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Featured Application: This research was initiated by an industrial project. The problem was
the design and configuration of machining lines for engine blocks. The proposed approach was
validated using four real cases provided by the industrial partners of the project. The proposed
approach could easily be applied to the design and configuration of any machining line for the
production of a single complex mechanical component.

Abstract: In this paper, we refer to a real case study of an industrial partner recently committed
to its project on the design of a multi-unit and multi-product manufacturing system. Although
the considered problem refers to an actual complex manufacturing system, it can be theoretically
classified as a union of two key problems that need to be solved during the transfer line design stage:
the transfer line balancing problem (TLBP) and the buffer allocation problem (BAP). As two closely
related problems, TLBP and BAP usually have similar optimizing directions and share the same
purpose: finding a balance between the performance of the transfer line system as well as minimizing
investment costs. These problems are usually solved sequentially, but this leads to solutions close
to a local optimum in the solution space and not to the global optimum of the overall problem.
This paper presents a multi-objective optimization for concurrently solving transfer line balancing
and buffer allocation problems. The new approach is based on a combination of evolutionary and
heuristic-based algorithms and takes into account the uncertainty of market demand. To validate
the proposed approach, an industrial case study in a multi-unit manufacturing system producing
multiple products (four engine blocks) is discussed.

Keywords: manufacturing systems; transfer line balancing; buffer allocation; multi-objective
optimization; discrete-event simulation; NSGA-II

1. Introduction

Transfer lines are serial machining systems dedicated to the production of large series,
which are widely used production systems in machining environments. They are composed
of a set of workstations and an automatic handling system. Each workstation carries out one
identical set of operations every cycle. The design of transfer lines is comprised of several
steps: product analysis, process planning, line configuration, transport system design, and line
implementation [1]. During the whole design stage, there are two important research issues: the
transfer line balancing problem (TLBP) and the buffer allocation problem (BAP), which belong
to the two different steps, “line configuration” and “transport system design”, respectively.

As two closely related problems, TLBP and BAP usually have the similar optimizing
directions and share the same purpose: finding a balance among the system performance
of the transfer line in relation to minimizing investment costs, maximizing production
efficiency, etc. With the further study of the TLBP and BAP, researchers from both sides
have generally shown a growing interest in simultaneously solving the two problems
considering their closeness.
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From the line balancing side, Battaïa et al. [2] presented a more recent and relevant survey,
where they focused on the articles solving these aggregated problems that involved both the
balancing problem and its “neighbor” problems during the design stage of the production
line. The authors classified and discussed three examples of problem combinations, which
were “the process selection and line balancing”, “the line layout design and balancing”, and
“the line balancing and task sequencing”. Finally, it was concluded that “it is necessary to
consider several decision problems simultaneously to enhance the final line performance”.

From the buffer allocation side, in a recent review on BAP in production lines [3],
Weiss et al. concluded that “The buffer allocation is only one among several design deci-
sions, which include the decision on the number of machines per station, the characteristics
of the machines per station, and the workload allocation among the stations. In the litera-
ture, these decisions are typically optimized individually. However, in the design phase
of a real flow line, a joint decision is often possible.” Therefore, solving the two decision
problems simultaneously in order to enhance the final performance of a machining line, and
to thereby become closer to the real industrial environment seems to be a promising path.

In this paper, we refer to a real case study of an industrial partner recently committed to
a project on the design of a multi-unit and multi-product manufacturing system. Although
the considered problem refers to an actual complex manufacturing system, it can be
theoretically classified as a union of the two key problems TLBP and BAP. The factory is
divided into four manufacturing units, where each unit is in charge of the machining of
one of four different engine blocks. Each unit may consist of a number of stations with
parallel machine tools and different station configurations (part orientation, fixture, and
datum system). Moreover, there is a buffer area between two stations that decides the
buffer capacity. From the perspective of the nature of the problem, in order to design this
kind of manufacturing system, all the detailed decisions inside the manufacturing units
have to be made, which includes the selection of the number of stations, the fixturing type
per station, the number and type of machine tools per station, the operations allocated to
each station, and the buffer allocation between two stations. Meanwhile, after this series of
sub-problems are solved, the selected sub-solutions will work together and become coupled
to the overall system on different levels, thus greatly affecting the final performance of the
manufacturing system. As the focus of decision makers, the final system performance can
be quantified into a set of evaluation criteria, such as production efficiency, investment cost,
floor space, etc. Thus, when solving this kind of complex problem, the industrial company
has shown great interest in choosing between a set of feasible solutions with different final
performances, instead of solving sub-problems by breaking down the complete problem.

Therefore, we propose to solve TLBP and BAP simultaneously with a multi-objective
heuristic approach. We also refer to the real manufacturing system in the automotive sector
with four units producing four different kinds of engine blocks to further validate the
proposed approach and compare the results on all the four real situations. The four kinds
of engine blocks are shown in Figure 1, where part A is the same case study presented
in [4]. The four parts have six faces and 351, 242, 421, and 285 machining tasks, respectively.
They have 49, 50, 57, and 58 different machining features with 84, 68, 109, and 96 different
machining operations, respectively.

