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Continuous estimation of power system
inertia using convolutional neural networks

Daniele Linaro 1 , FedericoBizzarri 1,2, DavidedelGiudice 1, CosimoPisani3,
Giorgio M. Giannuzzi3, Samuele Grillo 1 & Angelo M. Brambilla1

Inertia is a measure of a power system’s capability to counteract frequency
disturbances: in conventional power networks, inertia is approximately con-
stant over time, which contributes to network stability. However, as the share
of renewable energy sources increases, the inertia associated to synchronous
generators declines, which may pose a threat to the overall stability. Reliably
estimating the inertia of power systems dominated by inverted-connected
sources has therefore become of paramount importance. We develop a fra-
mework for the continuous estimation of the inertia in an electric power sys-
tem, exploiting state-of-the-art artificial intelligence techniques. We perform
an in-depth investigation based on power spectra analysis and input-output
correlations to explain how the artificial neural network operates in this spe-
cific realm, thus shedding light on the input features necessary for proper
neural-network training. We validate our approach on a heterogeneous power
network comprising synchronous generators, static compensators and
converter-interfaced generation: our results highlight how different devices
are characterized by distinct spectral footprints - a feature that must be taken
into account by transmission system operators when performing online net-
work stability analyses.

In recent years, the fraction of power generation capacity ascribed to
renewable energy sources has been growing at a quickening pace1: this
in turn has caused a substantial increase in the share of power sources
connected to the grid bymeans of a power electronic interface known
as an inverter, hence the name inverter-based resources (IBRs). Com-
pared to synchronous generators, which constitute the major source
of power in conventional power systems, IBRs have a fundamentally
different dynamical behavior, which is expected to have significant
implications for the overall dynamics and stability of the power grid2,3.

In general, power systems are kept stable by limiting frequency
excursions: a common measure of a power system’s capability to
counteract frequency changes is its inertia, which, in conventional
power systems, is related to the kinetic energy stored in the rotating
masses of synchronous generators and immediately available in case
of sudden power imbalances4 (but see ref. 5 for an investigation of the
role played by generator load damping in maintaining stable

synchronization). IBR-interfaced renewable energy sources, on the
other hand, typically do not provide inertia to the power network. A
consequence of the increase in the penetration of IBRs has thus been a
reduction in the amount of power generated by conventional power
plants, which in turn has led to an overall decrease of inertia together
with an increase in its variability6: this might hinder the ability of a
power system to properly counterbalance frequency oscillations due
to active power imbalances7. Thus, besides studyingways tomake IBRs
mimic the inertial response of traditional generators8, significant
research efforts have been devoted recently to the development of
methods for the estimation of the inertia of a power system, some of
whichhave been reviewed in ref. 9. These canbe roughly classified into
two broad categories: (i) algorithms triggered by a considerable dis-
turbance (i.e., a significant event in the power system under study); (ii)
methods that either use the measurements under normal operating
conditions or rely on the transient response to probing signals injected
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to seamlessly stimulate the power system. The approaches in the first
group analyze the measurements of electrical frequency and active
powers after a significant disturbance was detected10,11. When they are
intended for online estimation, finding the exact instant the dis-
turbance took place is of paramount importance, as misjudgments
significantly affect the estimation process. Additionally, these algo-
rithms fail to provide updated inertia values on a continuous basis, as
they need a triggering event12,13. Concerning the second group of
methods, techniques that do need a probing signal to be fed into the
power systems are impractical for large power systems, and the per-
turbing signal does influence the estimation14. On the other hand, the
methodologies employing ambient measurements need to run a sys-
tem identification procedure15,16, or rely on the knowledge of accurate
real-time data17, both potential limitations to the techniques. We refer
the interested reader to18,19 for in-depth reviews on the topic of inertia
estimation in power systems.

As explained in more detail in the Methods, an equivalent way of
describing the inertial characteristics of a power network is by means
of its momentum. Indeed, the inertia of a network comprising N syn-
chronous generators is given by

PN
i= 1 HiSi=

PN
i= 1 Si, whereHi and Si are

respectively the inertia constant and apparent rated power of the i-th
generator: this effectively coincides with the inertia of the center of
inertia (COI) of thenetwork.Momentum, on theother hand, is givenby
2
PN

i = 1 HiSi=f n, where fn is the nominal operating frequency of the
network. While these two measures convey the same type of infor-
mation, momentum has the advantage of being an “incremental”
quantity, i.e., if a device with inertia is added to a power network,
momentum will always increase. The inertia of the COI, on the other
hand, could remain unchanged if the inertia of the newdevicewere the
same of the COI (i.e., the average inertia of the network). In order to be
able to distinguish between these two scenarios—and in line with other
works in the literature20—, in the following we will use momentum
instead of inertia.

In this paper, we develop a framework for the online estimation
of momentum based on a convolutional neural network (CNN)21,22:
CNNs are a particular category of artificial neural networks (ANNs)23

that have become the de facto standard for classification tasks24,
particularly in the field of computer vision25. The inputs to the CNN
are the time series of a set of electrical quantities recorded at a
reduced number of buses of the network, while the output is the
momentum of one or more areas of the power network. Our goal is
therefore to have a CNN learn the relationship between time series of
electrical variables and corresponding values of momentum. Our
approach is entirely data-driven: rather than making assumptions on
the underlying model of a power system (as done for instance in
refs. 15,16,26–29), it uses voltage measurements at a limited number
of buses during normal operation by exploiting the continuous
perturbations attributable to the stochastic fluctuations of loads, i.e.,
of the power balance. Additionally, it provides a continuous esti-
mation and, as such, can be used to predict in real time the
momentum of a power system. Validation of this approach was
performed using synthetic data generated by simulating the well-
known IEEE 39-bus benchmark system modified to appropriately
model the intrinsic fluctuations of the power loads in the network. By
using spectral analysis of the inputs and studying the input-output
correlations of the convolutional layers, we provide a systematic
explanation of how the CNN works, which is crucial for instructing
the amount and typology of data that should be included in the
training set to achieve a desired level of performance.

Results and discussion
We modified the IEEE 39-bus system30 shown in Fig. 1 and used it as a
benchmark to illustrate our approach to the estimation ofmomentum.
The original network, a simplified model of the New England power
system, contains 46 lines and 10 generators, with G1 modeling the
aggregate behavior of a large number of generators: this is reflected in
its nominal power (SG1 = 10GVA), which is one order of magnitude
larger than those of the other generators. To add to the network a
device capable of providing inertia but different from the synchronous
generators, we connected a synchronous compensator at bus 8.
Additionally, each load in the network is stochastic, which has the goal
of perturbing the network from its operating point, thus exposing the

C

Area 4

G1

39

1

3

2

25

G8

37
26

28 29
27

18 17

G9

38

Area 3

G10
30

15

16

21 22

24
G6

35

G5

19

20

34

G4

33

G7

23

36

Area 2G2

G3

9

8

7

6

5

31

12

11
13

10
32

4 14

Area 1

Fig. 1 | Schematic of the IEEE 39-bus system.Different colorshighlight the areas in
which the network was subdivided. The gray dashed lines are transmission lines
connecting distinct areas. Area 1 contains a static compensator (labeled C) not

present in the original network. Area 4 contains only the generator G1, bus 39 and
the associated load.
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richness of its dynamics. More details about the compensator and the
loads are given in the Methods.

