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Abstract

In this paper, a novel Model Predictive Control (MPC) technique for multi-satellite formation flying geometry acquisition and main-
tenance in high-drag environment is presented. The proposed MPC relies on a linearized and convexified quasi-nonsingular Relative
Orbital Elements (ROE) model based on state transition matrices propagation, allowing to include the effect of perturbations in the pre-
diction to optimize fuel efficiency and tracking accuracy. The formation is controlled with respect to a non-decaying orbiting point to
perform absolute and relative station keeping simultaneously. For this purpose, a new dedicated plant matrix to include drag effects
on ROE in the propagation is derived and validated with respect to numerical results. In all simulations, the satellites are assumed to
be equipped with a single low-thrust propulsion unit, therefore, specific constraints are included in the controller to obtain a feasible
solution in a real operational scenario. Moreover, a collision avoidance constraint is added in case of close proximity operations exploit-
ing a linear mapping between the set of ROE and cartesian coordinates expressed in the Local-Vertical-Local-Horizontal (LVLH) ref-
erence frame. The controller response is simulated in several realistic mission contexts with a high-fidelity orbital propagator and the
results are validated for fuel efficiency by comparing them to similar approaches available in literature and to optimal solutions obtained
respectively with a direct single shooting algorithm and with a closed-form impulsive formulation.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the last few decades, the attention on multi-satellite
missions grew constantly over the years. The traditional
approach to space has always been to build a big mono-
lithic satellite that would deal with all the tasks. However,
the development of new technologies allows to split the
duties of a single spacecraft between multiple smaller units
flying in formation, with several advantages in terms of
reliability and scientific return. Distributed systems in
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particular provide the highest degree of robustness, being
constituted by independent satellites which are capable of
exchanging information and computing the command
and trajectory of the entire formation. The main challenge
thus is to design robust guidance, navigation, and control
(GNC) techniques for spaceborne distributed systems that
are viable for onboard implementation, as autonomy is
mandatory in presence of close spacecraft separations or
limited communication windows with ground control.

Several solutions have been provided in recent years lit-
erature on the topic, each proving its advantages and dis-
advantages. A first solution is impulsive control, for
which even closed-form solutions exist (Chernick and
D’Amico, 2018), but these cannot be applied for
low-thrust applications. A suitable option for continuous
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Fig. 1. Local-Vertical-Local-Horizontal reference frame representation
with respect to the Earth-Centered Inertial (ECI) reference frame. X axis
coincides with Vernal equinox.
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low-thrust control is to use a Linear Quadratic Regulator
(LQR) built on the linearized dynamics. However, even if
this is an optimal technique, it is hard to include con-
straints on the solution, which therefore may result to be
unfeasible when real operational constraints are present,
since this technique often implies continuous firing. Similar
limitations exist for nonlinear control with Lyapunov func-
tions. A different option is the use of Artificial Potential
Fields (APF) as a guidance layer to generate the trajectory
to follow by a chaser spacecraft, originally developed as
spring-like functions (McInnes, 1995; Palmerini, 1999)
and then reformulated for applications more similar to this
paper case-study in recent approaches (Steindorf et al.,
2017; Silvestrini et al., 2019; Silvestrini and Lavagna,
2021). This method allows an easy and natural implemen-
tation of collision avoidance constraints, but may often
lead to instabilities and lacks a measure of optimality.
Direct and indirect optimization techniques can find opti-
mal solutions (Wu et al., 2009), and have been recently
applied with relative motion formulations based on Jordan
normal form (Bai et al., 2021; Bai et al., 2023), however
these methods may be inadequate in highly perturbed
unpredictable environment, where the capability for the
spacecraft to react autonomously is crucial. The use of Jor-
dan form for relative dynamics was also successfully tested
by Zheng et al. (2019) in a Hamiltonian structure-
preserving (HSP) controller in combination with APF. A
technique that ensures the sub-optimality of the solution
while allowing easy implementation of constraints is Model
Predictive Control (MPC). The main drawback of MPC is
the computational burden imposed on the hardware that,
however, can be relaxed without loss of accuracy with a
correct convexification of the problem.

The formulation of a convexified guidance and control
problem for formation reconfiguration has been studied
in several instances. Acikmese et al. (2012) proposed a
fuel-optimal open-loop convex guidance algorithm for for-
mation reconfiguration suitable for on-board implementa-
tion including collision avoidance. Morgan et al. (2014)
proposed both an optimal guidance solution and a Model
Predictive Control implementation for reconfiguration of
spacecraft swarms between J2 invariant orbits, again
including collision avoidance. Sarno et al. (2020) proposed
a similar method for autonomous formation reconfigura-
tion of distributed systems, adding a task-assignment strat-
egy optimizing via a genetic algorithm. Finally, Scala et al.
(2021) proposed a design strategy of optimal low-thrust
maneuvers for remote sensing multi-satellite formations
flying in LEO. In all the listed references the state of the
satellites is expressed in the chief-centered local Local-
Vertical-Local-Horizontal (LVLH) reference frame repre-
sented in Fig. 1.

Starting from previous work, this paper aims at enlarg-
ing the available literature on the topic by providing a solu-
tion that couples relative and absolute orbit control in
high-drag environments while directly employing a state
expressed in Relative Orbital Elements (ROE). In
2

particular, a novel Model Predictive Control (MPC) acting
on a single low-thrust propulsion unit is introduced. The
MPC exploits a linear propagation of the dynamics in Rel-
ative Orbital Elements, allowing the inclusion of J2 effect
and drag in the optimization problem while keeping the
computational effort reduced. The formation is controlled
with respect to a non-decaying orbiting point in order to
perform absolute and relative station keeping simultane-
ously. For this purpose, a dedicated plant matrix to include
drag effects in the propagation is derived and validated
with respect to numerical results. The problem is also con-
vexified to allow the use of fast optimization tools viable
for autonomous control and on-board implementation.
Constraints are introduced to simulate the presence of a
single engine on board by providing limits of thrust mod-
ule, thrusting angles, and slew rates, in order to obtain fea-
sible control profiles for an average micro-satellite. In
addition, a collision avoidance constraint is included to
ensure safety in presence of proximity operations.

2. Dynamics model

As anticipated previously, the relative motion between
the satellites is modeled by expressing the state of the satel-
lites in terms of the quasi-nonsingular Relative Orbital Ele-
ments introduced by D’Amico (2010) in his PhD thesis.
These are nonlinear combinations of mean orbital elements
(MOE), shown in Eq. (1), which allow to easily introduce
the effect of perturbations by linearly propagating the sys-
tem with plant matrices. ROE representations are better
connected to the physics and relative motion geometry, in
addition, they are valid in non-circular orbits and for large
spacecraft separations, showing several advantages with
respect to the commonly used Hills-Clohessy-Wiltshire
(HCW) equations (Clohessy and Wiltshire, 1960), which
imply a representation in the chief-centered LVLH
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reference frame. Moreover, their slowly varying nature is
beneficial to computational efficiency.

da

dk

dex

dey

dix

diy

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
¼

a� acð Þ=ac
u� uc þ X� Xcð Þ � cos icð Þ
e � cos xð Þ � ec � cos xcð Þ
e � sin xð Þ � ec � sin xcð Þ
i� ic

X� Xcð Þ � sin icð Þ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð1Þ

In the previous set of equalities, u ¼ xþM is the mean
argument of latitude and the subscript c refers to the chief
satellite with respect to which the relative dynamics of each
deputy spacecraft and the local LVLH reference system are
defined.