The rest of this paper is structured as follows: Section 2 presents a literature review on
some references from the research area of TLBP, BAP, and the simultaneous approaches to
them. Then, the main contribution of this paper is discussed. Section 3 presents the detailed
mathematical description of the problem. Section 4 provides the proposed approach,
describing in detail the heuristic principles and tuning of the parameters of the proposed
approach. Section 5 presents the industrial case study of four engine blocks to compare and
validate the proposed approach. At the end, the results and outcomes are summarized in
the conclusion. A detailed description of the industrial case study with four manufacturing
units is reported to ensure the reproducibility of the proposed approach and the possible
usage of the case study as a testbed for other possible approaches.
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Figure 1. Three-dimensional model of the four kinds of engine blocks. 
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2. Literature Review

Although either TLBP or BAP has been the focus of extensive publications, this paper
mainly focuses on the simultaneous approach to TLBP and BAP. Therefore, this section
first lists some of the relevant literature in the research field of TLBP and BAP, then reviews
in detail the existing approaches to the simultaneous optimization of TLBP and BAP, and
finally discusses the novel contributions of this paper.

2.1. Transfer Line Balancing Problem

Transfer lines are production systems that consist of serial stations where operations
are continuously performed [1]. TLBP consists of assigning the set of indivisible units of
work elements to a set of sequential workstations for certain environments (dedicated,
flexible, or reconfigurable transfer line). Transfer line balancing problems were first reported
by Szadkowski [5] and first presented by Dolgui et al. [6] for the dedicated transfer line.
Another type of balancing problem, closer to the one considered in this paper, was first
introduced by Essafi et al. [7]. They considered the flexible or reconfigurable transfer lines.
The transfer line has multiple stations that consist of one or more identical machine tools
operating a given set of sequenced tasks, and each station is usually equipped with single
spindle machine centers. Different from classic TLBP, this has two more relevant problems
inside, which are called the line configuration problem and the operation allocation problem.
The line configuration problem defines the number of stations and the number of parallel
machine tools per station, while the allocation problem defines the operations allocated to
each station and their positions in the station operating sequence.

To our knowledge, this kind of TLBP was first studied by Essafi et al. [7]. The authors
introduced a mixed integer programming method for which minimizing the number
of machine tools was considered as the single objective function. A greedy heuristic-
based approach was then presented to solve this problem [8] with the same objective
function. Later, an ant colony algorithm [9] and a greedy randomized adaptive search [10]
were proposed with a single objective combining the performance of line balancing and
the number of stations and of machines. A set partitioning model-based approach was
proposed by Borisovsky et al. [11,12] to solve the problem. The aim was to minimize the
number of machine tools. TLBP was transformed into a linear integer program based on
the set partitioning model, where the operation sequencing for each station was optimized.
A genetic-based approach [13] was also proposed, where the decoding heuristic was
designed. This approach considered a single objective function (the total number of
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machine tools) introducing a value punishing the infeasible solutions. In addition, the
hybrid techniques of Benders decomposition and an ant colony algorithm were proposed
by Osman and Baki [14] to obtain the optimal configuration of the production line by
minimizing the non-productive time.

A simultaneous approach was proposed by Delorme et al. [15] combining the “bal-
ancing problem”, the “scheduling problem”, and the “equipment problem”, and using
multi-objective optimization. In this approach, the balancing problem was used to decide
the allocation of machining tasks to stations and the number of stations, the scheduling
problem focused on sorting machining tasks inside stations, and the equipment problem
was used to select the number of parallel machines for each station. Three sub-methods
were proposed and combined to sequentially solve the corresponding sub-problems. Dur-
ing the optimization, the authors created a solution pool to carry the feasible plans, where
new feasible plans with a lower cycle time would be obtained through combining two
solutions as parallel production lines. Finally, Pareto optimizing was introduced to analyze
the solution pool.

2.2. Buffer Allocation Problem

Buffer allocation problems focus on finding optimal buffer capacities to be allocated
to buffer areas in the production system for a specific objective. BAP is an NP-hard
combinatorial optimization problem [16], and it was first presented by Koenigsberg [17].
Demir et al. [18] provided a systematic review of the studies published since 1998. They
classified the literature based on four aspects: the line topology, the objective functions, the
evaluative method, and the generative method. The authors also concluded that “handling
BAP in a multi-objective manner still seems an important research issue”. Recently, Dolgui
et al. [19] and Su et al. [20] suggested studying multi-criterion optimization problems
instead of optimizing a single-objective BAP.

