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Abstract

In this paper, we propose a data-driven approach to derive explicit predictive control laws, without requiring any intermediate
identification step. The keystone of the presented strategy is the exploitation of available priors on the control law, coming
from model-based analysis. Specifically, by leveraging on the knowledge that the optimal predictive controller is expressed as a
piecewise affine (PWA) law, we directly optimize the parameters of such an analytical controller from data, instead of running
an on-line optimization problem. As the proposed method allows us to automatically retrieve also a model of the closed-loop
system, we show that we can apply model-based techniques to perform a stability check prior to the controller deployment.
The effectiveness of the proposed strategy is assessed on two benchmark simulation examples, through which we also discuss
the use of regularization and its combination with averaging techniques to handle the presence of noise.
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1 Introduction

For its capability of handling constraints, Model predic-
tive control (MPC) is a widely employed technique for
advanced control applications (see, e.g., [14, 19, 21, 23,
24]). Due to the increasing complexity of the systems
to be controlled, the model required by MPC is often
no longer parameterized from the physics but learned
from data in a black-box fashion. However, this identifi-
cation step generally takes the lion’s share of the time
and effort required for control design. In the last years,
research has thus benched into two main direction. On
the one side, efforts has been focused on improving and
easing learning procedures [9, 20]. On the other side,
many approaches have been proposed to directly employ
data for the design of predictive controllers, while by-
passing any model identification step. Among existing
works in this direction, we recall the foundational con-
tributions of [5, 10], which have been extended to han-
dle tracking problems [4], to deal with nonlinear sys-
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tems [6], and to improve the performance in the presence
of noise [11, 13], just to mention a few. For both tradi-
tional and data-driven predictive controls, the compu-
tational effort required to solve the related constrained
optimization problem is known to be a potential limit
for its application, especially for fast-sampling systems.
Nonetheless, when the MPC problem is relatively small,
i.e., one has to control a low order system and/or the pre-
diction horizon is relatively short, this limitation can be
overcome by explicitly deriving its solution [3]. In fact,
when the cost of the optimization problem is quadratic
and the constraints are linear, the explicit solution of
MPC is known to be a Piece-Wise Affine (PWA) state
feedback law.

In this work, we propose an approach to directly learn ex-
plicit predictive control laws from data. More specifically,
we initially build on the foundational results in [12, 26]
and on model-based priors (namely, the aforementioned
fact that the optimal solution of linearMPC is PWA [3]),
to construct a data-driven, multi-step closed-loop pre-
dictor. The latter is exploited to construct a fully data-
based optimization problem, yielding the estimation of
the parameters of the optimal predictive control law. As
a by-product, we obtain a data-driven description of the
closed-loop behavior, which can be used in combination
with existing model-based techniques (see, e.g., [22]) to
check the stability of the system controlled with the
data-driven explicit controller, prior to its deployment.
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As far as we are aware, this is the first time a data-driven
predictive control strategy is provided together with a
preliminary assessment of its closed-loop performance.

We should mention here that an early attempt to ob-
tain a data-driven counterpart of explicit MPC was al-
ready carried out in [25]. However, the strategy pro-
posed therein relies on an implicit open-loop identifica-
tion step. Another method was presented in [8], by re-
lying on the behavioral predictor used in [5, 11]. Even
though that method involves no open-loop identification
phase and it does not require the state to be fully measur-
able, the latter does not leverage on priors coming from
model-based analysis and design. Nonetheless, by lever-
aging on priors, we are here able to retrieve a data-based
characterization of the closed-loop and, thus, practically
assess its stability in a data-driven fashion prior to its
deployment. This is instead not possible in [8], where
stability cannot be directly assessed nor it is theoreti-
cally guaranteed in presence of noisy data.

The remainder of the paper is organized as follows. The
targeted problem is formalized in Section 2, while all
the steps required to obtain its data-driven formulation
from priors are introduced in Section 3. The explicit con-
trol law is derived in Section 4, where we additional dis-
cuss practical aspects for its implementation, certified
deployment and noise handling. The effectiveness of the
proposed strategy is assessed on two benchmark exam-
ples in Section 5. Section 6 concludes the work and in-
dicates some directions for future research.

Notation We denote with N0 the set of natural num-
bers, that includes zero. Let R, Rn and R

n×m be the
set of real numbers, column vectors of dimension n and
n × m dimensional real matrices, respectively. Given
B ∈ R

m×n, its transpose is B⊤, its Moore-Penrose in-
verse is B† and, when m = n its inverse is indicated
as B−1. Given a vector v ∈ R

n, [v]i:j indicates its rows
from i to j, with i ≤ j ≤ n. For a matrix B ∈ R

n×m,
[B]1:i,1:j denotes a sub-matrix comprising the first i rows
and j columns of B, with i ≤ n and j ≤ m. Identity
matrices are denotes as I, while zero matrices and vec-
tors will be denoted as 0. If a matrix Q ∈ R

n×n is pos-
itive definite (positive semi-definite), this is denoted as
Q ≻ 0 (Q � 0). Given a vector x ∈ R

n, the quadratic
form x′Qx is compactly indicated as ‖x‖2Q. Given a sig-

nal {νt ∈ R
m}t∈N0

and 0 < L < T , we denote with
N0,L,T−1 ∈ R

mL×T−L+1 the associated Hankel matrix

N0,L,T−1 =










ν(0) ν(1) · · · ν(T − L)

ν(1) ν(2) · · · ν(T − L+ 1)
...

