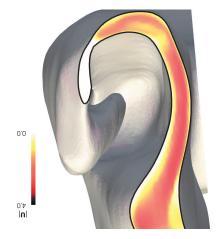
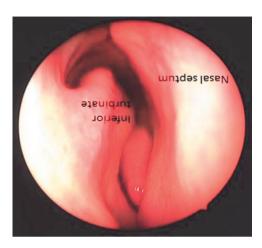

The OpenNOSE project: reasons of interest for the lung modelling community

Maurizio Quadrio Lung Modelling Congress, Parma, Nov 22–23, 2023

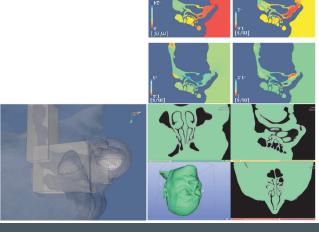
The human nose: functions and anatomy

Is the nose flow important?

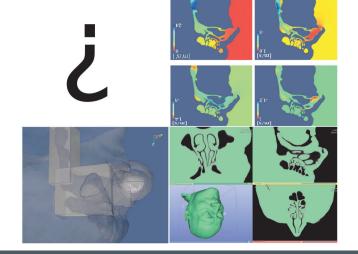

- ► At least 1/3 of the adult world population is troubled with nasal breathing
- difficulties¹ In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!)
- was \$22bn²
- $^{\rm F}$ Certain nose surgeries have 50% failure rate $^{\rm 3}$


Huge room for improvement!

Szlewart et al. Int.) Gen Med 2010 2 Smith et al. The Laryngoscope 2015 3 Sundh & Sonnergreen, Eur Arch Otholaringol 2015 3


3

Form and function



The workflow: from CT scan to...

- 1. Segment the CT scan 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)

The workflow: from CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh3. Compute a CFD solution
- (DNZ, LES, RANS, ...)

The lack of the functionally normal nose

CFD solution alone does not help surgeons to find the "best" surgery

- ▶ Reason: lack of functionally normal nose
- Strong inter-subject anatomical variations with different functional significance
- ► Shape optimization problem, with unknown objective function

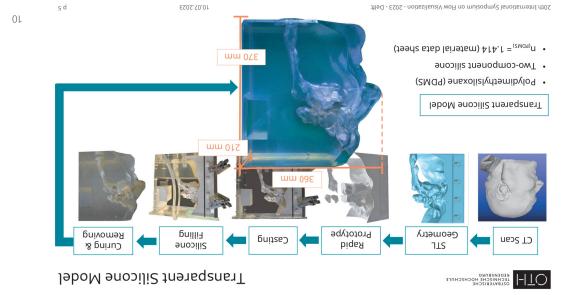
How to (obenly) proceed?

Bringing CFD into the clinical setting requires:

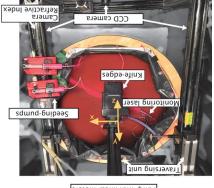
1. Assessing reliability through a solid benchmark

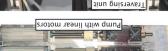
2. Distilling CFD into something useful

Establishing a benchmark

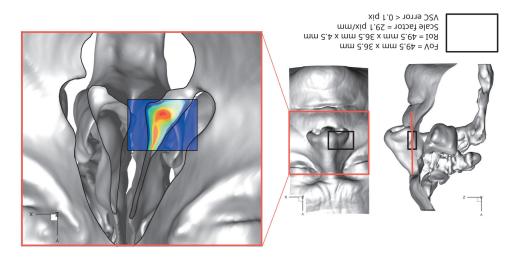

Reliability?

- ► An unique Reynolds number does not exist
- ► Most authors use RANS, but the flow is not turbulent
- ► Most authors use steady RANS, but the flow is low-Re and unsteady
- ► Accuracy of discretization is critical


The major limiting factor is lack of reproducibility: anatomies are sensible information!