Since the ultimate goal of BAP is to optimize the performance of the production
line, an interesting research area called the bowl phenomenon has emerged under an
unpaced production environment. It was introduced by Hiller and Boling [21], while a
review of the phenomenon can be found in [22]. This research area considers a relevant
problem that is the simultaneous allocation of the workload and the buffer capacities
in an unpaced production line. Hillier and Hiller [23] tried to approach this kind of
problem for a reliable production line with no parallel stations. During their further
research [24], exact numerical results were shown for small lines (no more than four
stations) with exponential or Erlang distributions of processing time, while some possible
heuristic methods and simulation studies were provided for other situations where the
production lines had more stations or different processing time distribution. Ng et al. [25]
proposed a simulation-based multi-objective optimization (MOO) approach. Four aspects
of production systems were considered when solving the problem, which were throughput,
work in process, average idle times, and average buffer level. It was also concluded that
“the ultimate goal of this kind of studies is to propose a Pareto-based MOO methodology
for studying the simultaneous effects of workload balancing and buffer allocation to real
production lines with complex routings and various sources of variations.” It is worth
noting that most of these approaches assumed that the total amount of the workload
remains certain throughout the line and can be arbitrarily divided at each station. This
represents the complexity of solving TLBP, where the workload of a station is determined
by a set of indivisible machining operations, and each operation is constrained more or less
by different types of constraints (such as precedence constraints) during the allocation.

2.3. Simultanous Approach to TLBP and BAP

Despite the extensive literature on both the TLBP and the BAP, the simultaneous
approach to the combined problems has not been fully addressed. The most relevant
approaches are as follows.
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Tiacci [26] studied the simultaneous optimization of the assembly line balancing
problem (ALBP) and BAP in the mixed model assembly line. This problem is characterized
by a stochastic task time, parallel stations, and a buffer between the stations. A genetic
approach was introduced, and a parametric event-oriented simulator was built to evaluate
the solutions considering a single objective function “normalized design cost”. It contained
the investment cost together with a penalty function punishing the infeasible plans.

Koren et al. [27] combined the BAP with the scalability problem introduced in [28],
which made the full problem able to simultaneously reconfigure and rebalance the line and
reallocate the capacities of the buffer area. A genetic algorithm was proposed to optimize
the single objective function that is a combination of the number of machine tools and the
throughput.

To our knowledge, the first attempt to address TLBP and BAP simultaneously was
reported in Liu et al. [29]. A GA-PSO approach was proposed with a single objective
function where the production rate was combined with the total investment cost. An
industrial case study was introduced to validate the method and to compare it with that of
the sequential optimization. Referring to this industrial case study, although sequential
optimization may obtain a better value of the objective function of balancing problem,
simultaneous optimization leads to a better overall solution. Following this result, the
simultaneous optimization of TLBP and BAP with a multi-objective optimization approach
was carried out in [4]. The overall problem was thus to make simultaneous decisions on all
the following:

• Line configuration: the number of stations and the number of identical machine tools
for each station;

• Station configuration: the selection of fixturing type and machine tool type for each station;
• Operation allocation: the allocation of each operation to a station and its positioning

in the machining sequence;
• Buffer allocation: the allocation of the buffer capacities between two stations;
• In order to solve the whole problem, several heuristic principles and evolutionary

algorithms were built. A priority-based coding system was designed to make the
approach suitable for the application of different kinds of algorithms. Four heuristic
principles were proposed to ensure the feasibility of the solutions. In order to obtain
the optimal set of solutions, Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
and Multi-Objective Particle Swarm Optimization (MOPSO) were introduced and
fine-tuned, where the total investment cost and the throughput from simulation-based
evaluation were considered as the two objective functions. Finally, an industrial case
study was introduced to demonstrate the validity of the proposed approach, where
the comparison results showed the benefit of NSGA-II for solving the problem.

2.4. Contribution of the Paper

The main contribution of the paper is twofold: to deal with the uncertainties of the
company’s forecasts of the market demand and to reduce the computational time while
improving the search in the solution space. The most relevant works in this research area
rely on a correct estimation of the market demand, which means the optimization process
always revolves around a given value. However, the market demand in the real situation is
of course uncertain, and it is more reasonable to give the decision maker a set of solutions
that span a range of market demands rather than referring to a single value. To consider
a range of market demands, the problem must be modified with the consequence that
the solution space can expand considerably, thus increasing the difficulty in solving the
overall problem.

The second issue refers to the searching speed and ability of the algorithm. Due to
the inner operators from the evolution algorithms, newly generated solutions have the
chance to be feasible but are obviously far from the optimum. However, all solutions of
each generation, even the worst, need the simulation-based evaluation of the throughput.
This could lead to a waste of computing time. In addition, it may result in the request
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for applying again and again the simulation-based evaluation of the throughput on the
identical solutions, which actually leads to overestimations: the production rate may be
improved just by running the simulation on the same solution due to the natural variability
of this result. This may lead to issues related to both the local optimization of the objective
function and a waste in computational time.

Therefore, we propose a combination of an evolutionary algorithm and a heuristic-
based algorithm to solve the problem considering the market demand interval. Firstly, new
heuristic principles in the decoding stages were designed to fulfil the industrial requirement
of the expected demand interval, which not only ensured each individual could be decoded
into a feasible solution, but also improved the quality of the solutions during the decoding
stage, thereby improving the final performance of the algorithm. At the same time, the
heuristic principles gave each solution classic evaluating criteria from the line balancing
side, which also provided a direct and effective basis for swiftly screening the worse
solutions among the entire population. Based on this, a pre-screening strategy is proposed
to eliminate the obviously worse or previously evaluated solutions in each generation.
With the help of this strategy, the algorithm may reduce invalid searches and waste of
computing time and thus improve the optimizing performance. In addition, a simulation
strategy is introduced and was tested to enhance stability when estimating the throughput
of a single solution.