...
. . .

...

ν(L) ν(L + 1) · · · ν(T − 1)










, (1)

while, for i, j ∈ N0, we introduce

Ni,T−j =
[

ν(i) ν(i+ 1) · · · ν(T − j)
]

, i < T − j. (2)

2 Problem formulation

Consider the class S of discrete-time linear, time invari-
ant (LTI), controllable systems with fully measurable
state, i.e.,

S :

{
x(t + 1) = Ax(t) +Bu(t),

yo(t) = x(t),
(3)

where x(t) ∈ R
n denotes the state of S at time t ∈

N0, u(t) ∈ R
m is an exogenous input and yo(t) ∈ R

n

is the associated noiseless output. Let us consider the
following model predictive control (MPC) problem:

minimize
{ũ(k)}L−1

k=0

L−1∑

k=0

[
‖x̃(k)‖2Q+‖ũ(k)‖2R

]
+‖x̃(L)‖2P (4a)

s.t. x̃(k+1)=Ax̃(k)+Bũ(k), k=0, . . . , L−1, (4b)

Cxx̃(k) + Cuũ(k) ≤ d, k=0, . . . , L−1, (4c)

x̃(0) = x(t). (4d)

The objective of (4) is to steer both the (predicted) state
x̃(k) and the input ũ(k) to zero, over a prediction horizon
of prefixed length L > 0. Optimality is indeed dictated
by: (i) the distance of the predicted state from zero,
penalized with Q � 0 over the whole horizon except for
the terminal state (weighted via P � 0), and (ii) the
control effort, penalized via R ≻ 0. Meanwhile, a set
of nc polyhedral constraints dictated by (4c) has to be
satisfied, with Cx ∈ R

nc×n, Cu ∈ R
nc×m and d ∈ R

nc ,
while relying on the latest information on the system
(see (4d)). Assume also that the matrices A ∈ R

n×n

and B ∈ R
n×m characterizing the dynamics of S are

unknown, and that we can access a set of input/output
data pairs DT = {UT ,YT }, where UT and YT denote
the available input and output sequences, respectively,
satisfying the following assumptions.

Assumption 1 (Persistently exciting inputs) The
input sequence UT = {u(t)}Tt=0 is persistently exciting of
order n+ L.

Assumption 2 (Noisy outputs) The output se-
quence YT = {y(t)}Tt=0 is corrupted by noise, namely

y(t) = yo(t) + w(t), (5)

where v(t) is the realization of a zero mean white noise
with covariance Ω ∈ R

n×n.
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Assumption 3 (Sufficiently long dataset) The
length T of the dataset DT satisfies the following:

T ≥ (m+ 1)(n+ L)− 1.

The goal of this work is to directly exploit the available
data to find an explicit solution to (4), under Assump-
tions 1-3, while bypassing any identification step.

3 Exploiting priors for explicit DDPC

To attain our goal, it is fundamental to replace the model
in (4b) with an expression that directly depends on
the available data, by also not forgetting what we have
learned from model-based predictive control. To start
with, we thus recall the following lemma, explicitly stat-
ing the form of the optimal explicit predictive controller
in our setting [3].

Lemma 1 (On the solution of (4)) Let U denote the
vector stacking the inputs over the prediction horizon,
i.e.,

U = U(x(t)) =










ũ(0)

ũ(1)
...

ũ(L− 1)










∈ R
mL. (6)

The optimal control sequence U⋆ = U⋆(x(t)) solving (4)
is a continuous piecewise affine (PWA) function of x(t).

Then, we generalize the one-step ahead predictor intro-
duced in [12] to the multi-step case. To this end, it is im-
portant to recall that, thanks to Assumptions 1, 3 and
the Fundamental Lemma [26], the following rank condi-
tion holds:

rank








X0,T−L−1

U0,L,T−L−1







 = n+mL. (7)

We can now derive the multi-step data-based predictor
as follows.