In general, perturbations causing a variation of orbital
elements are of two types, conservative and non-
conservative. In the second instance, as in presence of dif-
ferential drag, the perturbing effect depends not only on the
differences in the orbit geometry, but also on the difference
between satellite features, represented by a ballistic coeffi-
cient difference DB in this case. This parameter is therefore
included as the last term in an augmented state representa-
tion, which will be used for the propagation of the
dynamics.

da ¼

da

dk

dex

dey

dix

diy

DB

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
¼

a� acð Þ=ac
u� uc þ X� Xcð Þ � cos icð Þ
e � cos xð Þ � ec � cos xcð Þ
e � sin xð Þ � ec � sin xcð Þ
i� ic

X� Xcð Þ � sin icð Þ
B� Bcð Þ=B

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
ð2Þ

The natural ROE dynamics of the system is linearly
propagated by defining a plant matrix A, obtained as the
sum of the plant matrices relative to keplerian motion
and all considered perturbations. Since the following study
will be focused on formations flying in Low Earth Orbit
(LEO), only J2 and atmospheric drag will be included:

A ¼ Akep þ AJ2 þ Adrag ð3Þ
Adding the control term, the linearized dynamics for the

j-th satellite of the formation can be expressed in the form:

_xj tð Þ ¼ A tð Þxj tð Þ þ B tð Þuj tð Þ ð4Þ
where x ¼ da ¼ da; dk; dex; dey ; dix; diy ;DB

� �T
is the aug-

mented vector of quasi-nonsingular Relative Orbital Ele-
ments, A is the plant matrix describing the natural
evolution of the system including orbital perturbations, B
is the control matrix, and u is the control input in LVLH
coordinates.
3

2.1. Keplerian motion

In the Keplerian two-body problem, the general lin-
earized relative motion of a deputy satellite relative to the
chief for arbitrary eccentricities is described in terms of
ROE as reported by Guffanti et al. (2017):

dk tð Þ ¼ � 3

2
nc t � t0ð Þda0 þ dk0 ð5Þ

where nc is the chief mean motion, and the ”0” subscript
indicates quantities at initial time. From the previous
expression, a simple plant matrix Akep can be retrieved as:

Akep ¼

0 0 0 0 0 0 0

� 3
2
nc 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2666666666664

3777777777775
ð6Þ

It is evident that keplerian relative motion depends only
on the relative semi-major axis difference. Accordingly, the
only nonzero higher-order terms will be proportional to
powers of da. Therefore, this plant matrix is valid for
unperturbed orbits with small da and arbitrary separation
in all other state components (Koenig et al., 2017).
2.2. J2 effect

The J2 plant matrix can be retrieved from the differential
effect of the earth oblateness acting on the chief and on the
deputy. In particular, first-order secular effects of the
second-order zonal geopotential harmonic J2 on the orbit
geometry are included in the ROE propagation. The for-
mulation that will be used is the one introduced by
Guffanti et al. (2017) and reported in the following:

AJ2 ¼ jJ2 �

0 0 0 0 0 0 0

� 7
2
EP 0 exGFP eyGFP �FS 0 0

7
2
eyQ 0 �4exeyGQ � 1þ 4Ge2y

� �
Q 5eyS 0 0

� 7
2
eyQ 0 1þ 4Ge2x

� �
Q 4exeyGQ �5exS 0 0

0 0 0 0 0 0 0
7
2
S 0 �4exGS �4eyGS 2T 0 0

0 0 0 0 0 0 0

26666666666664

37777777777775
ð7Þ

where the terms in the AJ2 matrix are defined as in the fol-
lowing expressions:

g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2c

p
; jJ2 ¼ 3

4

J2R2
E
ffiffi
l

p
a3:5g4 ;

E ¼ 1þ g; F ¼ 4þ 3g; G ¼ 1
g2 ; P ¼ 3 cos2 icð Þ � 1;

Q ¼ 5 cos2 icð Þ � 1; S ¼ sin 2icð Þ; T ¼ sin2 icð Þ



Table 1
Starting orbital elements of the orbits used in the drag plant matrix
validation.

Orbit a [km] e [-] i [�] X [�] x [�]

LEO 6771 0.001 97 30 90
HEO 16928 0.6 63.4 120 270
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In a drag-free environment, a smart design of J2-
invariant orbits allows to maintain the formation geometry
with collision-free motion for hundreds of orbits with no
additional station keeping (Morgan et al., 2012). That is
why the majority of current research is focused on forma-
tion reconfiguration between invariant orbits, rather than
formation maintenance for extended periods of time.

2.3. Atmospheric drag

One of the scopes of this work is to propose a guidance
and control strategy for formation control in an environ-
ment in which drag effects are dominant and must be con-
sidered in the dynamics. In presence of drag, relative and
absolute formation maintenance becomes mandatory, as
also invariant relative bounded orbits will start drifting
and decaying over time if uncontrolled. Different tech-
niques have been proposed in recent research to include
the effect of differential drag on Relative Orbital Elements
in the propagation by defining a proper state transition
matrix (Gaias et al., 2015; Koenig et al., 2017). In this
paper a novel approach to derive a plant matrix is pro-
posed, under the following assumptions:

� Control is assumed to be performed with respect to a
non-decaying orbiting point, in order to perform relative
transfers while maintaining the desired orbit altitude.
Therefore, the chief is assumed to have a null ballistic
coefficient and the DB term in the state vector will be
equal to 1.

� The difference between absolute velocity in the Earth-
Centered Inertial (ECI) frame and velocity relative to
the atmosphere is negligible. Thus, the perturbing accel-
eration due to the presence of drag is purely tangential.

Under these simplifications, the time variations of rela-
tive semi-major axis and components of the relative eccen-
tricity vector due to the presence of drag reduce to:

d _a ¼ _a
ac

d _ex ¼ _e � cos xð Þ � e _x � sin xð Þ
d _ey ¼ _e � sin xð Þ þ e _x � cos xð Þ

8><>: ð8Þ

while other ROE are not influenced by the presence of
drag. The effect of atmospheric drag on semi-major axis
and eccentricity of the deputy satellites can then be
retrieved from Gauss Variational Equations (GVE)
(Battin, 1999) as:

_a ¼ 2a2v
l � udrag

_e ¼ 2 eþcos hð Þð Þ
v � udrag

_x ¼ 2 sin hð Þ
ev � udrag

8>><>>: ð9Þ

in which the drag disturbance acceleration udrag is expressed
with a cannonball model as:

udrag ¼ 1

2
Bqv2 ð10Þ
4

where B ¼ CDA
m is the deputy spacecraft ballistic coefficient,

q is the atmospheric density computed with any model of
choice, and v is the module of the velocity in the Earth-
Centered Inertial frame. By correctly arranging these
expressions, the resulting drag plant matrix Adrag can then
be retrieved as:

Adrag ¼ Bqv2 �

0 0 0 0 0 0 a2v
l

0 0 0 0 0 0 0

0 0 0 0 0 0 eþcos hð Þð Þ�cos xð Þ�sin hð Þ sin xð Þ
v

0 0 0 0 0 0 eþcos hð Þð Þ�sin xð Þþsin hð Þ cos xð Þ
v

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2666666666664

3777777777775
ð11Þ

2.4. Drag plant matrix validation

The previously derived plant matrix is validated against
the numerical results obtained with an orbital propagator
considering only the effects of earth geopotential and drag,
in order to isolate their influence. In particular, the errors
in the components of the ROE state are retrieved and com-
pared to the ones computed with a plant matrix which only
includes the effects of J2 and Keplerian motion. The valida-
tion is performed for an integration time of five orbital
periods both for a circular and for a highly eccentric orbit
with low altitudes of perigee, to check for the generality of
the model. To simulate atmospheric drag, the JB2008
model developed by Bowman et al. (2008) is employed.
The starting osculating orbital elements of the selected
orbits are reported in Table 1. The properties of the prop-
agated satellites are listed in Table 2. Simulations start on
21st March 2015 at midnight. The results of the simulations
are reported in Figs. 2 and 3. In both cases, it is possible to
observe that, using the plant matrix including the drag
effect, considerably higher accuracy is obtained for all
ROE, along-track separation in particular.