3. Mathematical Model Development
3.1. Assumptions

The assumptions of the proposed problem were as follows:

1. A flexible transfer line produces a single part and consists of at least one station in the
series and buffer areas between two consecutive stations;

2. Multiple machining features are assigned to a single part and each of them has at least
one machining operation which needs to be operated in sequence;

3. The operation time of each machining operation is known and there may be prece-
dencies among the machining operations;

4. A finite number of buffers can be allocated at the buffer area;
5. Each station has one or more machine tools that are identical and use an identical

type of fixture device to realize the same set of operations;
6. Multiple types of machine tools and fixture devices are available. A single machine

tool has the possibility to equip with different fixture devices, and vice versa;
7. Three parameters for each type of machine tool are known: the mean time to failures

(MTTF), the mean time to repair (MTTR), and the machine tool cost;
8. Each fixture device enables access to multiple machining features and a datum system

used to locate the part;
9. A datum system has its machining features (used to locate the part) that have to be

machined before the datum system is used;
10. The accessible machining features of each station decide the possible machining

operations to be allocated to that station.

3.2. Inputs
3.2.1. Production Information

The working time of the manufacturing unit (TA [hours/month]) can be obtained as:

TA = Tshi f t × Nshi f t × Dw (1)

where Tshift is the working hours per shift, Nshift is the number of shifts per day, and Dw is
the working days per month.

The expected demand interval is defined as [DMlb, DMub], where DMlb (DMub) is the
lower (upper) bound of the expected demand per hour.
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3.2.2. Manufacturing Information

Three kinds of feature are considered as follows.
General features have two common machining constraints. One is “First roughing

and then finishing”, which means the precedence among the operations inside each feature
is given. The other one is “First face milling and then drilling”, which means that the
drilling of the hole has to be completed after the machining of the one which the hole opens.
For example, general features in the proposed case study can be classified into groups of
features by the surfaces FGS = {FG1, . . . , FGi, . . . , FGSN}, where i = 1 . . . SN, and SN is the
number of surfaces. For each FGi, i = 1 . . . SN, there are FNGi machining features with at
least one operation that needs to be operated following its sequence. Operations in each
FGi can be described as:

OFGi = [A × FGi] =



b1,1 b1,2 · · · b1,j · · · b1,FNGi
b2,1 b2,2 b2,j b2,FNGi

...
...

...
...

bk,1 bk,2 · · · bk,j · · · bk,FNGi
...

...
...

...
b12,1 b12,2 · · · b12,j · · · b12,FNGi


(2)

In the equation, A = {a1, a2, . . . , am} stands for the types of machining operations.
In our example, {a1, . . . , a3} are possible machining operations of a surface (rough milling,
semi-finish milling, and finish milling); while {a4, . . . , a12} are possible machining opera-
tions of a hole (drilling, gun drilling, core drilling, rough boring, semi-finish boring, finish
boring, rough reaming, finish reaming, and tapping). Then, the element bk,j shows:

bk,j =

{
1 ak have to be processed in feature j
0 ak does not exist in feature j

(3)

The number of operations in each OFGi is:

OPNOFGi = ∑m
k=1 ∑FNGi

j=1 bk,j, i = 1 . . . SN (4)

Features for each datum system (FDSi, with i = 1 . . . DSN) are features that have to
be completed at the same station where the datum system has never been used before.
According to ISO GPS and ASME GD&T standards, a datum system is a reference system
for dimensional and geometric tolerances, and in machining it consists of features that
are usually considered in relation to clamping and positioning the parts. For example,
the datum systems of the cylinder block in this paper usually have one surface and two
corresponding pin holes. DSN is the total number of datum systems. The operations of
a datum system are combined as a single datum operation. So DSN is also the number
of operations.

Special feature group (SFGi, i = 1 . . . SGN) is the set of features requiring special
constraints, e.g., when operating two intersecting holes, both of them have to be machined
at the same station and the longer hole should be machined before the shorter one; therefore,
they are grouped into a special feature group, considered as a single special operation.
SGN is the number of operations in the special feature groups.

Eventually, the number of machining operations of a part can be calculated as:

OPN = ∑SN
i=1 OPNOFGi + DSN + SGN (5)

For each operation xo where o = 1..OPN, its machining time tm(xo) is given.
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3.2.3. Station Information

The kind of machine tool and fixture device must be selected for each station. There
are two groups of information: Fixture Group (FIG) and Machine Tool Group (MTG).

FIG =
{

F1, . . . , Fj, . . . , FFN
}

lists all possible kinds of fixture devices. Each F has the
information about accessible machining surfaces and its datum system. The number of F in
this group is FN.

MTG = {MT1, . . . , MTk, . . . , MTMTN} lists all possible kinds of machine tools. For each
machine tool, the parameters MTTF, MTTR, and investment cost are known. MTN stands
for the number of machine tools.