Theorem 1 (Data-based multi-step predictor)
Let Assumptions 1 and 3 hold. Given x(t), the sequence

of predicted states X̃ = X̃(x(t)) admits the following
data-based representation:

X̃ =








x̃(1)
...

x̃(L)







= X1,L,T−L




X0,T−L−1

U0,L,T−L−1





† [

x(t)

U

]

. (8)

Proof: The proof follows the steps of the one in
[12, Appendix B]. Specifically, let v ∈ R

n+mL and
S ∈ R

n+mL×T be respectively defined as:

v :=

[

x(t)

U

]

, S :=




X0,T−L−1

U0,L,T−L−1



 ,

with S being full row rank, i.e., rank(S) = n+mL. By
the Rouché-Capelli theorem, for any given v, the equality

v = Sα,

admits infinite solutions α of the form

α = S†v +Π⊥
Sw, ∀w ∈ R

T , (9)

with Π⊥
S = (I − S†S) being the orthogonal projector

onto the kernel of S. Meanwhile, based on the model in
(4b), the predicted state sequence can be defined as a
function of x(t) and U as:

X̃ =








A

...

AL−1








︸ ︷︷ ︸

ξ

x(t) +










B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AL−1B AL−2B · · · B










︸ ︷︷ ︸

Γ

U. (10)

In turn, such a sequence can be recast as a function of
α, i.e.,

X̃ =
[

ξ Γ
]

Sα = X1,L,T−Lα.

where the second equality straightforwardly follows from
(10) and the definition of S. By replacing α with (9), we
then obtain

X̃ = X1,L,T−L

(
S†v +Π⊥

Sw
)
= X1,L,T−LS

†v,

as X1,L,T−LΠ
⊥
S =

[

ξ Γ
]

SΠ⊥
S = 0, based on the defini-

tion of the projector. �

This preliminary result allows us to exploit priors on the
solution of (4) for the definition of the DDPC problem.
In fact, according to Lemma 1, we can parameterize the
control sequence U as:

U=







K1x(t)+f1, if H1x(t) ≤ ℓ1,
...

KMx(t)+fM , if HMx(t) ≤ ℓM ,

(11)

where Ki ∈ R
mL×n and fi ∈ R

mL are the (unknown)
feedback and affine gains characterizing the control law,
{Hi, ℓi}

M
i=1 dictates the associated polyhedral partition,
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for i = 1, . . . ,M , and the amounts of modes M is dic-
tated by the number of possible combinations of active
constraints. Therefore, for a given state x(t), the input
sequence is the affine function

U(x(t)) = Kx(t) + f, (12)

with K = Ks(x(t)) and f = fs(x(t)) denoting the gains
associated to the active control law, and with

s(x(t)) = i ⇐⇒ Hix(t) ≤ ℓi, i ∈ {1, . . . ,M}.

Based on this parameterization, we can compute a data-
based closed-loop characterization of the predictor in
(4b), as outlined in the following theorem.

Theorem 2 (Closed-loop multi-step predictor)
Let Assumptions 1 and 3 hold. Given x(t), the sequence

of predicted states X̃ = X̃(x(t)) can be equivalently
expressed as:

X̃ = X1,L,T−L (GKx(t) +Gf ) , (13a)

with GK ∈ R
T−L×n and Gf ∈ R

T−L satisfying:

[

I

K

]

=




X0,T−L−1

U0,L,T−L−1



GK (13b)

[

0

f

]

=




X0,T−L−1

U0,L,T−L−1



Gf (13c)

where K and f characterize the local control law (12).
Accordingly, the input sequence is given by:

U = U0,L,T−L−1(GKx(t) +Gf ). (14)

Proof: For the Rouché-Capelli theorem, there exists an
T × n matrix Gk and a T -dimensional vector Gf such
that (13b)-(13c) hold.Meanwhile, replacing (12) into the
open-loop predictor in (8), the predicted state sequence
can be represented as:

X̃ = X1,L,T−L




X0,T−L−1

U0,L,T−L−1





†([

I

K

]

x(t) +

[

0

f

])

.

By combining these two results, the closed-loop repre-
sentation in (13) and the equivalent definition of the in-
put sequence in (14) straightforwardly follow. �

By leveraging on (13)-(14), we can now equivalently re-
cast the predictive control task in (4) as an optimization

problem with the closed-loop matricesGK , Gf being the
decision variables, as follows 1 :

minimize
GK ,Gf

X̃⊤QX̃+U⊤RU (15a)

s.t. X̃ = X1,L,T−L (GKx(t) +Gf ) (15b)

U = U0,L,T−L−1(GKx(t) +Gf ), (15c)
[

Cx 0

0 Cx

][

x(t)

X̃

]

+ CuU ≤ D, (15d)

X0,T−L−1GKx(t) = x(t), (15e)

X0,T−L−1Gf = 0, (15f)

In (15), Q=diag ([Q, · · · , Q, P ]), R=diag ([R, · · · , R]),
Cu=diag ([Cu, · · · , Cu]) and

Cx=










Cx 0 · · · 0 0

0 Cx · · · 0 0
...

...
. . .

...
...

0 0 · · · Cx 0










, D =








d

...

d







.

Note that, the last constraints (see (15e)-(15f)) are intro-
duced for the problem to be consistent with the closed-
loop representation in (13).

This shift from an open-loop predictor to its closed-loop
counterpart allows us to directly learn the control law
from data, and avoid any system identification step.