Despite the assumption of null ballistic coefficient of the
chief, useful for this specific application to follow a nonde-
caying reference, the derived matrix could be also used to
represent relative motion with respect to a real spacecraft
by selecting a proper value for DB. This parameter can
be computed with simulations on ground if the physical
properties of the chief and deputy satellites are known,
extrapolated from flight data, or even estimated on-board
with sequential nonlinear filtering techniques. The inclu-
sion of DB estimation in the loop could be an interesting
direction for further analyses.



Table 2
Properties of the propagated satellites to validate the drag plant matrix.

Chief Deputy

Mass [kg] 20 20
CD - 2.1
Area [m2] 0.1 0.1
B [m2/kg] - 0.0105
CR [-] 1 1
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2.5. Control input

In order to map the control accelerations in the LVLH
reference frame into their effect on the ROE variation,
the so-called control matrix B must be defined. For
quasi-nonsingular ROE the expression is the one reported
by Steindorf et al. (2017) and reported in the following:

B¼ 1
acnc

�

2
gec sin hcð Þ 2

g 1þec cos hcð Þð Þ 0

� 2g2

1þec cos hcð Þ 0 0

g � sin ucð Þ g 2þec cos hcð Þð Þcos ucð Þþex
1þec cos hcð Þ

gey
tan icð Þ

sin ucð Þ
1þec cos hcð Þ

�g �cos ucð Þ g 2þec cos hcð Þð Þsin ucð Þþey
1þec cos hcð Þ � gex

tan icð Þ
sin ucð Þ

1þec cos hcð Þ

0 0 g cos ucð Þ
1þec cos hcð Þ

0 0 g sin ucð Þ
1þec cos hcð Þ

0 0 0

2666666666666664

3777777777777775
ð12Þ
Fig. 2. Results of the drag matrix validation for a circular LEO. The state evol
for the two cases of analytical propagation with and without drag plant matr

Fig. 3. Results of the drag matrix validation for a HEO with low perigee. The
five orbits for the two cases of analytical propagation with and without drag

5

2.6. Mean Orbital Elements propagation

Along with the propagation of ROE, a linear propaga-
tion of Mean Orbital Elements is necessary to compute
the updated plant and control matrices at each time step,
according to the orbit shape. The analytic propagation in
performed by considering Keplerian motion and J2 secular
effects on X;x and M.
3. Model Predictive Control implementation

Model Predictive Control (MPC) is a modern control
technique merging the advantages of optimal and feedback
control. First, the controller exploits the knowledge of the
system dynamics to solve an Optimal Control Problem
(OCP) over a specified period of time defined as prediction
horizon, discretized according to a selected sampling step.
Once the optimization is completed, the resulting control
is applied for a number of time steps defined by the so-
called control horizon, then the optimisation starts again
taking as initial condition the new observed state of the sys-
tem. MPC was chosen as the guidance and control tech-
nique for the easy implementation of constraints and easy
handling of multi-input multi-output (MIMO) systems.
Its basic implementation is shown in Fig. 4.

Unlike open-loop optimal guidance, the dynamic feed-
back nature of Model Predictive Control makes the algo-
rithm effective in compensating the inaccuracies of the
ution is represented in terms of ROE over the simulation time of five orbits
ix, compared to numerical integration.

state evolution is represented in terms of ROE over the simulation time of
plant matrix, compared to numerical integration.
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implemented model of the dynamics and even disturbances
that are not included. However, a good model improves
both the accuracy and fuel efficiency of the resulting
trajectory.
3.1. Optimal Control Problem convexification

The main drawback of Model Predictive Control is the
computational time needed to solve the optimal control
problem at each time step. This is why an analytic model
is used in the first place. In addition, the optimization cost
function and constraints can be convexified in order to take
advantage of convex optimization solvers, obtaining a fast
and efficient solution viable for autonomous control. To
write the optimal control problem in convex form, the first
step is to discretize it. Following the procedure described
by Morgan et al. (2014), time is divided into finite steps
defined by the Model Predictive Controller sampling time,
representing the sample interval for the state x and the
update interval for the control term u, which is considered
piecewise constant for each time step.

Linear dynamics: The linear formulation of Eq. (4) is
first discretized into a finite differences equation:

xj k þ 1½ � ¼ A k½ �Dt þ Ið Þ xj k½ � þ B k½ �Dt uj k½ � ð13Þ
Then dynamics can be expressed as a linear equality

constraint by defining a proper optimization vector con-
taining not only the control input, but also the augmented
ROE state at each time step. In particular, for each satellite
it is defined a vector x̂j which contains the ROE state and
the control input at each time instant k. x̂j has size
M ¼ 7K þ 3 K � 1ð Þ, where K is the total number of time
steps. Subsequently, the entire decisional vector of the opti-
misation problem can be defined as:bX ¼ x̂1; . . . ; x̂j; . . . ; x̂N

� �T ð14Þ
with size N �M , where N is the number of chaser satellites
in the formation. Following the work by Sarno et al. (2020)
and Scala et al. (2021), this formulation allows to rewrite
the dynamics of each spacecraft in Eq. (13) in matrix form
by defining a proper matrix Asd so that for each satellite it
yields:

Asd � x̂j ¼ 0 ð15Þ
Fig. 4. Model Predictive Control loop.
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where each row of Asd is defined as:

07�7 k�1ð Þ � Iþ A k½ �Dtð Þ I 07�7K�4k�10 �B k½ �Dt 07�3 K�k�1ð Þ
� �

ð16Þ
with k ¼ 1; . . . ;K. Accordingly, the dynamics of the entire
formation expressed in convex form as a linear equality
constraint can be written as:bAsd � bX ¼ 0 ð17Þ
where:

bAsd ¼
. . . . . . . . .

07 Kþ1ð Þ�M j�1ð Þ Asd 07 Kþ1ð Þ�M N�jð Þ
. . . . . . . . .

264
375 ð18Þ

with j ¼ 1; . . . ;N .
Initial and final conditions: Similarly, the initial and final

state of each chaser satellite can be extracted from the deci-
sional vector by defining the matrices AICj

and AFCj
.

da0j ¼ AICj
� x̂j ¼

I7 . . .

. . . 0M�7

	 

� x̂j

daFj ¼ AFCj
� x̂j ¼

07K�7 . . . . . .

. . . I7 . . .

. . . . . . 03 K�1ð Þ

264
375 � x̂j

8>>>>>><>>>>>>:
ð19Þ

This formulation can again be extended to all satellites
in the formation by defining:

AIC ¼
. . . . . . . . .

0M�M j�1ð Þ AICj
0M�M N�jð Þ

. . . . . . . . .

264
375

AFC ¼
. . . . . . . . .

0M�M j�1ð Þ AFCj
0M�M N�jð Þ

. . . . . . . . .