Therefore, the station configuration group SCG = {SC1, . . . , SCi, . . . , SCSCN} is ob-
tained. Each SCi shows a possible combination of Fj and MTk. SCN stands for the total
number of possible station configurations.

3.2.4. Relationship Information

Each feature group in the set FGG = {FG1, . . . , FGSN, SFG1, . . . , SFGSGN} has at least
one station configuration to allocate the machining operations. Thus, the feature–station
matrix FSM(i, j) is created to describe the relationship between FGG(i) and SCG(j), with
i = 1..SN + SGN and j = 1 . . . SCN. It decides if operations from FGG(i) are accessible in
the SCG(j):

FSM(i, j) =
{

1
0

if operations from FGG(i) can be allocated in the SCG(j)
if operations from FGG(i) cannot be machined in the SCG(j)

(6)

Whenever a station configuration is used, the features of its datum system must be
machined at one of the previous stations in the line. Therefore, the datum–station matrix
DSM(i, j) with i, j = 1 . . . SCN, is defined if operations from the datum features of SCi are
accessible in the SCj:

DSM(i, j) =
{

1
0

if datum features of SCi can be machined at SCj
if datum features of SCi cannot be machined at SCj

, i 6= j (7)

An extra situation happens at the first station, where the station configuration may
consider the rough features (or pre-machined features) as the datum system. Therefore,
DSM(i, i) is used to describe this situation as:

DSM(i, i) =
{

1
0

if datum features of SCi do not need to be machined
if datum features of SCi need to be machined

(8)

3.3. Decision Variables

The considered decision variables are the following:

1. Configuration Information Array, CI(s) with s = 1 . . . S. The size of the array shows
the number of stations. The value of CI(s) describes the number of machine tools at
station Ss. It determines the number of stations in the transfer line and the number of
identical machine tools for each station;

2. Station Information Array, SI(s) with s = 1 . . . S. The value of SI(s) is the type of
number among the station configurations used at station Ss. It determines the type of
fixturing and machine tool for each station;

3. Operation Information Matrix, OI(o, s) with o = 1 . . . OPN, s = 1 . . . S. OI(o, s) is an
allocation and sequencing matrix with the index xos that determines the position and
sequence of each machining operation inside the transfer line;

xos =

{
q
0

xo is q− th operation allocated at Ss
if xo is not allocated to Ss

(9)
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4. Buffer Allocation Array, BA(s) with s = 1 . . . (S− 1), The value of BA(s) shows the
number of buffer capacities between station Ss and station Ss+1.

3.4. Relations and Constraints

To fulfil the real situation, the following relations and constraints should be verified.

3.4.1. Feature Group-Station Configuration Matrix

Feature Group–Station Configuration Matrix
(

Mfg−sc

)
is mostly related to SI(s) with

s = 1 . . . S. This matrix is used to show whether the machining operations of each feature
group can be allocated to the selected stations:

Mfg−sc(i, s) = FSM(i, SI(s)), ∀i = 1..SN + SGN ∧ ∀s = 1..S (10)

3.4.2. Datum Feature–Station Configuration Matrix

Datum Feature–Station Configuration Matrix Mdf−sc with i = 1 . . . SCN is also related
to SI(s) , with s = 1 . . . S. This matrix is used to show where the operations from each datum
feature group can be allocated to the selected stations:

Mdf−sc(i, s) = DSM(i, SI(s)), ∀i = 1..SCN ∧ ∀s = 1..S (11)

3.4.3. Station Constraints

Three station constraints are considered here. Firstly, the selected station configura-
tions must have the ability to machine the operations from all the feature groups:

∑S
s=1 Mfg−sc(i, s) ≥ 1 ∀i = 1 . . . (SN + SGN) (12)

Secondly, for the selected station configuration SI(k), with k = 2..S, there must be at
least one pervious station that can machine the operations from its datum feature group:

∑k−1
s=1 Mdf−sc(SI(k), s) ≥ 1 ∀k = 2 . . . S (13)

Thirdly, the first selected station configuration SI(1) must choose a fixture that can be
directly used without machining the datum features:

DSM(SI(1), SI(1)) = 1 (14)

3.4.4. Operation Constraints

Two main constraints are introduced for the operations. The first one is that each
operation must be allocated to only one station:

∀o = 1..OPN, ∃s ∈ [1, S] : xos = q > 0 and ∑S
j=1 xos = q (15)

The second one is that each feature has its own sequence of machining operations.
Thus, for any pair of machining operations of a feature o ∧ o′ = 1..OPN, respectively,
realized in stations s ∧ s′ = 1..S, with o′ preceding o, the following constraints must
be verified: {

q > q′ if s = s′

s > s′ if s 6= s′
(16)

3.4.5. Buffer Capacity Constraints

The number of buffer capacities between stations should not exceed its limit, BAmax,
which ensures the limited spaces of each buffer area:

BA(j) ∈ [1, BAmax] ∀ j = 1..S− 1 (17)
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3.4.6. Investment Constraints

Cmax stands for the maximum investment cost by the company. So, the total cost
(Ctotal) must satisfy the maximum limit:

Ctotal ≤ Cmax (18)

3.5. Objective Function

The two objective functions PR and Ctotal are considered for the proposed problem.
PR stands for the production rate of the machining line, the goal being its maximization.
Ctotal stands for the total cost that contains all the costs of machines and buffers, and the
goal is its minimization. It can be calculated using the following equation, where MC is the
cost of a machine tool, and BC is the cost of a single buffer element.