Remark 1 Both the equivalences in (8) and (13) exactly
hold in a noiseless setting only. As such, problem (15) is
equivalent to (4) only when the available batch of data is
noise-free.

4 Learning Explicit DDPC

To derive its explicit solution, the problem in (15) is ma-
nipulated to obtain a multi-parametric Quadratic Pro-
gram (mp-QP). As a preliminary step, we condense the
unknowns of (15) into a single variable:

G(t) =

[

GKx(t)

Gf

]

∈ R
2(T−L). (16)

1 Notice that the term in the cost that depends only on
x(t) has been neglected. This can be done without loss of
generality, as the optimal solution does not change.
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Accordingly, we can recast (15) as the following mp-QP

minimize
G(t)

(G(t))⊤HdG(t) (17a)

s.t. ΞdG(t) + Ψx(t) ≤ D, (17b)

ΘdG(t) =

[

x(t)

0

]

, (17c)

where

Hd = X⊤QX + V⊤RV , (18a)

Ξd =

[

Cx 0

0 Cx

] [

0

X

]

+ CuV , Ψ=

[

Cx 0

0 Cx

][

I

0

]

, (18b)

Θd=diag ([X0,T−L−1, X0,T−L−1]) , , (18c)

and

X =
[

X1,L,T−L X1,L,T−L

]

,

V=
[

U0,L,T−L−1 U0,L,T−L−1

]

.

By focusing on Hd in (17a), it can be proven that this
weighting matrix satisfies the following lemma.

Lemma 2 (Features of Hd) Under Assumptions 1
and 3, Hd is positive semi-definite.

Proof: This is a direct consequence of Assumptions 1 and
3, for which V⊤ ∈ R

2(T−L)×mL is not full row rank. �

As the cost should be strictly convex for a unique explicit
solution to be retrieved, this feature of Hd prevents us
from deriving the explicit law. To overcome this limita-
tion, we introduce a regularization term in the cost of
(17), thus replacing the weight Hd with:

Hγ
d =

1

2
(Hd + γI) , (19)

where γ > 0 is an hyper-parameter to be tuned 2 . The
data-driven control problem then corresponds to the reg-
ularized mp-QP:

minimize
G(t)

(G(t))⊤Hγ
dG(t) (20a)

s.t. ΞdG(t) + Ψx(t) ≤ D, (20b)

ΘdG(t) =

[

x(t)

0

]

. (20c)

2 The cost has been normalized to ease the subsequent
derivations.

4.1 Derivation of the explicit DDPC law

The introduction of the regularizer in (20) allows us to
derive the explicit DDPC law through the manipulation
of the Karush-Kuhn-Tucker (KKT) conditions associ-
ated with the new DDPC problem. To ease the compu-
tations, let us consider the following further assumption.

Assumption 4 (Non-degenerate constraints) The
active constraints of (20) are linearly independent.

Based on this assumption, we now follow the same steps
used to derive the explicit model-based predictive con-
trol law in [3].

The KKT conditions for the regularized DDPC problem
in (20) are:

Hγ
dG(t) + Ξ⊤

d λ+Θ⊤
d µ = 0, (21a)

λ⊤(ΞdG(t) + Ψx(t)−D) = 0, (21b)

λ ≥ 0, (21c)

ΞdG(t) + Ψx(t)−D ≤ 0, (21d)

ΘdG(t)−

[

x(t)

0

]

= 0, (21e)

where λ and µ are the Lagrange multipliers associated
with inequality and equality constraints in (20b) and
(20c), respectively. Let us focus on the i-th set of active
constraints only, distinguishing between the Lagrange
multipliers associated with a given active and inactive
inequality constraints. We respectively denote them as
λ̃i and λ̄i. It is straightforward to notice that the com-
bination of (21b) and (21c) leads to the following con-
dition on λ̄i:

λ̄i = 0.

By merging (21b) and (21e) for the i-th set of active
constraints, it is also straightforward to show that the
optimal solution Gi(t) satisfies

Φd,iGi(t)− S̃ix(t) − W̃i = 0, (22)

where

Φd,i =

[

Ξ̃d,i

Θd

]

, S̃i =







−Ψ̃i

I

0






, W̃i =

[

D̃i

0

]

and Ξ̃d,i, Ψ̃i and D̃i are the rows of Ξd, Ψ and D coupled
with the considered set active constraints. By leveraging
on (21a), we can now express our optimization variable
Gi(t) as a function of the Lagrange multipliers, i.e.,

Gi(t) = −(Hγ
d)

−1
[

Ξ̃⊤
d,i Θ⊤

d

]

︸ ︷︷ ︸

Φ⊤

d,i

Λ̃i, (23)
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where

Λ̃i =

[

λ̃i

µ

]

.