264
375

8>>>>>>>>><>>>>>>>>>:
ð20Þ

so that:

da0 ¼ AIC � bX
daF ¼ AFC � bX

(
ð21Þ

Cost function: The cost functional to be minimized in the
OCP must be expressed in terms of the discretized deci-

sional vector bX as well. Hence, also the control term must

be isolated. In particular, a matrix bH can be defined so
that:bU ¼ bH � bX ð22Þ
where the bU vector contains the control accelerations in
their respective position and is equal to zero in its other
components. By defining the weighting matrices P and Q,
the cost function is then expressed as:

J ¼ jj bH � bXjj1 þ jjP AFC � bX � bXT

� �
jj1 þ jjQ eX � eXT

� �
jj1
ð23Þ

Namely:



E. Belloni et al. Advances in Space Research xxx (xxxx) xxx
� jj bH � bXjj1 is the control effort term, added to minimize
the propellant consumption finding a sub-optimal fuel
efficient solution.

� jjP AFC � bX � bXT

� �
jj1 is the tracking error of the final

state with respect to the target ROE vector. Its mini-
mization leads to the convergence of the state to the
desired one.

� jjQ eX � eXT

� �
jj1 identifies the difference between the tar-

get ROE vector and the ROE state of the satellites at
each time step. The introduction of this expression
speeds up the convergence towards the target system
state and avoids excessive deviations from the reference
trajectory.

Since the cost function is a sum of 1-norms, it is convex
and also linear. Moreover, the introduction of tracking
terms in the objective, rather than as a hard constraint
on the final target, ensures the feasibility and also the con-
vergence of the problem, if these terms are weighted
enough. The choice of proper weighting matrices allows
to prioritize or even isolate the tracking error relative to
some Relative Orbital Elements with respect to others,
depending on the scenario. The chosen values strongly
depend on mission requirements, thus, their selection dif-
fers from case to case. However, two general considera-
tions that must be taken into account are that the
tracking errors should be weighted enough to make the
spacecraft converge to the desired state, as anticipated pre-
viously, and that the higher the weights on tracking error
terms, the quicker the transfer will be. This last character-
istic can be exploited in particular operational situations
where timeliness is crucial.
3.2. Actuation constraints

Thrust module constraint: The constraints added in the
control problem to obtain a feasible control profile are
strongly linked to the available propulsion solution, a sin-
gle low-thrust engine in this case. In current research on
relative dynamics, guidance, and control, it is often
assumed that the spacecraft is capable of thrusting in any
direction at any time. This is however rarely true, in partic-
ular when employing electric engines, unless the satellite is
equipped with attitude thrusters that can be also used for
orbit control. Dealing with a single engine, the constraint
on the maximum acceleration is given on the module rather
than for each component. This is achieved by isolating
and reshaping the control at each time step k for each satel-

lite j from the decisional vector bX. Then, it is enough to
impose that the norm of the control acceleration vector is
lower than the maximum acceleration that the engine is
able to provide to the spacecraft at each time step for each
satellite:
7

jjukj jj2 6 Tmax

ms=c
;

k ¼ 1; . . . ;K; j ¼ 1; . . . ;N
ð24Þ

Most of low-thrust propulsion units also have a limit in
the lowest thrust they are able to provide. This constraint is
impossible to express in convex form, as it would represent
a ”hole” in the hyper-dimensional space. Therefore this
constraint can only be imposed a posteriori on the mini-
mization results, just by ignoring control actions that have
a norm lower than the minimum acceleration of the engine.
The algorithm will compensate by providing a higher con-
trol action at a later time, converging anyway to the target.

Radial thrust: As along-track separation dk can be con-
trolled by acting on the relative semi-major axis, all in-
plane ROE can be controlled effectively by only applying
a tangential thrust. Therefore, radial thrust could be set
to zero a priori in order to obtain a simpler solution. This
constraint can be included in the algorithm just by isolating
the radial control components of the decisional vector and
imposing the equality to zero. Furthermore, setting the
radial thrust to null greatly simplifies the inclusion of con-
straints on thrusting angles in convex form.

Constraints on thrust angles and slew rates: During nom-
inal operations of the spacecraft, having only one available
propulsive unit, additional constraints should be imposed
on the thrusting angle and on the maximum allowed slew
rate to point the engine in the desired direction. For exam-
ple, a thrust cone constraint may be included for orbit
maintenance, trying to maintain the attitude as close as
possible to earth-pointing in order to be ready for observa-
tion. On the other hand, a slew rate limit may be imposed
for formation reconfiguration maneuvers, which may ask
for a too quick and unfeasible redirecting of the thrust vec-
tor. The in-plane and off-plane thrusting angles are defined
according to the spherical coordinates representation
shown in Fig. 5. In particular, the in-plane angle / is
defined starting from the T axis, which is coincident with
the along-track direction for circular orbits, and taken pos-
itive in anticlockwise direction. On the other hand, the off-
plane angle h is the angle between u and the RT plane.
These are defined in degrees as:

/ ¼ arctan
uy
ux

� �
� 90�

h ¼ arcsin uz
u

� �
8<: ð25Þ

The angle / is defined from 0� to 360�, whereas h is
defined from �90� to 90�. Including the radial thrust con-
straint, the angle / can only assume precisely a value of
0� or 180�. Therefore, a constraint on the in-plane angle
can simply be included on the sign of the uy component.
On the other hand, the constraint on the maximum off-
plane angle h is imposed as:

juzj 6 juyj � tan hmaxð Þ ð26Þ
The inclusion of a constraint on the maximum slewing

rate is not natural in convex form, due to the tight restric-
tions imposed by convex programming. The most basic
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idea consists in imposing a maximum difference between
the components of the control vector at a given time step
k and the same component at time k þ 1. The first obvious
drawback of this strategy is that the same difference corre-
sponds to different angles depending on the control vector
module, until the introduction of the constraint becomes
irrelevant for very small controlling accelerations. How-
ever, this effect is mitigated by the inclusion of the mini-
mum thrust threshold explained before, which, if high
enough, may be exploited for the inclusion of the slew con-
straint. Another undesired effect is that this type of check
interprets the engine switch-off as a slew, due to the sudden
variation of control components. Despite all these stringent
limitations, a procedure is found to at least deny the pres-
ence of immediate sign changes for each axis. Assuming a
null radial thrust constraint, this consists in imposing:

jukþ1
y � uky j 6 amax

jukþ1
z � ukz j 6 amax

(
ð27Þ

With this expression, if a minimum thrust limit higher
than half of the maximum value is added, engine switch-
offs are allowed, but at the same time sudden 180� slews
are impossible. Indeed, at least a time step with no control
is mandatory before switching the control sign of each
component. This control-free step can be used to slew in
the desired direction with enough time to perform a feasi-
ble maneuver, as the MPC sampling time is chosen in the
order of the hundreds of seconds. If one time step is not
enough to safely perform the slew in time, the previous for-
mulation just needs to be extended also to the k þ 2 step
and so on, according to the mission specifications and
requirements. Additional constraints may be added to
cover slews between different axes. An example of con-
straint for normal and tangential maneuver splitting can
be imposed as:
Fig. 5. Spherical coordinates reference frame for the control vector.
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jukþ1
y j þ jukz j 6 amax

jukþ1
z j þ juky j 6 amax

(
ð28Þ

Naturally, this constraint does not deny impossible
slews in all situations. In any case, in a real application,
if the spacecraft is not able to perform a manoeuvre in time
due to the saturation of attitude control actuators, the
feedback behaviour of the MPC will compensate in future
re-iterations, taking more time but converging to the
target.
3.3. Collision avoidance

Collision avoidance must be imposed as an inequality
constraint on the relative position of the satellites in the
formation in the LVLH frame. Since the state vector is
expressed in ROE form, a linear transformation is needed
to retrieve the xyz coordinates before imposing collision
avoidance. The selected linear mapping, represented by
the matrix T, is derived following the procedure reported
by Silvestrini and Lavagna (2021), but neglecting the veloc-
ity components, which are not necessary for the collision
avoidance algorithm. Also the seventh element of the state,
the differential ballistic coefficient, is not needed and there-
fore is discarded.