Ctotal = Cmachine + Cbuffer = ∑S
j=1 MC(SI(j))×CI(j) + ∑S−1

j=1 BC× BA(j) (19)

Tecnomatix® Plant Simulation software developed by Siemens PLM Software is used
to estimate the PR of solutions. As a discrete-event simulation software, its use has in-
creased both in industry and recent research (see [30] as a review). The simulation soft-
ware is integrated through the COM interface with the proposed algorithm developed in
Matlab platform.

Therefore, the two objective functions considered are:{
OFProduction = maxPR
OFInvestment = minCtotal

4. Solution Approach

In order to clearly explain the approach, we introduce the related logic diagram
(Figure 2). As shown in the figure, there are nine steps on the whole algorithm. Starting
from “Definition of Basic Production Line”, the initial information is prepared and defined.
“Initial Population Creation” is the step used to randomly create the initial population that
follows the given population parameters. The algorithm has a main loop whose ending
policy is to check whether it has reached the maximum number of iteration times of the
generations. During the main loop of the algorithm, individuals of the population in the
current generation are decoded into feasible solutions through heuristic principles, and the
two objectives (namely total investment cost and production rate) are then calculated for
each solution. The total investment cost consists of machine tool and buffer capacity costs,
while the production rate of each solution is estimated in a simulation environment. Hence,
all the evaluated individuals in the current generation are sorted and ranked according to
Pareto optimizing in NSGA-II [31]. Afterwards, some individuals from the worst solution
set are eliminated to obtain the same population size and to form the final population
of the current generation. Whenever the ending policy is not satisfied, the two NSGA-II
operators (Crossover and Mutation) are introduced to generate the new population, which
combines the current population with newly generated individuals. Therefore, the new
population returns to the decoding step again, forming the main loop. After the ending
policy is satisfied, the optimal results of the best solution set are finally presented.

The heuristic approach in this paper is more focused on the two core steps highlighted in
grey in Figure 2, which are “Feasible Solutions by Decoding” and “Multi-objectives Calculation”.
Therefore, this section is organized as follows. Firstly, Section 4.1 presents the new logic diagram
to show the complete logic of the proposed approach. Then, Sections 4.2–4.4 describe in detail
the three main steps of the logic diagram (new heuristic principles, pre-screening strategy,
and simulation strategy), respectively. Finally, in order to ensure a better performance of the
algorithm, all the parameters are fine tuned in Section 4.5.
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4.1. New Approach Logic Diagram

The logic diagram of the heuristic parts (the dotted frame in Figure 2) can finally be
summarized in Figure 3.

Step 1: Definition of the current population set: Define the current population
set Popcur(M), where M = 1 . . . Nind, and Nind stands for the number of individuals of
the population.

Step 2: Decoding of SI, OI and BA (Principles I–III): Decode the station configuration
array SI, operation information array OI, and buffer allocation array BA, respectively,
according to Principles I, II, and III from the original approach.

Step 3: Decoding CI (New Heuristic Principles): Decode the optimal configuration
information array CI for the current individual through the new heuristic principles based
on the demand interval in Section 4.2.

Step 4: Condition: Has the Population Set Popcur(M) been fully explored? If so, go to
Step 5; otherwise, M = M + 1, and go back to Step 2.

Step 5: Eliminating Solutions: Eliminate both the identical and worse solutions through
the pre-screening strategy in Section 4.3.

Step 6: Multi-objectives Calculation with Simulation Strategy: Obtain the investment
cost through Equation (6) and the throughput from the simulations based on the strategy
as described in Section 4.4.

Step 7: Evaluated Solution Set: Obtain the evaluated solution set of current generation.
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4.2. New Heuristic Principles

New decoding principles in this paper were built in order to meet the industrial
requirements of the expected demand interval. The decision variables that make up the
complete solution were grouped in the following four sets: configuration information (CI),
station information (SI), operation information (OI), and buffer allocation (BA). The struc-
tural encoding method was introduced where each individual can be illustrated as code P
in Figure 4.
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As shown in the figure, each code P consists of five vectors (P1, P2, P3, P4, and P5) and
can be divided into three parts of information: station configuration, operation allocation
and sequencing, and buffer allocation. During the first step of the decoding stage, the
three parts are decoded into station configuration array (SI), operation information matrix
(OI), and buffer allocation array (BA) through Principle I, Principle II, and Principle III
based on the priority coding and constraints, where the three principles have ensured the
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feasibility of SI, OI, and BA. Firstly, SI is decoded by Principle I, where the three constraints
in Equations (12)–(14) are satisfied. Then, OI is obtained by Principle II together with SI,
where Equations (15) and (16) are fulfilled. Afterwards, BA is calculated by Principle III,
satisfying the buffer constraint.