We can now replace the latter into (22) to obtain an ex-
plicit expression of the Lagrangemultipliers as functions
of the matrices characterizing (20):

Λ̃i = −
[

Φd,i (H
γ
d)

−1
Φ⊤

d,i

]−1

︸ ︷︷ ︸

Υd,i

(

S̃ix(t)+W̃i

)

. (24)

In turn, this allows us to explicitly retrieve Gi(t) as:

Gi(t)=(Hγ
d)

−1
Φ⊤

d,iΥd,i

(

S̃ix(t)+W̃i

)

, (25)

and the associated optimal input sequence as

Ui(x(t))=V (Hγ
d)

−1
Φ⊤

d,iΥd,i

(

S̃ix(t)+W̃i

)

. (26)

Thus, the input to be fed to the system when the i-th
set of constraints is active is defined as:

ui(x(t))=[Ui(x(t))]1:m. (27)

Through (21c) and (21d), we can finally define the poly-
hedral region associated with the considered combina-
tion of active constraints, which is dictated by the fol-
lowing inequalities:

Υd,i

(

S̃ix(t)+W̃i

)

≤ 0, (28a)

Ξd(H
γ
d)

−1
Φ⊤

d,iΥd,i

(

S̃ix(t)+W̃i

)

+Ψx(t)−D≤ 0. (28b)

The complete data-driven expression for (11) is then
straightforwardly obtained by following the above steps
for all possible combinations of the active constraints.
This operation ultimately yields an optimal input se-
quence U(x(t)) of the form:

U(x(t)) =







U1(x(t)), if Fd,1x(t) ≤ Ed,1,
...

UM (x(t)), if Fd,Mx(t) ≤ Ed,M ,

(29)

whereM is given by the number of possible combinations
of active constraints, Ui corresponds to (26), for all i ∈
{1, . . . ,M}, while {Fd,i, Ed,i}

M
i=1 can be easily obtained

from (28). Consequently, the input to be fed to S starting
from x(t) can be retrieved by evaluating the PWA law

u(x(t)) =







u1(x(t)), if Fd,1x(t) ≤ Ed,1,
...

uM (x(t)), if Fd,Mx(t) ≤ Ed,M ,

(30)

with ui(x(t)) given by (27), for i = 1, . . . ,M .

Algorithm 1 Offline construction of the explicit law

Input: Dataset DT ; penalties Q,P � 0; R ≻ 0; hori-
zon N >0; constraint matrices Cx, Cu, d; regularization
parameter γ > 0.

1. Construct the data-based matrices X1,L,T−L,
U0,L,T−L−1, X0,T−L−1.

2. Build Hγ
d , Ξd, Ψ, Θd in (18a) based on the cost

and constraints of the DDPC problem.
3. Find all possible combinations of active con-

straints.
4. For each combination, isolate the matrices Ξ̃d, W̃

and S̃ characterizing (22)

5. If not all rows of Ξ̃d are linearly independent,
handle the degeneracy, e.g., as in [3].

6. Find the PWA explicit law by retrieving (26)-(28)
for all possible combinations of active constraints.

7. Merge polyhedral regions as in [2].
8. Extract the first component of the optimal input

sequence U(x(t)).

Output: Optimal input u(x(t)).

Remark 2 (On Assumption 4) Although introduced
to ease computations, we remark that Assumption ?? is
not restrictive. Indeed, degenerate cases can be straight-
forwardly handled via existing approaches, e.g., see [3].

Remark 3 (Data-driven and model-based) Within
a noiseless setting, the results in Theorem 2 and the
one-to-one correspondence between the chosen parame-
terization of the control law in (11) and its model-based
counterpart guarantee the equivalence between (4) and
(15). Therefore, when there is no noise, the data-driven
explicit controller coincides with the E-MPC law as
γ → 0.

4.2 Implementing Explicit DDPC

Based on the available batch of data and the features of
the considered predictive control problem, the explicit
DDPC law can be completely retrieved offline from the
available measurements, as summarized in Algorithm 1.

Given the data, one has to initially construct the Han-
kel matrices needed to build the DDPC problem (see
steps 1-2). Once all the possible combinations of active
constraints have been detected at step 3 and degenerate
scenarios have been handled (see step 5), at step 6 the
local controllers and the associated polyhedral regions
are retrieved according to (26)-(28). Lastly, at step 7,
the optimal control sequence is simplified, by merging
polyhedral regions whenever possible. After this step,
the explicit optimal input can simply be retrieved by ex-
tracting the first element of the input sequence U(x(t))
(see step 8).

Once the explicit DDPC law has been retrieved, the com-
putation of the optimal input at each time instant simply
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consists of a function evaluation. Specifically, one has to
(i) search for the polyhedral region the current state x(t)
belongs to, and (ii) apply the corresponding parametric
law. We stress that this computational advantage is re-
tained for simple control problems only (i.e., for short
prediction horizon and small systems). Indeed, the com-
plexity of the PWA law is known to rapidly increase [7]
with the one of the DDPC problem to be solved, analo-
gously to the model-based case.