xLVLH ¼

x

y

z

0

0

0

0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼ T � da ð29Þ

The transformation matrix T is derived by using an
intermediate change of coordinates exploiting the classical
orbital elements differences vector
DOE ¼ Da;DM ;Dx;De;Di;DX½ � as follows:

T ¼ @xLVLH

@DOE
� @DOE

@da
ð30Þ

The first-order approximation of the mapping between
the LVLH state and classical osculating orbital elements
difference is taken from equations derived by D’Amico
(2010):

x ¼ r
aDa� a � cos hð ÞDeþ a�e�sin hð Þffiffiffiffiffiffiffi

1�e2
p DM

y ¼ aþ r
1�e2

� �
sin hð ÞDeþ a2

r gDM þ rDx þ r � cos ið ÞDX
z ¼ r � sin uð ÞDi� r � sin ið Þ cos uð ÞDX

8><>:
ð31Þ

From the previous equations, the first transformation
matrix can be retrieved. Since only the relative positions
are of interest, the last four rows can be set equal to zero



Fig. 6. Nonconvex collision avoidance constraint.

Fig. 7. Convexified collision avoidance constraint (Morgan et al., 2014).
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to avoid useless computations. The same yields for the last
column, as no dependence on the differential ballistic coef-
ficient is present.

@xLVLH
@DOE ¼ r �

1=a a�e�sin hð Þ
r
ffiffiffiffiffiffiffi
1�e2

p 0 �a
r �cos hð Þ 0 0 0

0 a2

r2 g 1 a
rþ 1

1�e2

� �
sin hð Þ 0 cos ið Þ 0

0 0 0 0 sin uð Þ �sin ið Þcos uð Þ 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

26666666666664

37777777777775
ð32Þ

In order to obtain the full mapping, the Jacobian of the
transformation from classical orbital elements to quasi-
nonsingular ROE is necessary. This is obtained from the
definition of da for dOE ! 0 as:

@DOE
@da

¼

a 0 0 0 0 0 0

0 1 sin xð Þ
e � cos xð Þ

e 0 cos ið Þ
sin ið Þ 0

0 0 � sin xð Þ
e

cos xð Þ
e 0 0 0

0 0 cos xð Þ sin xð Þ 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 sin ið Þ 0

0 0 0 0 0 0 0

2666666666664

3777777777775
ð33Þ

Multiplying the two matrices, the complete transforma-
tion matrix T isolating relative positions in the LVLH
frame is retrieved. To impose collision avoidance on the

full optimization decisional vector bX, the matrix T k½ � needs
to be evaluated at each time step to form the matrix bTj,
defined for the j-th satellite as follows:

bTj ¼

. . . . . . . . .

07�7 k�1ð Þ T k½ � 07�7 K�kð Þ
. . . . . . . . .

264
375 07K�3 K�1ð Þ

03 K�1ð Þ�7K 03 K�1ð Þ

26664
37775 ð34Þ

As for other previously derived matrices, the matrix for
the entire formation can be assembled by properly rear-

ranging the matrices bTj in a larger matrix bT:
bT ¼

. . . . . . . . .

0M�M j�1ð Þ bTj 0M�M N�jð Þ
. . . . . . . . .

264
375 ð35Þ

Once the x; y, and z components of the decisional vector
of each satellite are isolated, it is necessary to impose the
minimum distance constraint in a formulation suitable
for convex programming. The selected methodology is
the one introduced by Morgan et al. (2014). This strategy
consists in generating separating planes among the satel-
lites, transforming the circular prohibited zone into a suit-
able convex formulation. A graphical representation of the
convexified constraint is reported in Figs. 6 and 7. It can be
observed that the convexified prohibited zone contains
entirely the nonconvex one, this means that collision avoid-
9

ance is guaranteed. Morgan’s formulation states that, at
each time instant k, the following inequality must be satis-
fied between each i=j spacecraft couple in the formation:

�vj k½ � � �vi k½ �
� �T

CTC vj k½ � � vi k½ �
� �

P dthrjjC �vj k½ � � �vi k½ �
� �

jj2 ð36Þ
where the solution vectors v are expressed in cartesian
coordinates in the LVLH frame, �v represents an initial
guess of the optimal trajectory followed by the spacecraft,
and C is a matrix built to isolate only the position compo-
nents of the solution. This expression must be reformulated
to deal with quasi-nonsingular ROE, exploiting the previ-
ously introduced linear mapping, and with the entire deci-

sional vector bX. As explained previously, the linear

mapping matrix bT is built to already isolate the positional
components of the LVLH frame. Therefore, the right term
of Eq. (36) can be rewritten for each time step k as:

dthrjjC �vj k½ � � �vi k½ �
� �

jj2 ¼ dthrjjT k½ � � �xj k½ � � �xi k½ �� �jj2 ð37Þ
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In order to deal with all time steps at once, i.e. to deal
with the entire decisional vector, this expression must be
generalized by defining a proper vector dCA, built by taking
the norm of difference of the positional components in the
LVLH frame of the initial guess vector at each time step.

dCA ¼ dthr �
. . .

jjT k½ � � �xj k½ � � �xi k½ �� �jj2
. . .

264
375 ð38Þ

For the proposed algorithm, the initial guess is repre-
sented by a solution of the same problem obtained without
imposing collision avoidance.

For what concerns the left term of Eq. (36), the left half
concerning the guess vector can be rewritten in matrix form
by correctly rearranging the differences in the positional
components of the initial guess vector transformed in

LVLH form, building a matrix D as follows:

D ¼
. . . . . . . . .

01�3 k�1ð Þ �xkj � �xki ; �ykj � �yki ; �z
k
j � �zki

h i
01�3 K�kð Þ

. . . . . . . . .

264
375
ð39Þ

On the other hand, the LVLH positional differences
between two satellites of the formation can be isolated

from the decisional vector bX defining a matrix bACA as:

bACA ¼
. . . . . . . . . . . . . . .

03�7 k�1ð Þ I3 03�2 5K�3ð Þ �I3 03�10K�7kþ1

. . . . . . . . . . . . . . .

264
375
ð40Þ

Finally, the reformulated expression for the convexified
collision avoidance constraint to be implemented in the
algorithm can be written for each satellite couple i=j as:

D � bACA
bT bXi=j

� �
P dCA ð41Þ

where bXi=j only contains the decisional vectors of the i-th
and j-th satellites of the formation. The constraint ensures
that the threshold distance is respected in the sample points
of the optimization vector, but not between one sample and
the following one. An analysis of the maximum crossing of
the separating plane due to natural dynamics between two
sampling steps could give a useful result to set a conserva-
tive threshold that takes this aspect into account.