To handle the industrial requirement of the demand interval, new heuristic principles
were proposed to decode the last element based on the demand interval and configuration
information array (CI), which is the information used to decide the number of machine tools
on each station of the production line. Considering the fact that the station configuration
array (SI) has already been obtained, the number of stations (S), the fixturing device and part
orientation, and the kind of machine tools of all stations are known. The investment cost of
a single machine tool at station s is MC(SI(s)), where s = 1 . . . S, while the availability of
the type of machine used at station s, A(SI(s)) can be obtained as the following equation:

A(SI(s)) =
MTTFSI(s)

MTTFSI(s) + MTTRSI(s)

In this equation, MTTFSI(s) and MTTRSI(s) are the two reliability parameters of the
machine tool with type SI(s), and stand for the Mean Time To Failure and the Mean Time
To Repair, respectively.

Similarly, the allocation and sequencing plan of the operations at all stations is also ob-
tained from the operation information matrix (OI). The total machining time for each station
MTM(s), where s = 1 . . . S can be obtained based on the known time of each operation.

Assume that the annual demand interval is equal to [Dmin ; Dmax] parts per year.
The annual working hours of the production line is TA (hours/year) and can be calculated
in Equation (1).

Then, the production rate interval [PRmin; PRmax] can be obtained, where PRmin =
Dmin
TA

[parts/hour], PRmax = Dmax
TA

[parts/hour]. Therefore, to meet demand, the production
time (PT) for each part must be within the range of [PTmin; PTmax], where PTmin = 3600

PRmax

[s] and PTmax = 3600
PRmin

[s]. So, the constraint for the cycle time for each station CTS(s),
where s = 1 . . . S, can be defined as:

PTmin ≤ CTS(s) =
MTM(s)

CI(s)×A(s)
≤ PTmax, s = 1 . . . S (20)

Then, the feasible range of CI(s) for each station can be calculated in Equation (21),
where CI(s) must be a positive integer:⌈

MTM(s)
PTmax ×A(s)

⌉
≤ CI(s) ≤

⌊
MTM(s)

PTmin ×A(s)

⌋
, s = 1 . . . S (21)

In a real situation, there is also the possible constraint of a minimum (CImin) and
maximum (CImax) number of machine tools per station. Therefore, the final range of CI(s)
for each station can be converted into Equation (22):

max
(

MTM(s)
PTmax ×A(s)

, CImin

)
≤ CI(s) ≤ min

(⌊
MTM(s)

PTmin ×A(s)

⌋
, CImax

)
, s = 1 . . . S (22)

Since Equation (5) may provide multiple plans on the number of allocated machine
tools at each station, the production line has more possible combinations for the config-
uration information CI. In order to further investigate these possible combinations for
the current individual, all the possible CIs are generated. First of all, the total investment
cost of each combination is calculated through Equation (23). Then, combinations that
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exceed the investment budget (Equation (24)) are all removed to fulfil the constraint of the
maximum investment cost on the production line.

Ctotal = Cmachine + Cbuffer = ∑S
s=1 MC(SI(s))×CI(s) + ∑S−1

j=1 BC× BA(j) (23)

Ctotal ≤ Cmax (24)

Afterwards, in order to obtain the best of the remaining combinations, it is essential to
find a proper function to evaluate them. As the considered problem is the combination of
TLBP and BAP, we tried to introduce some common evaluating functions from TLBP to
achieve the estimation of the solutions. Therefore, the two most typical objectives of line
balancing were introduced: bottleneck time and deviation of allocation time.

1. The bottleneck time of a production line is the maximum cycle time among all the
stations. It represents the cycle time of the whole production line. However, in this
situation, the solutions may have different levels of investment cost, which may make
them incomparable simply through the bottleneck time;

2. On the contrary, the deviation of allocation time has a more suitable mechanism in this
situation. The deviation of allocation time stands for the deviation between the station
cycle time and the mean cycle time at all stations of the production line. It evaluates
the intrinsic quality of balancing for a single solution under the current investment
cost of the manufacturing resources.

Therefore, the sum of the squares of the time deviation (SQ) was built here to evaluate
all the combinations. As CTS(s), s = 1 . . . S of each combination can be calculated through
Equation (20), the mean CTS(s) can be easily obtained as:

CTmean =
∑S

s=1 CTS(s)
S

(25)

In addition, due to the requirement of the demand interval, the solutions whose
CTmean belong to the interval of [PTmin; PTmax] apparently have more advantages than the
others. Therefore, the evaluating function of SQ of CTS(s) is proposed as:

SQ =



S
∑

s=1
(CTS(s)− PTmax)

2 if CTmean > PTmax

S
∑

s=1
(CTS(s)− PTmin)

2 if CTmean < PTmin

S
∑

s=1
(CTS(s)−CTmean)

2 else

(26)

In Equation (9), there is a penalty mechanism that would enlarge the sum of squares of
the deviations and provide such combinations with a worse evaluation. It happens for the
combinations whose CTmean fulfils the two following conditions: either CTmean > PTmax
or CTmean < PTmin.

