s t m e d i c a l h i s t o r y . . . " ,

" a n n o t a t i o n s " : [
{

" t e x t " : " March 20 , 2024" ,
" d a t e _ v a l u e " : "2024 −03 −20"

} ,
{

" t e x t " : " March 24 , 2024" ,
" d a t e _ v a l u e " : "2024 −03 −24"

} ,
{

" t e x t " : " e i g h t days " ,
" d a t e _ v a l u e " : "2024 −03 −28"

} ,
. . .

]
}

5 Experiments

In this section, we detail the experiments we run
to evaluate our pipelines for medication extraction
(Section 5.1) and timeline extraction (Section 5.2).
In all the experiments we conducted, we worked
with Mistral 7B (Jiang et al., 2023), using this LLM
as the core of the information extraction system.

5.1 Medication Extraction

In the first set of experiments, we focused on med-
ication extraction from clinical texts. The primary
objective is to evaluate the models’ ability to extract
medication details such as dosage, mode, and fre-
quency from unstructured medical documents, like
discharge letters. For this task, we focused on the
N2C2 data set. We evaluated the LLM capabilities



with different approaches: zero-shot learning, few-
shots learning (using 2 examples) and sequential
prompting. We conducted the evaluation using the
standard metrics: precision, recall, and F1 score.

Initially, we considered two variants of this
task: looking for full medications (i.e., we asked
the LLM to generate all the medication details:
name, dosage, mode, and frequency) or not (i.e.,
we asked the LLM to generate only the name of
the medication). However, as we explain better in
Section 6.1, working with full medication yields
poor results, as we noticed immediately in the early
experiments with a zero-shot learning approach. To
measure the metrics in the full medications case, we
considered a single string containing all the details,
and to measure a match, we standardised the target
string and the generated one by removing all spaces
and special characters.

Concerning the input and output format, we con-
sidered multiple alternatives as well. We explored
having as input the whole document to analyse
or only a relevant chunk, this approach is helpful
with particularly long documents. Moreover, we
explored two different output formats: JSON and
CSV; in both cases we had the LLM generate
directly the raw JSON or CSV strings.

5.2 Timeline extraction

In the second set of experiments, we focused on
extracting patient timelines from clinical texts in
order to highlight all the relevant events. In this
case, we focused only on evaluating the model’s
capabilities in extracting correctly formatted dates.
In fact, from early explorations, we noticed that
this task was already challenging as the LLM often
deviated from the target format. For this task, we
used the I2B2 data set and the synthetic data set.
We conducted the evaluation using the standard
metrics: precision, recall, and F1 score.

As for the previous experiment, we evaluated
the LLM capabilities with zero-shot learning, few-
shots learning (using 4 examples) and sequential
prompting approaches. Concerning the input and
output format, similar to medication extraction,
we considered alternative approaches. As before,
we explored using the whole document as input or
only a relevant chunk. For the output, we worked
only in JSON format and we converted all dates in
"YYYY-MM-DD" format.

6 Results

In this section, we present and comment on the
results of the experiments on medication extraction
(Section 6.1) and timeline extraction (Section 6.2).
In both cases, we do not compare with the reference
baselines coming with the data sets since we
approach the evaluations differently and we
compute different metrics.

6.1 Medication Extraction

We report the results of this first task of medication
extraction in Table 1. Results on precision focusing
on the medication name are satisfying, meaning that
the model is missing very few medications from
the documents. However, the low recall and, sub-
sequent, low F1 scores hint that the model is often
generating information that is not part of the original
document. Moreover, results using full medication
information are consistently lower, indicating that,
as expected, extracting detailed information is
harder than simply identifying the medication.

The experiments with zero-shot approach
showed that the LLM is not capable of extracting
all the medication information just from the
instructions. Looking at the generated output, we
noticed that sticking to the target output format
was difficult, and even output post-processing and
string normalisation were not sufficient to match the
target and predicted output. CSV format seems to
be harder to get to work independently of the target
being name only or full medication information.

From the results of the few-shots approach and
sequential approach, there seems to be no clear
solution for the output format. In fact, depending
on the approach, generating CSV or JSON output
seems to yield the best results. Concerning the
difference between the approaches, there is not
clear difference between zero-shot and sequential
approaches. Few-shots approach does not improve
significantly over the other approaches over
precision, but improves the recall and, thus, the F1.