Furthermore, the addition of the collision avoidance
constraint may introduce a source of infeasibility in the
problem, which may occur if the collision avoidance
inequality clashes with the hard constraint on the initial
condition. However, it is enough to impose a starting
geometry in which all inter-satellite distances are larger
than the CA threshold, then the MPC will guide the satel-
lites to the target respecting the safety margin.
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3.4. OCP implementation in the convex solver

Algorithm 1. Convex Optimization Problem in cvx
1: cvx_begin
2: cvx_solver: SeDuMi (or sdpt3)
3: cvx_precision: best
4: variable: bX N �Mð Þ
5: minimize: J ¼ jj bH � bXjj1 þ jjP AFC � bX�
�bXTÞjj1 þ jjQ eX � eXT

� �
jj1

6: subject to:
7: bAsd � bX ¼ 0

8: AFC � bX ¼ bX0

9: jjukj jj2 6 Tmax=ms=c

10: D � bACA
bT bXi=j

� �
P dCA

11: [Thrust angles constraints, eq.(26)]
12: [Slew rate constraints, eq.(27), eq.(28)]
The problem is then implemented in a convex optimiza-
tion solver as shown in Algorithm 1. The specific notation
depends on the solver and on the language it operates on.
For this study, cvx 1.22 (Grant et al., 2008; Grant and
Boyd, 2014) is used for simulations in MATLAB and the
CVXPY 1.1 library (Diamond and Boyd, 2016; Agrawal
et al., 2018) is used for simulations performed using
Python. In Algorithm 1 the generic MATLAB implementa-
tion in cvx form is shown with the two selected parameters
of solver and precision. cvx 1.22 currently supports two
different solvers: SeDuMi (Sturm, 1999) and SDPT3 (Toh
et al., 1999), with the first being the default and usually rec-
ommended option. The precision string argument allows to
select the accuracy of the solution from a set of predefined
precision models. For the proposed implementation best
precision model is selected, setting the so-called solver tar-
get to zero. This means that the solver continues as long as
it can make progress, producing more accurate solutions.
Precision can be lowered if faster solutions are desired.
4. Validation

The validation of some key aspects of the algorithm is
performed by integrating the control profile computed by
the MPC with a high-fidelity propagator which is consid-
ered ground truth. The relative motion between the chief
and deputies is obtained by integrating the agents sepa-
rately, considering the perturbations acting on each space-
craft. In particular, the model considers the earth’s
geopotential up to the third zonal harmonic, atmospheric
drag, solar radiation pressure (SRP), and third-body per-
turbations induced by the moon and the sun. The separated
integration of the chief allows to consider only some



Table 3
Orbital elements of the orbit used for fuel efficiency validation (Catanoso
et al., 2019).

a [km] e [-] i [rad] X [�] x [�] M0 [
�]

6828 0.00001 1.361 0 0 0

Table 4
Starting and target relative states used for fuel efficiency validation
(Catanoso et al., 2019).

ada [m]

i. c. 0; 0; 273; 0; 10; 70½ �
f. c. 0; 0; 273; 0; 400; 120½ �
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desired perturbations, if any, in order to propagate the
desired reference orbiting slot.
Fig. 8. Trajectory in the LVLH frame for the out-of-plane transfer used
for fuel efficiency validation.

Fig. 9. Control acceleration in normal direction for the out-of-plane
transfer. The reference used for comparison is taken from Catanoso et al.
(2019).

Table 5
DV comparison between convex MPC, the two considered literature
solutions, and direct single shooting.

Method DV [m/s]

Reference MPC 0.5554
Proposed MPC 0.4931
Direct single shooting 0.4680
Closed-form impulsive 0.4373
4.1. Fuel efficiency

The reliability and optimality of the designed control
solution are verified by comparing it with other options
available in the literature. A close match to the proposed
strategy is the one developed by Catanoso et al. (2019),
in which a Lyapunov-based MPC based on ROE dynamics
is introduced. With respect to this reference, fuel efficiency
is assessed by performing a comparison between the two
MPC solutions of the same transfer and with the closed-
form impulsive solution developed by Chernick and
D’Amico (2018). Moreover, a solution obtained with a
direct single shooting (DSS) method is added to the com-
parison to have an optimal low-thrust benchmark. The
starting keplerian parameters of the orbit that was selected
in the chosen reference are reported in Table 3, and the
starting and target relative states are reported in Table 4.

The only information about the simulated spacecraft is
the maximum acceleration that can be provided along each

axis, which amounts to 3.2 �10�5 m/s2. In the provided
solution no tangential thrust is present, therefore the vali-
dation will be focused on the out-of-plane control, with
both satellites propagated including drag effects, but left
decaying together while completing the maneuver. The
weights of the MPC cost function have been tuned in order
to match the transfer time of the reference solution, corre-
sponding to seven orbit periods. The resulting trajectory
computed by the proposed MPC in the LVLH reference
frame is shown in Fig. 8, whereas the computed control
profile is reported in Fig. 9 together with the reference non-
linear counterpart. The resulting DV needed to complete
the transfer with the desired accuracy is compared to the
other results in Table 5.

The proposed solution demonstrates to be close to opti-
mal, obtaining lower propellant consumption than the
nonconvex reference and coming close to the single shoot-
ing and impulsive optimal solutions while being viable for
on-board autonomous low-thrust control. In addition, the
resulting control profile is feasible for an average micro-
11
satellite mounting only one propulsive unit on-board, with-
out unrealistic requirements on the agility of the satellite.

4.2. Drag compensation

Due to the feedback nature of Model Predictive Con-
trol, it can be argued that the inclusion of a drag plant



Fig. 10. Mean adk evolution over one day of simulation for the four test
cases.

Fig. 11. Density evolution for the three test cases in which Adrag is
included.

Table 6
Comparison of simulation results obtained for the validation of drag plant
matrix effectiveness on control.

adkmean DV

Without Ad 38.69 m �0.11 m/s
Density = JB 8.90 m � 0.11 m/s
Density = JB + n(3r ¼ 40%) 7.98 m �0.11 m/s
Density = JB + n(3r ¼ 60%) 9.13 m �0.11 m/s
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matrix is not mandatory, as the relative drift would be cor-
rected anyway by the MPC prescribing a tangential maneu-
ver when an undesired along-track separation is created.
To prove the effectiveness of the proposed drag model
and justify its inclusion in the controller, the tracking of
a holding point placed in the chief spacecraft’s position is
simulated. This equals to controlling the deputy spacecraft
in its absolute dynamics to compensate for the effects of
drag and to maintain its along-track position. By simulat-
ing with and without including the drag plant matrix in the
dynamics propagation of the MPC, results can be com-
pared and the effectiveness of the drag model can be
assessed. In addition, the same case scenario is studied
when a zero-mean gaussian noise n is added to the density
value expected by the JB2008 density model, in order to
check for the control accuracy in presence of a mismatch
between the real density and the one predicted by the con-
troller. The variation in time of dk and density for the dif-
12
ferent cases over one day of simulation are represented in
Figs. 10 and 11. The mean along-track error is averaged
over one orbit to retrieve its mean evolution. From the fig-
ures, it is evident that the inclusion of the plant matrix
improves the accuracy of the solution in terms of tracking
of the desired along-track separation. Indeed in both cases,
a constant mean altitude is maintained, but, when drag is
not considered in the propagation, a dk error of about
40 m is accumulated throughout the day and is never cor-
rected even after running the simulation for more time.
Furthermore, the results of the simulations are compared
in terms of fuel optimality to the integration of the drag-
induced acceleration over the simulation time span,
amounting to about 0.11 m/s. The controller shows a close
to fuel-optimal behavior both with and without including
the drag plant matrix in the linear dynamics model, as
reported in Table 6, with no unnecessary maneuvers to
compensate for the energy decrease.

The simulations show a dk error also when the drag
plant matrix is included in the propagation, although con-
siderably smaller and consistent for all three test cases,
showing that a zero-mean gaussian error on the density
knowledge has no major effect on control accuracy and effi-
ciency. This error is to be attributed to the constraints
introduced in the simulation, namely, a minimum thrust
that can be provided by the engine, and limitations to
avoid continuous firing and excessive slewing. These will
be better discussed in the next section together with the
controller parameters used for this and the following
simulations.
5. Simulations

5.1. Simulation parameters

The MPC parameters have been chosen relying on gen-
erally suggested practices for MPC design, case-specific
considerations, and simulation results. The selected values
are reported in Table 7.