Unless stated otherwise, we focus on the estimation of the
momentumof area 1, which contains the generators G2 and G3 and the
compensator, as this provides an excellent test-bench to showcase our
method. Our approach can of course be readily extended to additional
areas or more complex scenarios.

Voltage spectra upon area momentum variation
As a first step towards understanding how a machine learning (ML)
model can learn to associate the dynamics of a given set of electrical
quantities to specific values of momentum, we analyze the spectral
properties of the voltage at a bus of the network. Here, we present
results for the direct axis component of voltage at bus 3 (henceforth
indicated as Vd,3), but analogous considerations are valid for the (direct
andquadrature) voltages at other buses in the network. Figure 2 shows a
summary of the dynamical behavior of Vd,3 for different values of
momentum of area 1, obtained by varying the inertia constant of the
generators G2 and G3, according to the grid displayed in Fig. 2a. The
inertia constant of the compensator connected to bus 8 was fixed at
0.1 s, in order to have a negligible additional impact on the overall area
momentum. The nominal values of the inertia constant of G2 and G3 are
4.33 s and 4.47 s, respectively: we therefore decided to span an interval
of (−1, +1) s with respect to the nominal values for each of the two
generators and sampled the inertia plane in Fig. 2a at the points indi-
catedwithwhite circularmarkers. Each of these points corresponds to a
distinct value of areamomentum, ranging from0.17 to 0.27GWs2.While
the effect of changing the area momentum is not evident on the
example voltage traces shown in Fig. 2b (which are normalized, over
thewholedataset, tohavezeromeanandunitary standarddeviation, see
Methods), it becomes more apparent when looking at the shape of the
distributions of the voltage samples over longer simulation times, as
shown in Fig. 2c. Indeed, the distributions’ means are approximately 0
for all momentum values: this is a consequence of having subtracted,
when normalizing, the voltage value of the power-flow (PF) solution,
which is not affected by the inertia of the generators. The standard
deviation of the distributions, on the other hand, is affected by the
values of inertia, and increases with the overall area momentum, as
shown in the inset of Fig. 2c. The effect of varying area momentum is
even more evident when looking at the average spectra of hundreds of
60 s-long simulations (Fig. 2d, e). In these panels, the colors of the traces
indicate the corresponding pair of inertia constants of G2 and G3,
according to the color code shown in Fig. 2a. We see that higher values
of momentum (i.e., higher inertia constants, exemplified by the orange
and yellow traces) cause a shrinking of the voltage samples distributions
and a shift towards lower frequencies of the peak of the voltage spectra
located around 1Hz. This same shift of the peak is evident when looking
at the spectra in panel e, where the red (blue) traces correspond to
higher (lower) levels of area momentum. Indeed, as will be shown in
greater detail in the following, the frequency band in the range (0.5,
2) Hz is the one where changes in the inertia constant of the synchro-
nousgenerators aremore apparent. These spectra are a footprint of how
generators, in a broad sense, contribute inertia to thepower system. The
frequency location and bandwidth of these magnitude peaks may also
allow the identificationof typesof “equipment” that contribute inertia to
the network, such as synchronous generators, synchronous condensers,
andgrid-forming converters. For instance, one can clearly see that peaks
in the (4, 10)Hz frequency band in Fig. 2d, e do not change substantially
when the inertia ofG2 andG3 is varied: indeed, thesepeaks are related to
inter-area oscillation modes31 and, as will be shown in the following, are
mainly due to the inertia of synchronous compensators.

Two-value momentum estimation
As a first test of the capability of a CNN to correctly estimate the
momentumof a power system,we trained a networkwhose taskwas to

differentiate between two well-separated values of momentum: we
reasoned that by training a CNN toperform this simpler task,wewould
be able to gain an understanding of how the network solves this pro-
blem, and in particular which features of the input are crucial for a
successful prediction. The two momentum values are the ones indi-
cated with magenta crosses in Fig. 2a and correspond to the average
momenta of the four low- (high-)momentum points indicated with
blue (red) square markers in the same panel, i.e., 0.176 GWs2 and
0.266GWs2. The reason for choosing four relatively close points
instead of just one lies in the fact that we wanted to expose the CNN,
during training, to different combinations of inertia constants of the
generators G2 and G3 that lead to relatively similar values of momen-
tum, in order to maximize the generalization capabilities of the CNN.
The inertia constants and corresponding momenta used for the
training set are summarized in Table S1. Figure 3a shows five normal-
ized voltage traces for each of the low- and high-momentum condition
(green and magenta traces, respectively), while the overall distribu-
tions of the training traces are shown in Fig. 3b: these display a clear
signature of the effect of increasing area momentum on the voltage
dynamics. This is further exemplified in the power spectra shown in
Fig. 3e: as discussed earlier, the most marked differences are in the
frequency range (0.5, 2) Hz. The validation and test sets were also
composed of eight different combinations of inertia constant each and

Fig. 2 | Time- and spectral-domain analyses ofVd,3. a Values of inertia constant of
the synchronous generators in area 1 and corresponding area momentum (enco-
ded in shades of gray according to the colorbar on the right). White circular mar-
kers indicate all the HG2

and HG3
pairs used to build the training set. Colored

circular markers on the diagonal correspond to the example traces shown in the
following panels, while blue and red square markers indicate additional values of
momentum used for training a simpler CNN, with the magenta crosses being their
average values (see main text). b Example normalized voltage traces for the six
values of area momentum on the diagonal of the grid in a. c Distributions of the
normalized voltage traces shown inb computed over several hundreds of 60 s-long
simulations. Inset: standard deviation of the distributions as a function of area
momentum. d Average power spectra of the voltage traces in b. e Average power
spectra of the voltage traces corresponding to the points indicated with square
markers in a.
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averaged to give low and high momenta: for the validation and test
sets, the values of the inertia constant for the two generators were
offset by 67ms and 133ms, respectively. In this configuration, the CNN
only has one input: the direct axis component of the voltage at bus 3,
i.e., Vd,3. The results of the training are shown in Fig. 3 : panel c displays
the evolution of the training and validation losses as a function of the
training epoch, while panel d shows violin plots of the prediction of the
network on the test set (mean absolute percentage error (MAPE) equal
to 1.79%). These results indicate that the CNN is capable of learning the
relationship between voltage dynamics and corresponding momen-
tum. Similar results can be obtained by training a CNN using Vq,3, i.e.,
the quadrature axis component of the voltage at bus 3, as shown in
Fig. S2b.