6

Creating a benchmark: a tomo-PIV experiment


The experimental setup

- ▶ 800L fish tank with 3 portholes
- ▶ 3-axis traversing unit
- ► CCD cameras (1600 × 1200 px) and
- Nd:Yag laser, 15Hz
- ▶ 2 pumps driven by linear motors
- owt diw esticles with two
- sdwnd Suipəəs
- ▶ laser and camera for RI monitoring

Preliminary results

ll

The (future) OpenNOSE community

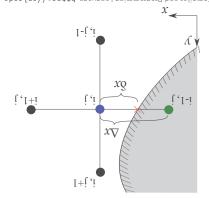
- ► Domain opennose.org registered since 2015
- ► Simultaneous availability of i) DNS data; ii) experimental data; iii) anatomy information (industrial CT scan of the phantom)

13

(stqmətts (3 attempts)

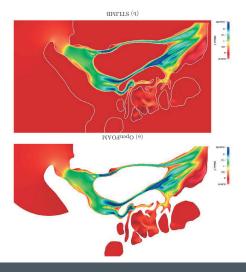
Currently, classic CFD (90% RANS, 9% LES) is too expensive for surgery planning:

- ∍miT ◀
- ► SKills
- ► Woney


りし

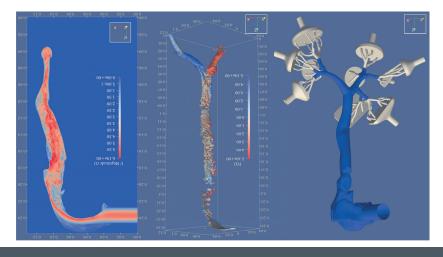
1. An αd -hoc DNS solver (in CPL)

- Il-order in space, staggered grid, linear extrapolation
 Il-order in time but implicit (stab
- ► Il-order in time but implicit (stable when grid point approaches boundary)
- Computing and storing solution at ghost nodes is not required
 ► Simple and efficient: it modifies the
- central weight of the Laplacian only


 ► Extrapolations in the 3 directions are independent and additive

CPL: Compiler and Programming Language, https://cplcode.net

SL


MAO7n9qO tenisga gnite9T

- The nose as input ■
- ► Verified II-order convergence
- MAO¬InoqO nsht rətset x001-01 ◀
- ► Speed compatible with a clinical setting
- ► (General interest?)

Towards DNS of the lung flow: the SimInhale model

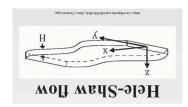
Ongoing work with Chiesi

لا

81

2. An ad-hoc physical model (in CPL)

- ► Thickness of the nasal fossae is limiting factor Geometric information is the major
- used (typically 512³) ▶ No less than the CT grid must be (səigolodtaq often 1-2 voxels (even less for


Nasal resistance is not telling the whole story

- qSnouə ► Restoring a good Nasal Resistance is not
- ► Cfr. the "Empty Nose Syndrome"
- considered! ► Heat transfer characteristics must be also

The reduced model

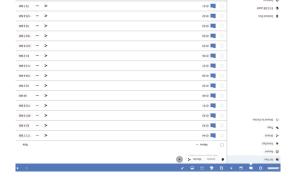
- ► Less than Navier–Stokes suffices to compute nasal resistance
- ► A quasi-1d approximation in the "narrow" direction: Hele–Shaw extended to a non-planar channel (with temperature)
- non-planar channel (with temperature)

 ▶ Local porosity computed for each voxel as a function of the wall distance
- ➤ Reconstruction, segmentation, meshing are all avoided

70

An optimization problem (at last!)

Hypothesis: The functionally normal nose provides balanced heat transfer and hydraulic characteristics

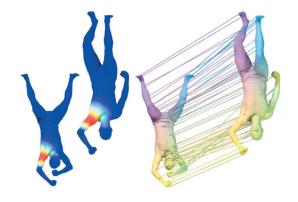

- ► Analogy with heat exchangers
- ► An optimization problem is formulated and solved with adjoint techniques
- ► Lighting-fast code: 1 second on 1 core, all inclusive

3. Using Machine Learning

- ► Issue: anatomic variability is too large, we won't have enough labelled data
- ► Proposed solution: augment ML with CFD
- ► Hypothesis: the flow field amplifies anatomic information

77

NN and nisrs of atab gninistdO:1.dq



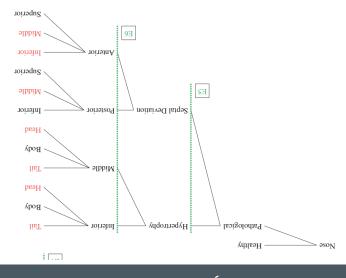
:To əsadətə

- ► CT scans
- ▼ rhinomanometry data
- ► ENT evaluation sheet

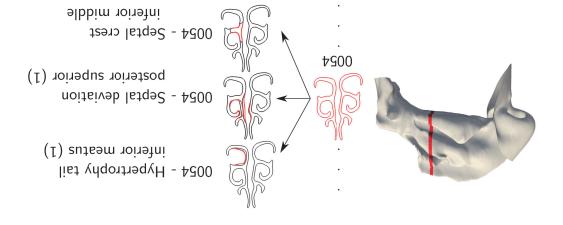
Open and labeled data: huge value!