The recommended procedure to select the prediction
horizon is to have it as large as possible until further
increase brings small to no improvement to the controller
performance. For the following simulations, this value is
fixed to one orbital period, since longer horizons only have
a negative impact on computational time. The sampling
time of the MPC is set as 100 s, a good compromise
between MPC accuracy and computational efficiency.



Table 7
Parameters of the Model Predictive Controller used in the simulations.

Parameter Value

Prediction Horizon 5600 s
Sampling time, T s 100 s
Control Horizon 7�T s

Table 10
Starting and target relative states for the relative eccentricity change.

ada [m]

i. c. 0; 0; 0; 400; 0; 400½ �
f. c. 0; 0; 0; 200; 0; 400½ �
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Finally, the control horizon is set as seven sampling steps.
This means that the on-board computer shall solve the
optimal control problem about eight equidistant times for
a LEO orbit at 400 km altitude. Naturally, a smaller con-
trol horizon improves the reactivity of the controller to
unmodelled perturbances and promotes stability, but the
selected recalculation frequency was found to be a good
compromise to have a stable controller and achieve good
control accuracy while limiting the computational burden
on the hardware. To check the robustness and flexibility
of the proposed controller, several different operational
scenarios are simulated for both formation reconfiguration
and maintenance, in which the satellites are also requested
to maintain a constant orbit altitude throughout the
maneuver. In particular, the algorithm is tested in represen-
tative or challenging but realistic conditions. For all simu-
lations, the properties of the chasers are the ones reported
in Table 8. According to the premises made in the introduc-
tion and along the paper, the simulated spacecraft are
micro-satellites actuated by a single low-thrust engine with
low authority and a minimum thrust threshold. in all sim-
ulations, the chief spacecraft is be propagated with a null
ballistic coefficient, in order to represent a non-decaying
orbiting reference point.

Also the orbit geometry is shared by all simulations
unless specified. The chosen reference orbit is a low altitude
Sun-synchronous orbit (SSO), to test the MPC perfor-
mance in a high-drag environment which also represents
a realistic choice for a scientific or earth observation mis-
sion in Low Earth Orbit. The selected orbital parameters
Table 8
Properties of chaser satellites used in all simulations.

Parameter Value

Mass 20 kg
Drag area 0.1 m2

CD 2.1
SRP area 0.1 m2

CR 1
Max thrust 0.65 mN
Min thrust 0.35 mN

Table 9
Starting osculating orbital elements of the reference orbit used in the
simulations.

a [km] e [-] i [�] X [�] x [�] M0 [
�]

6771 0.001 97.004 30 90 0
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are reported in Table 9. All simulations start on 21st March
2015 at midnight.

5.2. Relative eccentricity change

The first simulated scenario is a change of relative eccen-
tricity. The starting and target relative states for this recon-
figuration are reported in Table 10, in both cases
eccentricity/inclination vector separation is guaranteed.
This concept, originally developed for GEO satellites, is
used to impose a passive collision avoidance constraint
with a parallel (or anti-parallel) alignment of the relative
eccentricity and inclination vectors. This is equivalent to
imposing that when the spacecraft crosses the target orbital
plane, the radial distance is larger than min(ade; adi) even
in the case of a vanishing along-track separation
(D’Amico and Montenbruck, 2006). The only constraint
imposed on thrusting angles is to have a null acceleration
in radial direction.

The simulation is stopped when all state components
reach the target with a tolerance of five meters on their
value multiplied by the reference semi-major axis. The
resulting trajectory in the LVLH reference frame is shown
in Fig. 12, the computed control profile is shown in Fig. 13.
The spacecraft completes the transfer with the desired
accuracy in less than two orbit periods and, due to the
absence of changes in out-of-plane ROE, tangential thrust
is sufficient to complete the transfer. The required DV
amounts to 0.1281 m/s. From the control profile plot, it
is possible to notice the saturation of the control effort in
the first phases of the transfer. This saturation can be alle-
viated by reducing the weights of tracking error terms in
the MPC cost function, allowing the transfer to be com-
pleted in more time in order to improve fuel efficiency.
For what concerns attitude control, the spacecraft has
enough time to perform all the slewing maneuvers pre-
scribed by the MPC.

5.3. Position swap

To test the effectiveness and efficiency of the collision
avoidance algorithm, a setting is created in which two satel-
lites in tandem formation must invert their position while
maintaining a minimum inter-satellite distance of 300
meters. The starting and target relative states of the two
units with respect to the virtual point placed in the centroid
of the formation are listed in form of ROE in Table 11.
Also for this simulation radial thrust is set to zero and
no further constraint on thrusting angles is added.



Fig. 13. Control accelerations in the LVLH frame for the relative
eccentricity change.

Fig. 14. Transfer trajectory in LVLH frame of Satellite A for the position
swap.

Fig. 15. Transfer trajectory in LVLH frame of Satellite B for the position
swap.

Fig. 12. Transfer trajectory in the LVLH frame for the relative
eccentricity change.
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The resulting trajectories in the LVLH frame are shown
in Figs. 14 and 15, together with a solution of the same
reconfiguration obtained without including the collision
avoidance constraint. From the figures, it can be seen
how the satellites take a longer path to reach the target
in order to keep a minimum relative distance from one to
another. This is even more evident in Fig. 16, in which
the inter-satellite distance between the two units is repre-
sented in its time evolution. With respect to the simulation
without collision avoidance, when the constraint is
Table 11
Starting and target relative states for the position swap.

Spacecraft A Spacecraft B

i. c. 0;�200; 0; 0; 0; 0½ � m [0, 200, 0, 0, 0, 0] m
f. c. 0; 200; 0; 0; 0; 0½ � m [0, -200, 0, 0, 0, 0] m
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included the transfer takes a longer time and higher DV
to be concluded, but the safety threshold is always
respected. It is also interesting to notice from the figure
the prediction ability of the MPC, which is able to deviate
the trajectory before reaching the distance threshold.

5.4. Tetrahedron formation acquisition and maintenance

In previous sections, the MPC is tested in specific sce-
narios created to isolate some particular response. In the
next simulation, a more complex maneuver is simulated,
in which four satellites need to acquire and maintain a



Fig. 16. Inter-satellite distance evolution between the two satellites during
the position swap.

Table 12
Starting and target relative states for tetrahedron formation acquisition
and maintenance.

Sat A Sat B Sat C Sat D

ada [m] 0 ! 0 0 ! 0 0 ! 0 0 ! 0
adk [m] 750 ! 400 250 ! 100 �250 ! �100 �750 ! �400
adex [m] 0 ! 0 0 ! 177 0 ! �177 0 ! 0
adey [m] 0 ! 0 0 ! 177 0 ! 177 0 ! 0
adix [m] 0 ! 0 0 ! 354 0 ! �354 0 ! 0
adiy [m] 0 ! 0 0 ! 354 0 ! 354 0 ! 0
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tetrahedron formation geometry starting from an along-
track in-line arrangement. Spacecraft flying in tetrahedron
formations are excellent instrument platforms for electro-
magnetic and plasma studies, as a minimum of four units
establishing a volume is required to study a planetary mag-
netic field (Guzman, 2003). To obtain the desired forma-
Fig. 17. Evolution in time of the difference between ROE state components a
acquisition.

15
tion shape, the target relative states in ROE formulation
have been identified and reported in Table 12, with the ones
of the starting string-of-pearls disposition. Satellites A and
D remain in line but reduce their relative distance, whereas
spacecraft B and C transfer to two bounded orbits slightly
separated along-track and with a shifted phase angle of
90�, in order to create a volume.