To comprehend the mechanism at the basis of the network’s
capability to correctly predict the area momentum, we performed a
similar analysis as the one described in ref. 32, which consists in
building so-called “input-feature unit-output correlation maps”: these
maps measure the correlation between the output of a given unit (a
neuron) in oneof the convolutional layers of theCNNand the power of
the samples in the neuron’s receptive field (RF), i.e., the subset of
samples in the whole 60 s-long trace that affects the output of each
unit in a convolutional layer (see ref. 33 for a thorough explanation of
RFs and34 for a practical implementation). This analysis is performed
for different frequency bands: thus, given that changes in area
momentum have a clear effect on the power spectra of the input sig-
nals (see Figs. 3e and 2d), correlation maps are a powerful tool to
visualize the frequency bands the CNN is most sensitive to when pre-
dicting area momentum. Briefly, to compute a correlation map, the
input signal is bandpass-filtered in one of several frequency bands in
the range (0.1, 20) Hz. The choice of this frequency band is dictated by
the location in the frequency domain of the electro-mechanicalmodes

of an electrical power system that display sensitivity to the inertia of
synchronous machines/motors and of the virtual inertia provided by
inverter-based resources: indeed, these are all located well within the
20Hzupper frequency limit we have chosen. For each frequencyband,
one computes the squaredmean envelope for each receptive field in a
given layer and then calculates the correlation between the envelope
and the output of the same layer in response to the unfiltered input
signal. For a more detailed description of how to compute correlation
maps, the reader is referred to ref. 32. The results of this analysis are
summarized in Fig. 3f-h: panel f shows the correlationmeasured in the
trained network as a function of the frequency for each of the 64 filters
of the last convolutional layer before the dense layer, sorted according
to the correlation values at a frequency of 1.1Hz. High correlation
values can be observed in two non-overlapping bands: the first one
covers approximately the range (0.5, 1) Hz, while the second one
covers the range (1, 3) Hz. However, high correlation values in the
former range are likely to be a by-product of the fact that the signal is
stronger in that frequency band: this is confirmed by almost equally
high correlation values in the map obtained with the untrained net-
work (i.e., a networkwith the same architecture, but with randomly set
weights) shown in Fig. 3g. This is further confirmed by panel h, which
shows the mean absolute value of correlation over all the filters as a
function of the frequency, for the trained (solid red line) and untrained
(dashed green line) networks, together with their difference (solid
black line): this last trace, in particular, shows amajor correlation peak
around approximately 1.2 Hz, corresponding to the presence of the
peak in the spectra of the low-momentum traces (green trace in
Fig. 3e). These results suggest that the features of the input signals that
matter the most for momentum prediction lie in the frequency range
that starts just below ~ 1 Hz and extends up to ~3Hz. As shown in
Fig. S2, this correlation analysis was carried out on CNNs trained to

Fig. 3 | Training a CNN for area momentum estimation. Example traces (a) and
corresponding distributions (b) for the low- and high-momentum cases (green and
magenta traces, respectively). c Evolution of the training and validation losses as a
function of the training epoch: no overfitting is apparent. d Violin plots of the CNN
predictions on the test set data indicating a good agreement between target
and predicted values. e Power spectral densities (PSDs) of the voltage traces
showing clear differences between the momentum levels in the band (0.5, 2)Hz.

f,gCorrelationmaps of the last convolutional layer for the trained (f) anduntrained
(g) network, sorted according to the correlation values in the 1.1 Hz band and with
the frequency range subdivided into 60 logarithmically-spaced bins. See Fig. S1 for
the effect on correlation magnitude of changing the number of subdivisions.
h Mean absolute correlation computed over all filters for the trained (solid red
trace) and untrained (dashed green trace) networks. The black trace is the differ-
ence between the two.
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predict themomentumvalues of either area 1 or area 2 using either the
direct or quadrature axis components of the voltages at bus 3. In all
cases, the CNN was capable of correctly predicting the momentum—

albeit with significantly higherMAPEs in the case of area 2, see Fig. S2c,
d—, and with correlation maps characterized by strikingly similar
structures in all cases.

To further validate our hypothesis that distinct frequency bands
contribute differentially to momentum prediction, we filtered the
input voltage traces with band-stop filters that selectively removed
non-overlapping frequency bands covering the range (1, 20) Hz. These
filtered traces were then fed to the CNN and the accuracy of the pre-
diction was compared to that obtained with the original unfiltered
traces, with the aim of establishing which frequency band has the
highest impact on the output of the CNN. The results of this experi-
ment are shown in Fig. 4: the top panel contains a summary of the
accuracy of the prediction for each of the removed frequencies. In
most cases, the prediction is very close to the one obtained with the
unfiltered (broadband) signal, except for the frequency bands (0.7,
1) Hz, (1, 1.5) Hz, and (1.5, 3) Hz. Removal of the first band from the
input traces causes a worsening of the prediction for high values of
momentum (purple markers and error bars, indicating mean and
standard error of the mean (SEM) of the predicted values, respec-
tively), while removing the last two causes a worsening of the predic-
tion at low values ofmomentum (orange and yellowmarkers and error
bars). The bottom panel shows, for each frequency band removed
from the input traces, the corresponding R2 score, i.e., the agreement
between the prediction in the stopband case and that of the broad-
band signal: perfect agreement would correspond to an R2 of 1, while

lower values indicate progressively worse predictions. The R2 scores
are superimposed to the average power spectra corresponding to the
low and high levels of momentum and clearly indicate that the most
important frequency bands for an accurate prediction are those in the
ranges (0.7, 1) Hz, (1, 1.5)Hz, and (1.5, 3) Hz with the former playing the
most crucial role, in agreement with the results shown in Fig. 3.

Taken together, these results indicate that a CNN trained on vol-
tage traces recorded at one bus is capable of correctly estimating the
area momentum, and it does so by tuning the filters in its preproces-
sing pipeline to “emphasize” those frequency bands of the input sig-
nals that convey themost information about themomentumof a given
area of a power network.

Momentum estimation with added compensators
So far, area momentumwas varied by changing the inertia constant of
the synchronous generators G2 and G3. However, as mentioned pre-
viously, a compensator was connected to bus 8 of the IEEE 39-bus
network (see Fig. 1) with the aimof having an additional device capable
of addingmomentum to area 1. In the simulations described so far, the
inertia constant of this compensator was set to 0.1 s, thus making its
contribution to area momentum negligible.

The peculiarity of compensators is that they can induce inter-area
oscillations in a power network that are reflected in peaks in the power
spectral density (PSD) around 5Hz, i.e., in a frequency range that is not
used by the CNN trained earlier to predict the momentum: we there-
fore expect the CNN to make large prediction errors when the area
momentum is varied by acting on the compensator’s inertia constant
rather than on the synchronous generators’ one. To directly test this,
we ran simulations with the parameters listed in Table S2: the lowest
and highest area momenta (first and fourth row) correspond to the
values used for the test set and serve as a “control” group, while the
inertia constants in the second and third row lead to the same value of
areamomentumby increasing either the inertia constants ofG2 andG3
(second row) or the inertia of the compensator from0.1 s to 6.1 s (third
row). This relatively higher increase is due to the fact that the rated
power of the compensator (100MVA) is significantly lower than that of
either G2 and G3 (700MVA and 800MVA, respectively). The PSDs
corresponding to these four conditions are shown in the top part of
Fig. 5a: blue and orange traces are the low and highmomenta used for
the test set, respectively, while the green (magenta) trace corresponds
to a momentum of 0.197 GWs2 with low (high) compensator’s inertia
constant. The shift in the peak around 5Hz and the separation of the
spectra at frequencies above ~6Hz due to the increase in compensa-
tor’s inertia are evident in the magenta trace, while the other three
traces overlap in that frequency range. The bottom part of Fig. 5a
shows enlarged versions of the PSDs: in the (0.4, 1.5)Hz range, the
magenta and blue traces effectively overlap, since the inertia constants
of G2 and G3 in these two conditions are very similar. In the (8, 15)Hz
range, the blue, orange and green traces are identical, while the
magenta one shows a prominent peak around 11Hz and has an overall
lower power spectrum.