4.3 Explicit data-driven predictive control and closed-
loop stability

When designing a controller in a data-driven setting, it is
crucial to check the stability of the resulting closed-loop
system before the controller deployment. Towards this
objective, we now show how the peculiar features of the
explicit data-driven predictive control can be leveraged
in combination with existing techniques to devise an off-
line, data-driven stability test. To this end, let us assume
that the i-th set of constraints is active and consider the
following multi-step ahead closed-loop model:

X̂(t)=X (Hγ
d )

−1Φ⊤
d,iΥd,iS̃ix(t)+X (Hγ

d)
−1Φ⊤

d,iΥd,iW̃i,

(31)
obtained by combining (13) with the result of our explicit

derivation in (25), where X̂ stacks the state predicted
by the learned closed-loop model, i.e.,

X̂(t) =








x̂(t+ 1)
...

x̂(t+ L)







.

From (31), we can then isolate the learned one-step
ahead closed-loop model, namely

x̂(t+ 1) = Acl
d,ix(t) + f cl

d,i, (32a)

where

Acl
d,i = [X (Hγ

d )
−1Φ⊤

d,iΥd,iS̃i]1:n,1:n, (32b)

f cl
d,i = [X (Hγ

d)
−1Φ⊤

d,iΥd,iW̃i]1:n. (32c)

When performed for each mode i ∈ {1, . . . ,M},
these manipulations allow us to retrieve the data-
driven closed-loop transition matrix Acl

d,i for each

i ∈ {1, . . . ,M}. Retrieving these matrices ultimately
enables us to apply model-based techniques, e.g., the
ones presented in [22], to shed a light on the features of
the final closed-loop. As an example, one can search for
a matrix P ∈ R

n×n satisfying the following sufficient
conditions for asymptotic stability:

P > 0 (33a)

(Acl
d,i)

⊤PAcl
d,i − P < 0, i = 1, . . . ,M, (33b)

or, alternatively, look for the set of matrices {Pi ∈
R

n×n}Mi=1 verifying the following LMIs:

Pi > 0, i = 1, . . . ,M, (34a)

(Acl
d,i)

⊤PjA
cl
d,i − P < 0, i, j = 1, . . . ,M, (34b)

which are also sufficient conditions for asymptotic sta-
bility.

Remark 4 (On the tuning of P in (4a)) When S is
known to be open-loop stable, the terminal weight P � 0
in (4a) is generally selected as the solution of the Lya-
punov equation

P = A⊤PA+Q.

This equation can be directly translated into its data-
driven counterpart by exploiting [12] as follows:

P = AdPAd +Q, (35)

with

Ad = X1,T




X0,T−1

U0,1,T−1





†[

I

0

]

,

thus providing a data-based approach for the selection of
this parameter.

Remark 5 (Hyper-parameter tuning) The possi-
bility of performing an off-line data-based stability check
on the data-driven explicit law can be useful to prelimi-
narily assess the effects of different choices of the tuning
parameters Q, R and P in (4a) and γ in (19), allow-
ing one to discard the ones resulting in a failure of the
data-driven stability tests.

4.4 Regularization and noise handling

As highlighted in Remark 1, all the equivalences we rely
on to derive the explicit predictive control law are ver-
ified when DT is noiseless. However, in practice, Ω in
Assumption 2 is generally a non-zero matrix.

To cope with noisy data, we follow the footsteps of [5,13]
and propose to leverage on the regularization term in-
troduced in (19). Indeed, as in standard ridge regres-
sion [18], this additional element of the cost steers all
the components of G(t) towards small values. In turn,
this potentially limits the impact of noise on the con-
straints in (20b)-(20c) and, thus, on the final explicit
law. This shrinkage effect is modulated by the regular-
ization parameter γ, with the reduction in the magni-
tude of G(t) being stronger whenever large values of γ
are considered. At the same time, γ implicitly changes
the balance between the penalties in the original data-
driven control problem in (15), with excessively high val-
ues of γ potentially driving the explicit data-driven con-
troller far away from its model-based counterpart. The
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choice of this hyper-parameters thus becomes an impor-
tant tuning-knob of the approach, requiring one to trade-
off between handling noise and keeping explicit DDPC
as close as possible to the implicit DDPC problem.

Although the stability checks in (33)-(34) can be used to
have a preliminary assessment on the effect of different
choices of γ, at the moment this balance can only be
attained through closed-loop trials for several values of
γ. Such a procedure allows one to ultimately select the
hyper-parameter that best fits one’s needs, at the price
of requiring closed-loop experiments that can be rather
safety-critical in practice, especially when a simulator of
the system is not available.

Whenever multiple experiments can be performed by
feeding the plant with the same input sequence UT , the
burden associated to the choice of γ can be alleviated
by exploiting the features of Assumption 2 itself. In this
scenario, one can indeed replace DT with the averaged
dataset D̄T = {UT , ȲT }, where ȲT = {ȳt}

T
t=0 and

ȳt =
1

N

N∑

i=1

y
(i)
t , (36)

with y
(i)
t denoting the output of the i-th experiment.