The phase difference is created by assigning an opposite
value of relative eccentricity and relative inclination along
the x direction, but equal in the module. This is done to
split equally the control needed to counteract the effect of
J2 introduced in presence of a dix component. Again, the
only constraint imposed on thrusting angles is to have a
null radial thrust. The evolution in time of the error
between the ROE states of the formation and their target
value is shown in Fig. 17, the desired relative positions of
all satellites are acquired with a ROE accuracy of five
meters in slightly less than ten orbital periods. Concerning
collision avoidance, no minimum distance is enforced
between the satellites, which never cross a minimum base-
line between each other of about 50 meters. Naturally,
satellites B and C require a higher control effort with
respect to the other two formation components, as they
need to acquire both relative eccentricity and relative incli-
nation vectors. The resulting DV for the four satellites dur-
ing the tetrahedron acquisition phase are reported in
Table 13.

The value for spacecraft B and C can be decreased low-
ering the gains relative to target tracking, but increasing the
transfer time. Values for satellites A and D contain the
amount of station keeping that is performed while ”wait-
ing” the other two components to complete the transfer.
Once the satellites are in the desired position, it is necessary
nd their target value for the four satellites during tetrahedron formation



Table 13
Required DV for the four satellites to acquire tetrahedron formation
geometry.

DV transfer

Sat A 0.1052 m/s
Sat B 0.8643 m/s
Sat C 0.9159 m/s
Sat D 0.1047 m/s

Table 14
Required DV to maintain the tetrahedron formation geometry and
counteract orbit decay.

DV one day of Station Keeping

Sat A 0.1058 m/s
Sat B 0.1195 m/s
Sat C 0.1213 m/s
Sat D 0.1070 m/s
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to maintain the relative states in order to meet the volume-
keeping and geometry repetition requirements. To verify
the accuracy and efficiency of formation keeping, a simula-
tion of one day is conducted with the spacecraft maintain-
ing not only their respective relative state but also their
absolute orbit shape, altitude, in particular, being con-
trolled with respect to a non-decaying orbiting slot. During
Fig. 18. Evolution in time of the tetrahedron shape during one day of obse
argument of latitude of the reference orbit to show its repetition.

16
station keeping, constraints on thrusting angles can be
added to prescribe a maximum thrust cone, limiting slew
maneuvers during observation. In this case, the in-plane
angle is fixed at a value of 0� and the off-plane angle has
a maximum variation of 45� around zero. The resulting
DV for one day of operations is reported in Table 14.
The values obtained for satellites A and B are consistent
with the ones found in the validation. As expected, units
B and C need a slightly higher control effort to counteract
the effect of J2 induced by a dix component, but this is
equally split among the two agents.

In Fig. 18 is represented the evolution in time of the
tetrahedral shape of the formation. In particular, the geom-
etry is shown in correspondence of regular values of the
argument of latitude of the reference orbit to show its peri-
odic repetition, a usual requirement for tetrahedron forma-
tion to guarantee the consistence of measurements. The
other two requirements are to keep a constant tetrahedron
volume and a constant orbit altitude throughout the obser-
vation. The evolution of these two quantities in time is
shown in Figs. 19 and 20. The volume is maintained

around its nominal value, within a 3r bound of 1 �10�3

km3. This number, corresponding to about 6% of the refer-
ence, is the statistical value under which the variation from
the nominal volume is kept for 99.73% of the time. For
what concerns drag compensation, it can be observed that
rvation. The formation geometry is represented at regular values of the



Fig. 19. Mean semi-major axis evolution in time for one day of station
keeping.

Fig. 20. Tetrahedron volume in time for one day of station keeping.

Fig. 21. HEO close-up trajectory in the LVLH frame.

Table 15
Orbital elements of the HEO orbit.

a [km] e [-] i [�] X [�] x [�] M0 [
�]

17445 0.6 63.4 120 270 0

Table 16
Starting and target relative states for the close-up maneuver in HEO.

ada [m]

i. c. 0; 0; 0; 500; 0; 500½ �
f. c. 0; 0; 0; 200; 0; 200½ �

Table 17
MPC parameters used for the HEO simulation.

Parameter Value

Prediction Horizon 11600 s
Sampling time, T s 200 s
Control Horizon 4 �T s
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the mean semi-major axis is kept constant during the day
of observation, whereas an uncontrolled formation would
have decayed by a small amount.
17
5.5. Close-up manoeuvre in highly eccentric orbit

The choice of using Relative Orbital Elements instead of
the traditional Hills-Clohessy-Wiltshire equations allows to
extend the validity of the model to noncircular orbits. To
check the accuracy of the algorithm in this environment,
a close-up maneuver in High Elliptical Orbit (HEO) is sim-
ulated. For this particular case, a Molniya-inspired orbital
shape is selected, whose initial keplerian parameters are
reported in Table 15. The starting and target relative states
are listed in Table 16.

Due to the change of reference orbit with respect to the
previous cases, the parameters of the Model Predictive
Controller are tuned accordingly. The prediction horizon
corresponds to half an orbital period, the sampling time
is increased to reduce the computational time of the opti-
mization, and the control horizon is adjusted to find a good
trade-off between control accuracy and update frequency.
The new values are listed in Table 17.

Even in this application, the MPC shows good accuracy,
although slightly lower. Indeed, the simulation is stopped
when all ROE reach their target value with a tolerance of
ten meters on their value multiplied by the reference
semi-major axis. The resulting close-up maneuver is com-
pleted with the desired precision in about four orbital peri-
ods, the trajectory is shown in Fig. 21. The resulting DV
needed to perform the transfer amounts to 0.1298 m/s.
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6. Conclusions

To conclude, in this paper a novel on-board Model Pre-
dictive Controller for optimal formation acquisition and
maintenance in high-drag environment is proposed. The
main advanced contributions to the state of the art are:

� The use of a convexified linear dynamics in Relative
Orbital Elements in a MPC, instead of the classical
cartesian representation in the LVLH reference frame.
The formulation is augmented to control the spacecraft
both relatively and absolutely in a high-drag environ-
ment with respect to a non-decaying orbiting point.
For this scope, the derivation of a dedicated plant
matrix is proposed.

� The introduction of constraints in the convexified for-
mulation which resemble the limitations of mounting a
single low-thrust engine on board, in order to obtain a
feasible control profile for an average micro-satellite.

The developed algorithm demonstrated good flexibility
in various simulations of formation acquisition, reconfigu-
ration, and maintenance for different relative and absolute
orbit shapes. For what concerns fuel efficiency, in the sim-
pler manoeuvres isolating in-plane or out-of-plane control,
the MPC was able to provide a close to optimal result. On
the other hand, when these two components are mixed, or in
particularly challenging scenarios, fuel-optimality can be
improved. This is most evident for satellites B and C in
the tetrahedron acquisition scenario, in which they needed
to acquire both relative eccentricity and relative inclination
components and the trajectories of the four spacecrafts were
optimized at the same time by the MPC. On the other hand,
the DV that was provided for drag compensation and sta-
tion keeping was consistent for all simulated scenarios with
the optimal results provided in the validation. The accuracy
that was provided by the MPC was good in all simulations,
in which the spacecrafts were able to acquire the desired
states and maintain them with an accuracy in the order of
meters. In addition, the collision avoidance constraint
demonstrated to be effective in computing safe trajectories
which respected the threshold distance in situations where
its inclusion was necessary. Finally, limits on thrust module
and angles were always satisfied in all applications and the
slew rate constraint proved to avoid immediate 180� rota-
tions, providing some time to reorientate the engine.
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