As expected, a CNN trained without variable compensator inertia
can correctly estimate the areamomentumwhen the inertia constants
of G2 and G3 are varied (green squaremarker in Fig. 5b), but not when
the inertia of the compensator is set to 6.1 s: indeed, in this latter case
the prediction of the CNN is 0.184 ± 0.003GWs2 (mean± SEM,
magenta square marker in Fig. 5b) when the actual momentum is
0.197GWs2, as detailed in Table S2. To account for the presence of a
compensator in area 1, we therefore expanded the training set to
include a condition in which the inertia constant of the compensator
was increased to 5 s: in other words, we added to the grid shown in
Fig. 2a an additional “dimension” (the third inertia constant), thus
effectively doubling the amount of data used for training the CNN. The
training with this increased amount of data evolved in a similar fashion
to that shown in Fig. 2c and the corresponding CNNhad aMAPE on the

Fig. 4 | Effect of removing selected frequency bands of the input on the accu-
racy of the CNNprediction. a Predictedmomentum valueswhen non-overlapping
frequency bands were removed from the input voltage traces (error bars: mean ±
standard deviation). b R2 score between the predictedmomentum values obtained
when no frequency was removed from the input and those obtained when each
frequency bandwas filtered out, superimposed to the average PSDs of the low- and
high-momentum conditions.
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test set of 0.87%, indicating once again that a convolutional neural
network is a suitable tool for learning the relationship between net-
work dynamics and corresponding momentum. Additionally, this
second CNN is capable of correctly predicting the momentum in both
conditions corresponding to an area momentum of 0.197GWs2, as
detailed in Table S2: when the inertia of G2 and G3 is varied, while
leaving that of the compensator equal to 0.1 s, the prediction of the
CNN is 0.192 ±0.013GWs2 (magenta circular marker in Fig. 5b); on the
other hand, when the compensator’s inertia is increased to 6 s, the
prediction is 0.197 ±0.002GWs2 (green circular marker in Fig. 5b),
much closer to the real value than what was achieved with the
first CNN.

To better understand the changes in the “tuning”of the filters that
make up the preprocessing part of the CNN, we resorted once again to
the correlation analysis introduced earlier. The results for the CNN
trained on the dataset including the variable compensator data are
shown in Fig. 5c, d (filters sorted according to the correlation values in
the frequency band around 1.1Hz and 10Hz, respectively). These
correlation maps highlight how the CNN is sensitive not only to the
(1.5, 3) Hz frequency range, but also to frequencies above approxi-
mately 7Hz, which indeed correspond to a range where the presence
of the compensator causes a significant downward shift of the spec-
trum. As discussed for Fig. 3, high correlation values in the range (0.5,
1) Hz are due to the strong signal components that are present in the
spectra for all values of momentum: these reliably drive the output of
the preprocessing pipelines even in the case of the untrained network
(see Fig. 3g) and are therefore not used by the CNN to perform the
classification. Overall, these results indicate that, in order to achieve as
accurate a prediction as possible, a CNN should be trained with data
that cover as many “spectral conditions” as possible, as this is neces-
sary to have an adequate tuning of the filters that constitute the pre-
processing pipeline of the network.

Continuous momentum prediction
So far, in order to gain a mechanistic understanding of how a CNN can
learn to predict the value of area momentum, we have considered
networks trained on a limited subset of the data shown in Fig. 2. In
order to extend our approach, we used the full dataset (i.e., the grid of
points shown in Fig. 2a) to train a CNN capable of generating a con-
tinuous estimation of area momentum in the range (0.17, 0.28) GWs2.
We included in the training dataset not only the direct voltage recor-
ded at bus 3, but also the ones recorded at buses 14, 17 and 39.While it
is still possible to use only one voltage and train sufficiently accurate
CNNs, the accuracy of the prediction increases substantially when
using multiple voltage traces, while not compromising the practical
feasibility of this choice. Figure 6 shows the evolution of the loss
function during training (top panel) and the performance of the CNN
on the test set (bottom panel). As it can be seen, the network does not
overfit and learns to accurately predict the area momentum (MAPE on
the test set: 2.67%). Interestingly, the performance of the CNN is
slightly lower only in the center of the momentum range: this is
probably due to the fact that several combinations of generators’
inertia can lead to the same values of momentum in the range (0.21,
0.23) GWs2, thus testing the generalization capabilities of the network.

To probe the extent to which this network can predict stepwise
changes in area momentum, we performed the experiments shown in
Fig. 7, consisting of four different conditions (one for each panel):
(A) area momentum changed by changing the inertia of the area

generators;
(B) area momentum constant while changing the inertia of the area

generators;
(C) area momentum increased by increasing the inertia of the area

generators;
(D) area momentum increased by the same values as in (C) but with

increases in the inertia of the area compensator.

Fig. 5 | Momentumpredictionwhen a compensator’s inertia constant is varied.
a Top, PSDs of the voltage traces in the various conditions outlined in Table S2.
Notice how up until ~1.5 Hz the magenta and blue traces overlap, while above this
frequency value the blue trace coincides with the green one. Bottom, enlarged
views of the PSDs in two frequency bands important for the CNN operation.

b Square (circular) markers indicate the momentum values predicted by a CNN
trainedwithout (with) variable compensator data. Marker colors correspond to the
conditions shown in a (error bars: mean ± standard deviation). c, d Correlation
maps sorted according to the correlation values in the 1.1 Hz (c) and 10Hz fre-
quency bands (d).
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The exact values of inertia of the generators G2 and G3 and of the
compensator in area 1 are reported in Table S3. For each of the four
conditions, a 3 hour-long simulation was performed, during which the
synchronous generators’ or the compensator’s inertia was changed
twice, leading to three 1 hour-long intervals at constant momentum.
The traces in Fig. 7 are a moving average (in steps of 1 s) of the pre-
dictions of the CNN: as it can be seen, the quality of the prediction is
excellent in all conditions, except for panel d, where the area
momentum is increased by raising the compensator’s inertia from0.1 s
(lowest value of momentum, 0.2206GWs2) to 2.5 s and 5 s (corre-
sponding to momentum values of 0.2286 and 0.2369GWs2, respec-
tively). The reason for this failure lies in the fact that varying the
compensator’s inertia changes the spectra of the voltage traces in a
frequency range that is overlooked by the CNN when predicting the
momentum, as discussed earlier for the simpler case of low and high
values ofmomentum (see Fig. 5). To solve this problem,we augmented
the training set by including two additional values of compensator’s
inertia, namely 2.5 s and 5 s: this effectively tripled the amount of data
used in the training, as the grid shown in Fig. 2a was replicated for each
of the two additional values of compensator’s inertia. As expected, a
CNN trained on this larger dataset (MAPE on the test set: 2.24%) is
capable of correctly predicting changes in areamomentum evenwhen
only the inertia of the compensator is increased (green traces in Fig. 7).