Pb.2: Reducing dimensionality of the CFD

Features are computed with functional mapping (FM)

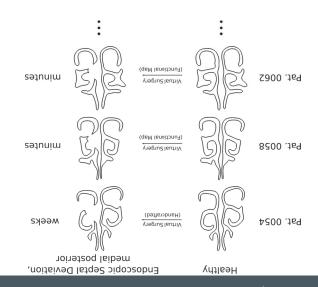

▶ tool from computational geometry

expresses bidirectional mapping between two shapes (and functions


defined over them)

 $^{\mbox{\scriptsize D}}$ M.O. Vsjanikov et al. ACM Trans. Graph. 2012

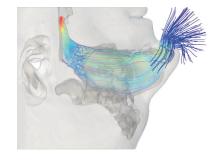
Step 1. Define a tree of elementary defects



Step 2. Create atomic defects via virtual anti-surgeries

97

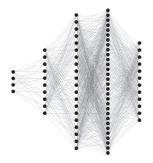
Step 3. Transfer defects with functional maps



On a first healthy patient, realistic deformations are created by hand (time: weeks)
 Deformations are applied to other healthy patients via functional maps

- TTS distinct anatomies are generated from 7 healthy patients ►
- ▶ Defects are isolated or in combination, various severities
- ► Classes are relatively balanced (but for the healthy class)
- ▶ CFD (LES/DNS) is used to compute the flow field

28


The OpenFOAM setup

- ► Steady inspiration at 280 *ml*/s (mild breathing)
- ► Well resolved (incompressible) LES
- Mesh with 15M cells, no layers, $_{\ell_1} / \nu < 4.4$
- ► All terms at second-order accuracy
- ≥ 8.0 revo bestuded over 0.6 s
- ▶ 7000 core hours for each case

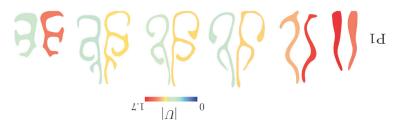
A neural network to classify pathologies

Our classifier (12 inputs, 4 outputs):

- ► A standard neural network is trained to classify pathologies
- Three fully-connected hidden layers (30, 20, 10 neurons each)
- Hyperbolic tangent as activation function (sigmoid for output); cross-entropy as loss

function; scaled conjugate gradient as backpropagation algorithm to update weights and

səssi


► LOO-CV (preferred to k-fold CV) as partition method to carry out validation and testing

Converting CFD to a small feature set

The number of inputs to the NN must be small (as such is the number of observations)

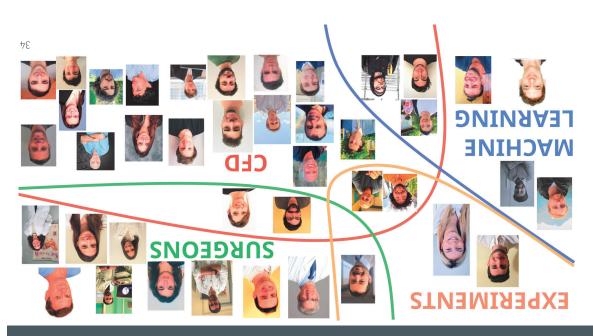
Manual feature extraction

Two strategies: regional averages (of velocity, vorticity, TKE, strain, pressure, pressure gradient, etc), and line integral over streamlines

30

Results: classification experiment (four classes, LOO)

12.0	12.0	15.0	17.0	Inferior turbinate hypertrophy
67.0	15.0	۷٠٠٥	79.0	Middle turbinate hypertrophy
91.0	11.0	0.30	06.0	Posterior septal deviation
98.0	16.0	28.0	16.0	Anterior septal deviation
LТ	recall	precision	ассигасу	Class


- ► With k-fold CV, accuracy approaches 100%
- ► Adding simple features improves accuracy further
- ► Lots of ongoing work...

35

Concluding remarks

- \blacktriangleright The nose flow is an interesting, high-potential interdisciplinary topic
- ► CFD-augmented ML techniques are promising
- ► CFD has a bright future in medicine
- ▶ OPEN is a key word

Acknowledgment to the OpenNOSE group!