6.2 Timeline extraction

We report the results on this second task of timeline
extraction in Table 2. As can be seen, the results
are good, yet there is a lot of space for improvement.
Results on the synthetic data are always better than
those on the I2B2 data set.

Comparing the results of zero-shot and few-shots
learning, we can see that in most cases, using the
few-shots approach helped significantly improve



Approach Format Chunked docs Full medication Precision Recall F1

zero-shot
JSON

✗ ✗ 0.964 0.392 0.513
✗ ✓ 0.446 0.115 0.181

CSV
✗ ✗ 0.557 0.453 0.498
✗ ✓ 0.418 0.217 0.278

few-shots

JSON

✗ ✗ 0.885 0.479 0.606
✗ ✓ 0.364 0.109 0.166
✓ ✗ 0.965 0.547 0.683
✓ ✓ 0.616 0.243 0.342

CSV

✗ ✗ 0.857 0.546 0.660
✗ ✓ 0.366 0.136 0.198
✓ ✗ 0.837 0.526 0.636
✓ ✓ 0.380 0.160 0.224

sequential
JSON

✗ ✗ 0.961 0.358 0.512
✗ ✓ 0.597 0.134 0.217

CSV
✗ ✗ 0.808 0.318 0.442
✗ ✓ 0.288 0.550 0.378

Table 1: Results on N2C2 for medication extraction (bold values correspond the best score).

Dataset Approach Chunked docs Precision Recall F1

I2B2

zero-shot ✗ 0.811 0.589 0.651

few-shots
✗ 0.803 0.794 0.790
✓ 0.954 0.592 0.701

sequential ✗ 0.757 0.644 0.660

SD

zero-shot ✗ 0.949 0.806 0.861

few-shots
✗ 0.926 0.917 0.916
✓ 0.975 0.898 0.931

sequential ✗ 0.966 0.898 0.926

Table 2: Results on I2B2 and Synthetic Data (SD) for timeline extraction (bold values correspond the best score
for each data set).

the results on recall and, thus,F1. The higher results
on chunked documents seem to indicate that, in this
case, using longer documents negatively affects the
ability to extract the time information.

Both sequential prompting and zero-shot work
without reference examples, yet sequential prompt-
ing performed in terms of recall and F1, and per-
formed comparably to the few-shots approach. This
hints that the sequential approach helped the LLM
capture better the target task and output format.

7 Conclusion

In this paper, we showed how we approached
the problem of medical information and events
extraction using LLMs. The results of the con-
ducted experiments highlight the potential of
these LLMs for automating the extraction of this
information from clinical texts. The performance
of these models resulted sufficiently robust for
practical application in real-world settings, though
there is still room for further improvements. To
complete the proposed pipelines and make them
more reliable, we provided also an explanation tool.



Concerning the evaluations, the LLMs exhibited
significantly better performance in few-shot
learning settings when compared to zero-shot
learning ones, achieving, as expected, higher
precision, recall, and F1 scores. However, it is
important to point out that the effectiveness of the
LLM varied significantly depending on factors
such as the chosen output format (JSON vs CSV).
For instance, although the models are capable of
adapting to the requested output format, it remains
unclear which format yields the most effective
results. While, in some cases, the performance we
achieved is suitable for practical application, these
fluctuations pinpoint a challenge taht highlights the
need for better models before moving to real-world
applications of the LLM technology for healthcare.

To improve the overall pipeline robustness and
utility, we will be working on minimising the
LLM’s sensitivity to minor variations in prompts,
for example, working on our own fine-tuning for
chatbot assistant or instruction following rather
than resorting to existing solutions. Similarly, we
are interested in exploring alternative evaluation
metrics that assess the semantic accuracy of the
extracted information, rather than relying solely
on string matching. We expect that advancements
in these two directions will better gauge the
practical applicability and effectiveness of LLMs
in processing clinical texts. At the same time,
to expand the tool capabilities, we are interested
in exploring more complex scenarios, where the
information to extract is scattered across multiple
documents, which represent a more challenging
task also from the explainability perspective.

Limitations

In this paper, we mainly focused on the development
and deployment of the pipeline, rather than exhaus-
tive experiments. The first limitation is in the choice
of the LLM: as for now, we evaluated the results
using only Mistral 7B. A proper evaluation would
require exploring other openly accessible models
of the same and different sizes and closed-access
models to have a reference for the comparisons.
The second limitation is the size of the available
data sets, which we can consider small if compared
with data sets for other information extraction tasks,
thus the results may be subject to high variance.
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