As previously, we resort to spectral analysis of the voltage traces
to justify the necessity to include in the training set additional simu-
lations at varying values of compensator inertia. The results of this
analysis are shown in Fig. 8: panel a contains representative spectra for
different values of generators’ and compensator’s inertia. For each
value of compensator’s inertia, the red traces are the spectra of the
voltage traces at lower momentum (i.e., 0.17, 0.18 and 0.19GWs2 in
panel b), that are obtained when the inertia of each generator is set at
its lowest value. Increasing the generators’ inertia causes a shift in the
peaks of the spectra in the range (0.5, 1.5)Hz, thus leading to the blue
traces (highest values ofmomentum,0.27, 0.28 and0.29GWs2 in panel
b). On the other hand, increasing the compensator’s inertia from 1 s to
6 s causes a leftward shift (i.e., towards lower frequency values, as
exemplified by the arrow in panel a) of the peak in the spectra located

between 5 and 20Hz (different shades of the red and blue traces).
Figure 8b shows spectrograms obtained for three different values of
compensator’s inertia (i.e., 1, 3 and 6 s). In these panels, each row
corresponds to a PSD like the ones shown in panel a, with warmer
(cooler) colors indicating higher (lower) values of the PSD. The inertia
of the compensator is fixed at the value indicated in the upper right
corner of each panel, while the area momentum is varied by changing
the inertiaof the generatorsG2 andG3. This results in a leftward shift of
the second PSD peak as the momentum is increased, as shown by the
blued dashed line. Thewhite dashed line shows the location of the first
significant peak of the PSD, which remains unchanged despite changes
in generators’ inertia. The white arrowhead indicates the location of
the high-frequency peak modulated by the value of inertia of the
compensator. Figure 8b clearly highlights how the low- and high-
frequency peaks are differentially modulated by changing either the
generators’ or the compensator’s inertia. Finally, Fig. 8c shows the
location of the high-frequency peak as the compensator’s inertia is
increased: the monotonicity of this curve allows the CNN to correctly
learn the relationship between voltage spectra and momentum. The
spectra in Fig. 8 are from the direct voltage traces recorded at bus 3,
but analogous considerations are valid for the other voltages used to
train the CNNs used in this section.

These results once more highlight the capability of a CNN to
correctly predict the area momentum in several operating scenarios,
assuming that the network has been trained on an appropriately
constructeddataset. In particular, having shown that the convolutional
part of the CNN performs a linear filtering of the input traces that

Fig. 7 | Area momentum prediction upon step-wise inertia variations. In all
panels, the black trace is the value of momentum predicted by a CNN trained on a
datasetwhere the compensator’s inertiawasfixedat 0.1 s, while the green traces are
the predictions of a CNN trained on an extended dataset in which, for each pair of
inertia values shown in the grid inFig. 2a, three values of compensator’s inertiawere
considered, namely 0.1 s, 2.5 s and 5 s. aDifferent values ofmomentumobtained by
changing the inertia of G2 and G3. b Fixed value of momentum obtained for dif-
ferent combinations of the inertia of G2 and G3. c Different values of momentum
obtained by progressively increasing the inertia of G2 and G3. d Same values of
momentum as in c, obtained by increasing the inertia of the compensator in area 1.

Fig. 6 | Training a CNN to predict continuous values of area momentum. Top
panel: training and validation loss as a function of epoch number. Bottom panel:
mean and standard deviation (circular markers and error bars, respectively) of the
CNN predictions on the test set. The number of distinct values of momentum to
predict is equal to the number of dots in the grid of Fig. 2a and adds up to 36.
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preserves the most information-rich parts of the spectra, failure to
include in the training set operating conditions that activate specific
frequency bands will result in incorrect predictions when a significant
component of the spectrum is indeed present in such fre-
quency bands.

We have presented a CNN-based approach for continuously esti-
mating the momentum of a power system, by framing the estimation
problem as a classification task in which the inputs to the CNN are the
time series of a set of electrical quantities recorded at a reduced
number of buses, while the output is the momentum of one or more
areas of the power network. The CNN architecture used here was
inspired by35 and modified to take into account the peculiarities of
power systems’ data. We trained CNNs that, given 60 s of voltage at a
limited number of buses (four at most), can estimate the momentum
of an area of a power network. We have shown that the weights of the
convolutional layers are tuned to exploit peculiar spectral features of
the dynamics of the power system in order to extract the momentum
values. This is a relevant aspect since it is oftentimes difficult to obtain
a complete understanding of the mechanisms underlying the func-
tioning of a CNN. In the test-cases considered in the present study, the

MAPE on the prediction rarely exceeded 4%, indicating that CNNs can
be successfully employed in this type of tasks. The advantage of this
approach overmore conventional inertia estimation algorithms is that
it provides a continuous prediction and hence does not require net-
work events to update its output. In particular, our method is capable
of rapidly detecting changes in area momentum (as shown in Fig. 7)
and can be used when these are attributable to both changes in gen-
erators’ and/or compensators’ inertia (see Fig. 8).

By taking a reductionist approach, we have shown that the
mechanism at the basis of the functioning of the CNN consists in a
linear filtering of the inputs by the convolutional preprocessing part
that preserves the most salient spectral features of the input traces
(see Figs. 3 and 4), which can then be efficiently classified by the dense
part of the CNN. The major advantage in using a CNN to perform this
task lies in the fact that the frequency bands that carry the most
information are determined by the optimization algorithm during
training, rather than having to be selected “by hand”.

Impact of additional devices on momentum estimation
A direct consequence of this data-driven approach, however, is that
the addition to the power network of a device that was not present
during training gives no guarantee that the CNNwill be able to predict
the areamomentum correctly. To illustrate this point, we replaced the
synchronous generator G3with a virtual synchronous generator (VSG),
i.e., a device that emulates the mechanical and partially the electrical
properties of a synchronous generator, thus enabling IBR-based
resources to mimic, among other things, the inertial characteristics
of synchronous generators36. As in the previous experiments shown in
Fig. 7, we tested three different values of area momentum, and swit-
ched between them by instantaneously changing the inertia of both
the generator G2 and the VSG at t = 60 and 120 min. Figure 9a shows
the average PSDs of the voltage at bus 3 for each momentum value in
the presence of the VSG (black traces) compared to the normal con-
figuration of the network (i.e., withG2 and G3, red traces): the presence
of a VSG significantly alters the spectrum in two frequency bands,
around 1.5Hz and 5Hz. In particular, the location of the 1.5 Hz peak
varies with momentum, while the other two low-frequency peaks
located at ~0.6Hz and ~1 Hz,whichare alsopresent in the red traces, do
not changeposition. As a consequence, theCNN is capable of correctly
predicting the value of area momentum only when the red and black
PSDs overlap for frequencies < 1Hz, as shown in Fig. 9b, where the
dashed magenta traces are the correct values of momentum and the
black trace is the moving average of the CNN prediction. However,
what this simple example clearly shows is that different devices will
typically add their characteristic “signature” to the spectrum, therefore
making our method applicable to other network configurations and
power devices, provided that the user performs a preliminary assess-
ment of the effect(s) of changing a device’s parameters on the spectral
contents of the signal(s) used for estimating the area momentum.