Since the noise is assumed to be zero mean, the law of
large numbers asymptotically yields

ȳt −→
N→∞

yot . (37)

As such, when the number N of experiments increases,
the role of γ in handling noise is progressively less dom-
inant. In this case, γ should then be used only to make
the DDPC problem well-defined. Any small γ > 0 is ac-
ceptable for this purpose.

5 Numerical examples

The performance of the explicit predictive controller are
now assessed on two benchmark examples: (i) the regu-
lation to zero of the stable open-loop system of [3], for
the case when the state is fully measurable; and (ii) the
altitude control of a quadcopter. Since the last exam-
ple features an open-loop unstable linearized plant, data
are collected in closed-loop, by assuming that the drone
is stabilized by an (unknown) pre-existing controller. In
both the examples, the level of noise acting on the mea-
sured states is assessed through the averaged Signal-to-
Noise-Ratio (SNR):

SNR=
1

n

n∑

i=1

10 log10

(∑T

t=0(xi(t)− wi(t))
2

∑T
t=0(wi(t))2

)

, [dB]

(38)

Figure 1. Open-loop stable benchmark: polyhedral partition
of the explicit data-driven law.

(a) State trajectories.

(b) Input

Figure 2. Open-loop stable benchmark: state and input tra-
jectories obtained with the explicit data-driven law.

where xi(t) and wi(t) denote the i-th components of
the state and the measurement noise, respectively. All
computations are carried out on an Intel Core i7-7700HQ
processor, running MATLAB 2019b.

5.1 Open-loop stable benchmark system

Let us consider the benchmark system described by:

S : x(t+1)=

[

0.7326 −0.0861

0.1722 0.9909

]

x(t)+

[

0.0609

0.0064

]

u(t).

(39)
Our goal is to regulate both components of the state to
zero, while enforcing the following box-constraint on the
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input:
− 2 ≤ u(k) ≤ 2. (40)

Towards this goal, we collect a set DT of T = 100 in-
put/state pairs, by feeding S with an input sequence uni-
formly distributed within the interval [−5, 5]. According
to Assumption 2, the measured states are corrupted by
an additive zero-mean white noise sequence, with vari-
ance yielding SNR = 20 dB. The parameters charac-
terizing the DDPC problem to be solved are selected
as in [3], namely L = 2, Q = I, R = 0.01 and P is
chosen as the solution of the data-driven Lyapunov in
(35). By setting γ = 10, the partition associated with
the explicit data-driven predictive controller 3 is the one
shown in Figure 1, which approximately correspond to
that reported in [3] 4 . Prior to the controller deployment,
we have performed the data-based closed-loop stability
check in (33), resulting in 5

P =

[

24.8695 10.5595

10.5595 43.2657

]

≻ 0.

This indicates that the explicit law preserves the stabil-
ity of the open-loop system. Figure 2 report the trajec-
tories of the state and the optimal input obtained over a
noise-free closed-loop tests with the explicit data-driven
law, which confirm its effectiveness and validate the re-
sult of the data-driven stability check.

We now assess the sensitivity of the explicit controller to
the choice of γ over 20 Monte-Carlo realizations of the
batch datasets DT , for different noise levels. This eval-
uation is performed by looking at the cost of the con-
troller over the same noiseless closed-loop test of length
Tv = 50 considered previously, i.e.,

J =

Tv∑

t=0

‖x(t)‖2Q + ‖u(t)‖2R. (41)

As shown in Figure 3, the value of γ that leads to the
minimum closed-loop cost tends to decrease when the
noise level increases, supporting our considerations in
Section 4.4. At the same time, by properly selecting γ we
attain a cost J = 16.37± 0.58, which is generally close
to the oracle J O = 15.77, which is the one achieved by
the oracle law, i.e., the model-based predictive controller
obtained by exploiting the true model of S. These results
additionally show that, for increasing levels of noise, the
choice of γ becomes more challenging, since the range of
values leading to the minimum J progressively shrinks.
Note that, when γ is excessively small the optimal input
is always zero and S evolves freely 6 .

3 The partition is plotted thanks to the Hybrid Toolbox [1].
4 The negligible differences with respect to the model-based
partition are due to the noise on the batch data.
5 The LMIs in (33) are solved with CVX [16,17].
6 This behavior is also observed for γ≤10−6, γ≤10−4 and

We additionally evaluate the effect of averaging, by look-
ing at the performance index J in (41) over 30 Monte-
Carlo data-collections for an increasing number N of re-
peated experiments of length T = 100. The measure-
ments are affected by noise, yielding SNR = 20 dB. Fig-
ure 4 shows that the use of the averaged dataset D̄T has a
similar effect to a reduction of the noise level. Indeed, for
increasingN the optimal γ slowly shifts towards smaller
values, thus further implying the gradual reduction in
the impact of γ on noise handling.