Robustness to load damping variability
An important parameter affecting system stability in power networks
is load damping37: even though it appears in the swing equation that
models the behavior of synchronous machines, damping cannot be
changed freely by transmission system operators (TSOs), while at the
same time being difficult to estimate in real-world scenarios. There-
fore, it is important to ascertain whether a CNN trained on a dataset
generated with a certain amount of load damping is robust, in the
prediction phase, to variations in its actual value. All generators in the
IEEE 39-bus network have a default value of load damping equal to 0:
we varied this parameter in the range D = (0, 4) while keeping the
inertia of the generators fixed and tested whether a previously-trained
CNN (i.e., one trained on a dataset generated with D =0) would cor-
rectly predict the value of area momentum. As shown in Fig. 10a, the
MAPE of the prediction is only slightly affected by changes in load

Fig. 8 | Spectral analysis of the data used for training the CNN. a Example PSDs
for different momentum values: see the text for an explanation of the color code.
b Spectrograms in the (0.1, 20) Hz frequency range for different values of
momentum and for the three values of compensator’s inertia. The white and blue
dashed lines indicate the position of the two low-frequency peaks of the PSDs and
are fit of the actual positions with functions of the form y = axb, with a and b
parameters fit to the data. White arrowheads are placed at the location of the high-
frequency peak of the PSDs. c The location of the high-frequency peak displays a
monotonous dependence on the compensator’s inertia.
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damping, which indicates that a CNN trainedwith a specific (or for that
matter, unknown) value of load damping is robust to changes in its
value that arewell within the rangeofwhat onewould expect tohave in
a real power network. Once again, this can be explained by looking at
the PSDs shown in Fig. 10b: these clearly show that the effect of load
damping is either limited to very low frequencies (i.e., up to approxi-
mately 0.1 Hz) or consists in modulating the amplitude of one of the
peaks of the PSD. Given that, aswehave shown before, the CNNmainly
relies on the location of the peaks, rather than on their amplitude,
uncertainties in loaddamping are not expected to negatively affect the
estimation of area momentum.

Comparison with other ML methods
Previous research has investigated the application of ANNs38,39 in
general and CNNs in particular40 to the problem of inertia estimation.
While similar in the overall approach and accuracy of the prediction,
our method presents two clear advantages: first, it is entirely data-
driven, as it relies exclusively on the voltage fluctuations attributable
to the stochasticity of power loads. This is not the case with other
methods, such as40, which instead require probing signals to perturb
the system from its steady state operation point. Secondly, for the first
timeweprovide an in-depth analysis of themechanismsunderlying the
functioning of the CNN, thus providing crucial guidelines for the
choice of themost appropriate training set to achieve a desired level of
accuracy in the prediction of network momentum.

While the approaches just mentioned focus specifically on the
estimationof network inertia, several “general purpose”MLalgorithms
can be used for tackling regression problems: among these, we chose
multi-layer perceptron (MLP), support vector regression (SVR), kernel
ridge, K-nearest neighbor and random forest for a direct comparison in
terms of accuracywith our CNN-based approach. Othermethods, such
as linear regression, either gave unsatisfactory results or required, in
our hands, excessive additional tuning. For this comparison, we used
as training data the normalized Vd,3 of the low- and high-momentum
dataset (see Fig. 3): importantly, in order to make the comparison as
fair as possible, all algorithmswere trainedwith exactly the same input
data used for the CNN and, when possible, we (approximately) mat-
ched the number of parameters of the model with those of the CNN.
The results of this analysis are presented in Table S4: as it can be seen,
the approach based on CNN is superior to all other testedmodels. The
most obvious reason behind the worse performance of these models
might reside in the fact that they are not specifically intended tohandle
time series data: preprocessing the input data, by applying for instance
Fourier and/or dimensionality-reduction techniques, might improve
their performance, but was outside the scope of this work.

Outlook
As mentioned previously, our method employs voltage data from a
limited number of buses of the network: investigating in detail heur-
istics for the choiceof bus andelectrical variables thatwill give thebest
prediction accuracy is outside the scope of this work as it ultimately
depends on the power network topology and its subdivision in areas:
nonetheless, recent findings on the theoretically-expected statistics of

Fig. 10 | Loaddamping impactonCNNpredictionaccuracyandvoltage spectra.
a Violin plots of the predicted values of momentum when the load damping of
generators G2 and G3 is increased from 0 to 4. Each violin represents the dis-
tribution of N = 300 predicted momentum values, with the inner dashed lines
indicating, from bottom to top, the 25th, 50th and 75th percentile, respectively.
The red line represents the correct value of momentum, obtained with values of
inertia of G2 and G3 equal to 4.33 s and 4.47 s, respectively. The circularmarkers are
the values ofMAPE, indicated on the right axis.b PSDs ofVd,bus3

for different values
of loaddamping ofG2 andG3. Insets show the PSD in those regionswhere the effect
of varying generators load damping is more prominent.

Fig. 9 | Momentum prediction in the presence of a VSG. a Black traces, PSDs of
the voltage at bus 3 of the IEEE 39-bus network when G3 is replaced by a VSG. Red
traces, PSDs of the same signal in the default power network, i.e., with the syn-
chronous generator G3 present. The momentum values indicated in each panel
have been obtained by changing either the inertia of the generator G2 and of the
VSG (black traces) or the inertia of the generators G2 and G3 (red traces). Empty
(filled) arrowheads indicate the positions of PSD peaks in the black traces that (do
not) change position when area momentum is varied. b Momentum prediction by
the CNN: the black trace is the moving average of the predicted momentum, while
the magenta dashed lines indicate the correct value of area momentum. The pre-
diction is accurate only when the black and red traces in panel a overlap for fre-
quencies up to ~1 Hz.
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each electrical variable41 will allow choosing the best set of variables to
use during the training and prediction phases.

Additionally, in this workwe have not taken into account any daily
or seasonal variations in the stochastic loadspresent in the network. As
these might play an important role in determining the overall level of
momentum present in a power network, future work will be focused
on modeling these aspects more accurately in order to gain a better
understanding of the potential changes to our method required to
make it applicable to a broader range of operating conditions. This
notwithstanding, we believe that our method is robust and flexible
enough to be employed with success in a vast number of power net-
work configurations and has broad applicability to real-world
scenarios.

Methods
Theoretical bases
The kinetic energy stored in a synchronous generator can be expres-
sed asEkin =

1
2 Jω

2
n, where J is themomentof inertia of the generator and

ωn is the rated angular frequency of the rotor. Starting from this
equation, one can define several quantities that measure different
characteristics of a synchronous generator. The first one we consider
here is the inertia constant, which is defined asH = Ekin/S, where S is the
rated power of the generator. H is measured in seconds and gives an
indication of the time over which a synchronous generator is capable
of providing/absorbing its rated power solely using the kinetic energy
of its rotating masses17,42.

A simplified but accurate description of the electro-mechanical
dynamics of a one-mass generator is given by the swing equation43

d
dt

f
f n

� �
=
Pm � Pe

2HS
� D

Δf
f n

=
Pm � Pe

2Ekin
� D

Δf
f n

, ð1Þ

where f and fn are the actual and rated frequencies of the generator, Pm
and Pe are itsmechanical and electrical powers, respectively, Δf = f − fn,
and D is the load damping coefficient. Equation (1) clearly shows that
the inertia constant gives a measure of how fluctuations in power lead
to frequency changes: a large inertia constant (or, analogously, a large
Ekin) allows a synchronous generator to effectively limit frequency
fluctuations immediately after electrical power imbalances (mechan-
ical power is usually assumed to be constant in the short term).
Equation (1) can be re-written as

df
dt

=
Pm � Pe

M
� DΔf , ð2Þ

whereM = 2HS/fn is related to the angularmomentumof the generator
(to bemore accurate, in classical mechanics the angularmomentum is
equal to L= 1

2 Jω=M=ð4πÞ, and thus its unit of measure is the same of
M, i.e., kg ⋅m2 ⋅ s−1 or W ⋅ s2). These three quantities, H, M and Ekin =HS
(which has the units of measure of an energy, i.e., kg ⋅m2 ⋅ s−2 or W ⋅ s),
are related to each other and fundamentally provide the same infor-
mation: therefore, they can be used (almost) interchangeably when it
comes to describing the dynamics of a power system, and in particular
its ability to counteract the inevitable power imbalances thatwill occur
in the network. Following what was done in20, we decided to use in this
work the momentum M to describe a power network.

Subdivision of a power network in areas
Our approach for estimating themomentumof a power network relies
on subdividing it in a finite number of areas, as previously done in
other works11,20. The reason for this is twofold: first, often power net-
works canbe “naturally” subdivided in tightly connected sub-areas that
are loosely interconnected with the rest of the network. Secondly,
combining several synchronous generators together reduces the
number of predictions that the CNN has to make, thus increasing its

capability to accurately learn the relationship between system
dynamics and momentum. The momentumMi of the i-th area is given
by

Mi =
2
f n

XNi

j = 1

HjSj, ð3Þ

whereNi is the number of synchronous generators in area i, andHj and
Sj are the inertia constants and rated powers, respectively, of the j − th
generator in area i. Unlike the approach proposed in ref. 20, we do not
impose any constraint on how sub-areas are defined: such subdivision
should be determined on a case-by-case basis and, if one is interested
in the momentum of a specific synchronous generator, they can
“collapse” an area in such a way that its momentum will coincide with
that of the generator in question. Indeed, this is what is done in our
subdivision of the IEEE 39-bus network shown in Fig. 1, in which area 4
contains only the generator G1: in our specific case, this was done
because we assume area 4 to have a known constant momentum.

Synchronous compensator
A synchronous compensator with a nominal power SC = 100MVA was
connected to bus 8 of the IEEE 39-bus network. Its active powerwas set
to 0MW and its voltage set point was chosen such that its reactive
power is null at PF, thus not altering the operating point of the network
but contributing the desired level of inertia. Tofind the appropriate set
point, before each time-domain simulation an optimization was per-
formed tominimize the reactive power absorbed by the compensator,
which is given by

Qðvg Þ= Im ðVd + iVqÞ � ðId + iIqÞ
n o

, ð4Þ

where Vd (Id) and Vq (Iq) are the direct and quadrature components of
the compensator’s voltage (current), respectively, and the bar indi-
cates the complex conjugate. vg sets the operating point of the com-
pensator as a fraction of SC. The optimizationwas performed using the
function fsolve of SciPy44.

Virtual synchronous generator
A virtual synchronous generator (VSG) is a grid-forming control
scheme that simulates the dynamical behavior of a synchronous
machine bymeans of a power converter. The goal is to provide inertia,
damping, primary frequency control and voltage control to a network
with a significant penetration of renewable energy sources and
therefore reduced inertia. For the experiments shown in Fig. 9,weused
themodel of VSG described in ref. 45: briefly, it provides virtual inertia
by implementing the swing equation with frequency droop control
and contains a phase-locked loop (PLL) and several control algorithms
that together replicate the dynamical behavior of a conventional syn-
chronousmachine. Importantly, the vastmajority of VSGs that provide
synthetic inertia reproduce exclusively the mechanical behavior of a
synchronous machine (i.e., the swing equation), while failing to repli-
cate its full electro-mechanical behavior due to windings, including
dampers. The VSG model in ref. 45 belongs to this category and
therefore implements only the swing equation, leading to a different
spectral footprint with respect to a real synchronous generator.

Stochastic loads
All the loads in our version of the IEEE 39-bus network are stochastic:
the active power absorbed by each load is described by an Ornstein-
Uhlenbeck (OU) process with mean equal to the value of the original
load, standard deviation equal to 0.5% of the mean and a rate of mean
reversion of 2 s. We chose OU processes because they have a power
spectrum that is a more accurate model of the stochastic variability of
power loads than Gaussian white noise46,47. The variance of the OU
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processes is sufficiently low so that the fluctuations of the stochastic
loads can be viewed as a small-signal w.r.t. themean value of the latter.
Hence, it is possible to relate the stochastic variations of all the vari-
ables of the power-system model to the fluctuations of the stochastic
loads by exploiting the linearization of the power-system model at its
PF solution26,48. In particular, the linearized power-system model,
augmented by the stochastic differential equations (SDEs) that gen-
erate the OU processes from a proper set of uncorrelated Wiener
processes, gives rise to a set of SDEs which is linear in narrow sense49.
Under this hypothesis, each state variable of the power-system model
turns out to be characterized by a Gaussian distribution. The asymp-
totic mean of this distribution is given by the value assumed by the
state variable at the PF solution. The variance, in turn, depends on the
variance of the OU processes. This holds also for the algebraic vari-
ables of the power-systemmodel, i.e., those variables that are not state
variables41. In particular, it holds for all the bus voltages, thus high-
lighting their relationship with the stochastic fluctuation of the loads.

Convolutional neural network architecture
Artificial neural networks (ANNs) are a class of machine learning
algorithms23 that employ the supervised learning paradigm to learn the
mapping relationship between input and output values using a large
number of example pairs. The basic building block of ANNs is the
perceptron50, which loosely models real neurons by transforming a
vector of (real) inputs x into a scalar output y = f(wTx + b), wherew and
b are the so-called weights and bias of the perceptron and f is a non-
linear activation function. Although limited in the range of tasks that it
can solve, the perceptron spurred the development of ANNs com-
posed of several interconnected layers capable of learning any func-
tion with an arbitrary degree of precision51. This is accomplished by so-
called learning algorithms that compute the optimal weights and bia-
ses to solve a particular task. Today, the most widely-used learning
algorithm in ANNs is back-propagation: briefly, it consists in propa-
gating, at each learning iteration, the error on the training set back-
wards from the output to the input layers, in order to adjust the
weights of the network52.