5.2 Altitude control of a quadcopter

As a final case study, we consider a nonlinear system,
namely the problem of controlling the altitude of a quad-
copter, to perform landing or take-offmaneuvers. To this
end, we exploit the same simulator used in [15] to col-
lect the data and to carry out the closed-loop experi-
ments with the learned explicit law. Let z(t) [m] be the
altitude of the quadcopter, vz(t) [m/s] be its vertical ve-
locity and (θ(t), φ(t), ψ(t)) [deg] its roll, pitch and yaw
angles at time t. Both the the altitude z(t) [m] and the
vertical velocity vz(t) are assumed to be measured, with
the measurement being corrupted by a zero-mean white
noise, resulting in SNR = 30 dB over these two outputs.
As this system is open-loop unstable, the data collec-
tion phase is carried out in closed-loop for 20 [s] at a
sampling rate of 40 [Hz], by using the four proportional
derivative (PD) controllers introduced in [15]. The alti-
tude set point used at this stage is generated uniformly
at random in the interval [0, 4] [m]. The set points for all
the attitude angles are instead selected as slowly vari-
able random signals within the interval [−0.2, 0.2] [rad].
These choices yield a datasetDT of length T = 800, that
satisfies Assumption 1 and allows us to retain informa-
tion on possible non-zero angular configurations.

The three attitude controllers introduced in [15] are fur-
ther retained in testing to keep the attitude angles at
zero and to decouple the altitude dynamics from that
of the other state variables. Within this setting, the ex-
plicit data-driven law is designed by imposing L = 5,
Q = P = diag([1, 0.1]), R = 10−5 and γ = 1. To
mitigate the effect of the gravitational force, the design
and closed-loop deployment of the designed explicit con-
troller are carried out by pre-compensating it. As a re-
sult, the input to be optimized is

u(t) =
uz(t)

m
− g, (42)

where m = 0.5 [kg] is the mass of the quadcopter, g =
9.81 [m/s] is the gravitational acceleration and uz(t) is
the input prior to the compensation. A similar approach
is adopted for the control problem to fit our framework

γ≤10−3 when SNR=40 dB, SNR=20 dB and SNR=10 dB,
respectively.
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(a) SNR =40 dB (b) SNR =20 dB (c) SNR =10 dB

Figure 3. Open-loop stable benchmark: J in (41) vs log
10
(γ) for and increasing levels of noise over 30 realizations of DT .

(a) N = 1 (b) N = 10 (c) N = 100

Figure 4. Open-loop stable benchmark: J in (41) vs log
10
(γ) for an increasing number of repeated experiments over 30

realizations of DT .
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(a) Take-off
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(b) Landing

Figure 5. Altitude control: measured (dotted-dashed gray
line) and actual (black line) altitude vs reference (dashed
red line).

in both landing and take-off scenarios. We thus consider

the reduced state

x(t) =

[

z(t)− z̄

vz(t)

]

, (43)

where z̄ [m] is the altitude set point. To avoid potential
crashes of the quadcopter, in designing the explicit law
we impose the following constraint on the state of the
system:

x1(t) ≥ −z̄, (44)

which, in turn, guarantees the altitude to be always non-
negative. Meanwhile, the pre-compensated input is con-
strained to the interval:

− 9.81 ≤ u(t) ≤ 9.564, (45)

where the lower bound corresponds to a null input and
the upper limit is dictated by the maximum power of
the motors 7 .

The performance of the learned explicit law attained in
take-off and landing are reported in Figure 5. Here we
consider closed-loop tests in which the altitude and the

7 The reader is referred to [15] for additional details on the
system.
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vertical velocity are noisy, with the noise acting on the
closed-loop measurements sharing the features of that
corrupting the batch ones. Despite the noise acting on
the initial condition at each step, both maneuvers are
successfully performed, thus showing the effectiveness of
the retrieved explicit data-driven laws.

6 Conclusions

By leveraging on the known PWA nature of the explicit
MPC law within linear quadratic predictive control, in
this paper we propose an approach to derive such an ex-
plicit controller from data only, without undertaking a
full modeling/identification step. Thanks to the formal-
ization of the problem, well-known model-based tech-
niques can be straightforwardly adapted to check the
stability of the closed-loop system before deploying the
controller.
Future research will be devoted to extend these prelimi-
nary results to cases in which the state is not fully mea-
surable, to exploit priors to guarantee practical closed-
loop stability by design. Future work will also be de-
voted to formalize the connections between the explicit
solution proposed in this paper and the one introduced
in [8], consequently providing a comparative analysis of
the two approaches.

References

[1] A. Bemporad. Hybrid Toolbox - User’s Guide, 2004.
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox.

[2] A. Bemporad, K. Fukuda, and F.D. Torrisi. Convexity
recognition of the union of polyhedra. Computational
Geometry, 18(3):141–154, 2001.

[3] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos.
The explicit linear quadratic regulator for constrained
systems. Automatica, 38(1):3–20, 2002.
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