Convolutional neural networks (CNNs) are a type of ANNs that
contain convolutional layers, i.e., kernels with shared weights whose
main task is to extract salient features from parts of the CNN input53.
Sharingweights amongneurons in the same convolutional layermakes
training more efficient, thus allowing a substantial increase in the
number of convolutional layers that can be “stacked” on top of each
other, mimicking the high-level organization of the mammalian visual
cortex54. This, together with the increase in computational power in
recent years, has caused an exponential growth in the number of deep
learning applications, in particular in tasks related to classification and
data processing52. The architecture of the CNN used in this work is
based on the Deep Filtering network introduced in ref. 35 to solve a
similar parameter estimation problem as ours. As shown in Fig. S3, it
contains three preprocessing blocks, eachmade up of one convolution
and onemax pooling layer. This preprocessing pipeline is replicated as
many times as the number of electrical variables used as inputs to the
CNN: for instance, if one were to use direct and quadrature voltages
(M = 2) at two buses (N = 2), the total number of preprocessing pipe-
lines would amount to four. Each of these pipelines receives as input
60 s of data sampled at 40Hz, adding up to a total of 2400 samples.
The outputs of the pipelines are concatenated and flattened into an
array of M ×N × 64 × 36 = 9216 samples, which is fed to two fully-
connected layers that perform the actual “classification”, thus produ-
cing the estimated value of momentum. The loss function used during
training is the conventional mean absolute error (MAE):

MAE=
1
n

Xn
i = 1

∣yi � xi∣, ð5Þ

where n is the number of training traces and yi and xi are the predicted
and true values of momentum, respectively. The size values indicated
in Fig. S3 and used throughout this work refer to convolutional layers
with 16, 32 and 64 neurons, kernel size and stride equal to 5 and 1,
respectively,max pooling layers with pooling size of 4 and a first dense
layer containing 64 neurons. The number of neurons in the second
dense layer is equal to the number of predicted values of momentum,
and thus L = 1 in this work, given that we want to estimate the
momentum of only one area at a time. The nonlinear activation func-
tion in the densely connected layers is the rectified linear unit (ReLU)
(not explicitly indicated in Fig. S3), while the preprocessing layers do
not have a nonlinear activation function.

In the preliminary phases of this work we tested the effect on the
accuracy of the CNN of various model hyperparameters, namely the
size and stride of the kernels in the convolutional layers and the
number of units in the max pooling layers. The results of this investi-
gation, in the simple scenario of predicting only two momentum
values, are summarized in Fig. S4 and Table S5: in the latter, the output
size column indicates the number of outputs of the last max pooling
layer, which corresponds to the number of inputs to the downstream
fully connected layer. Each pair of convolutional and max pooling
layers converts its Nin input samples into Nout output samples
according to the following formula:

Nout =

Nin�Ksz
Kstr

j k
+ 1

Psz

6664
7775, ð6Þ

where Ksz and Kstr are the kernel size and stride, respectively, and Psz is
the number of units in the pooling layers. Applying this function
recursively three times (i.e., the number of convolution/max pooling
pairs in the preprocessing pipelines) with initial Nin= 2400 (i.e., the
total number of samples used by the CNN), leads to the output size
values indicated in Table S5. Notice that not all combinations of kernel
size and stride and number of units in the pooling layers are feasible
(i.e., they lead to Nout = 0 in Eq. (6)), hence the missing violin plots in
the right panel of Fig. S4. Overall, we found that the combinations of 6
units in themax pooling layers, kernel stride equal to 1 and kernel sizes
equal to either 3 or 5 gave the lowest validation error. However, we
chose to use a set of hyperparameters that in our tests gave only
marginally higher validation loss (median loss = 0.00386 vs. 0.00374):
the reason for this lies in the fact that this particular set of hyper-
parameters leads to a higher number of output neurons from the
preprocessing pipeline (36 instead of only 10) that then constitute the
input to the downstream fully connected layer. We reasoned that this
higher dimensionality of the input to the fully connected layer might
endow it with superior generalization capabilities inmore complicated
tasks, such as those described in Figs. 5-7.

We used the Adam optimizer55 either with a fixed learning rate of
5 × 10−4 or with a cyclical learning rate56 with initial and maximal
learning rates of 5 × 10−5 and 2 × 10−3, respectively, and step size equal
to 10 times the number of iterations in an epoch. Network weights
were initialized using the Glorot approach as described in ref. 57.

All ML models were implemented in TensorFlow 258.

Numerical simulations
Time-domain simulations were performed with the simulator PAN59,
exploiting its capability of properly solving numerically the stochastic
differential equations that govern the considered power system
model. To build the training set, as shown in Fig. 2, we sampled the
ðHG2

,HG3
Þ plane using a regularly spaced grid of 6 × 6 points: for each

combination of inertia values we simulated the network for 300 × 103 s
(i.e., approximately 83 h) and used these data to train the CNN. The
data were normalized to have zero mean and unitary standard
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deviation according to the formula

yij =
xij � μx

σx
, ð7Þ

where xij is the j-th time sample of the i-th training trace, μx and σx are
the mean and standard deviation of x over the whole training dataset
and yij are the corresponding normalized values. We chose this nor-
malization to preserve the normal distribution of the voltage traces and
to account for the range of voltagemagnitudes at different buses in the
IEEE 39-bus network. Nootherpreprocessing (e.g.,filtering)was applied
to the data. The validation and test sets were built in a similar fashion,
but with shorter simulations, as detailed in Table S6. Importantly, both
the validation and test sets were also normalized according to Eq. (7)
using the mean and standard deviation of the training set.

Additional ML models
We used ML models available in Scikit-learn60 as benchmarks for the
performance of our CNN-based approach. For each of the following
models, we indicate here only the hyperparameters whose values were
different from Scikit-learn’s implementation defaults. We did not
investigate extensively whether other hyperparameter combinations
led to better results, as this was outside the scope of this work.

• SVR61: Nu Support Vector Regression, with radial basis function
(RBF) kernel, ν =0.5, and penalty parameter C = 1. The tolerance
for stopping was set to 10−4.

• MLP: a densely-connected multi-layer perceptron with 1 hidden
layer containing 67 units, leading to a number of trainable
parameters comparable to that of the CNN. Training was
performed over 2000 iterations, with early stopping if the loss
function did not decrease for more than 200 iterations.

• K-nearest neighbors: k = 5 neighbors weighted by the inverse of
their distance in the prediction phase (i.e., closer neighbors have
a greater influence on the predicted value). The distance
function was based on the Dynamic Time Warping similarity
measure between time series62, as implemented in the Python
package tslearn63.

• Kernel ridge64: ridge regression with an RBF kernel and regular-
ization strength α = 0.1.

• Random forest65: ensemble method based on fitting various
binary decision tree regressors on the training data and then
averaging their output in the prediction phase. The number of
parameters of each tree depends chiefly on its depth, which is
chosen automatically by the training algorithm if no maximum
allowed value is specified. We used N = 150 decision trees to
approximately match the total number of trainable parameters
of the corresponding CNN, as shown in Table S4.

Data availability
Additionally, the processed data have been deposited in Figshare
under accession code (https://doi.org/10.6084/m9.figshare.
23652730). Source data are provided with this paper.

Code availability
The Python code used for (i) generating the synthetic data used in this
paper, (ii) training the CNN and the other ML models, and (iii) gen-
erating Figs. 2-10 is available at Zenodo under accession code (https://
doi.org/10.5281/zenodo.8123317) and at GitHub (https://github.com/
danielelinaro/inertia).
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