Thus, the configuration information with the minimum value of SQ among all the com-
binations was considered as the final CI for the current individual. Finally, the individual
was fully decoded.

4.3. Pre-Screening Strategy

As one kind of heuristic algorithm, NSGA-II generates the individuals more casually
and evaluates all solutions of each generation. Although the heuristic principles jointly
guarantee that each individual is translated into a feasible solution, the algorithm still has
the chance to generate obviously worse solutions. As the majority of computing time of the
whole algorithm is occupied with evaluating solutions through simulation, we decided to
propose a pre-screening strategy to eliminate the mentioned solutions of each generation
during the calculation. Thus, a pre-screening strategy here should have two abilities: 1© to
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identify the same solutions between two generations; 2© to roughly estimate the quality of
each solution.

Firstly, since the coding system is priority-based, it may be not suitable to check if
two individuals are identical or not directly based on their codes. So, the solutions from
two neighbor generations will be compared after the decoding stage. The solutions are
compared in pairs with their four key elements: configuration information array (CI),
station information array (SI), operation information matrix (OI), and buffer allocation
array (BA). To further reduce the computing effort, the comparison between OI matrix can
be replaced by the array of total machining time at all stations MTM(s), where s = 1 . . . S.

The other proposal of the strategy was to roughly estimate the production rate or some
other quality-related factors of the solutions before their evaluation through simulation,
and then decide whether the solution is worth further evaluation through the simulation.
Therefore, it was necessary to find a proper pre-screening objective function to evaluate the
solutions. As discussed in the previous section, the deviation of allocation time provides
the intrinsic quality of balancing that is independent of the manufacturing resources of the
solution. Apparently, it is also suitable for pre-screening solutions with different levels of
investment cost in each population. In addition, as SQ has already been obtained during
the decoding stage, reusing it here would of course save the computational time of the
algorithm. Therefore, the sum of the square of the time deviation (SQ) in Equation (9) was
also used as the evaluation criteria to roughly estimate the quality of all individuals from
each population.

After the evaluation of all solutions, a threshold function was introduced to make
the decision on whether each solution should be eliminated before its simulation. In fact,
the mechanism here is quite similar to the common optimizing direction when solving
TLBP separately. The only difference is that TLBP uses this method to find the optimal
solution and make the final decision, while we introduced it as a threshold to eliminate
obviously worse solutions, thus avoiding the further search for BAP solutions in the invalid
solution space.

Starting from the population in the initial generation (G0), the default threshold (TR0)
is set as a maximum value that allows all or most solutions from the initial population
(Pop0) to have the chances to be evaluated through simulation. Then, the maximum
value of SQ among the population Popn of the current generation Gn is used to define the
threshold (TRn+1) for the population Popn+1 of the next generation (Gn+1). Therefore, the
threshold can be calculated in Equation (27), where n stands for the generation, Ngen is the
total number of generations, and Nplan is the population size:

TRn =

{
TR0 n = 0

max
1≤i≤Nplan

(SQn−1(i)) 1 ≤ n ≤ Ngen (27)

4.4. Simulation Strategy

To enhance the stability on the throughput estimation of each solution, we performed
the following experiment to study the uncertainty of the simulation and define the simula-
tion strategy to use. To avoid a relevant computational effort of the proposed approach due
to simulation, we considered three levels of the number of simulations (Sim_n) equal to 1,
3, and 5 times for each solution, and tested 60 randomly generated solutions. During the
evaluation of each solution, the median value among multiple simulation results was used
to evaluate the solution, which was the reason why we choose an odd number of times.
For each solution, 10.000 replicas were run at the three levels.

We studied the three distributions of the 10.000 replicas for each of the 60 solutions, and
present the detailed data in Appendix A. Apparently, as expected, the variability gradually
reduced when the number of simulations on each solution increased, with the maximum
range percentages equal to 2.2%, 1.5%, and 1.2% of the production rate, respectively, for
Simn = 1, Simn = 3, and Sim_n = 5. The reduction in the range percentage going from
Simn = 1 to Simn = 3 was much higher than going from Simn = 3 to Simn = 5. Noting that
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the additional simulation time required for the above two situations (Simn = 1 to Simn
= 3 and Simn = 3 to Simn = 5) was the same, we decided to set Sim_n equal to 3 as the
number of simulations among which to take the median value to estimate the production
rate of each solution. Considering that the uncertainty could be considered symmetrically
distributed, it was estimated to be ±0.75%.

4.5. Tuning of Algorithm Parameters

The parameters of NSGA-II are the size of the population
(

Nplan

)
, the number of

generations (Ngen), the percentage of crossover (Pcrossover), the percentage of mutation
(Pmutation), and the mutation rate (Rmu). To tune these parameters, we used a Taguchi
approach considering the set coverage function C, presented by Zitzler et al. [32], as the
response function. In order to compare two solution sets from Pareto optimization the set
coverage was widely applied. For example, X′ and X′′ were the two target sets, and the
function C maps the ordered pair

(
X′, X′′

)
into the interval [0, 1]:

C
(

X′, X′′
)
=

∣∣{a′′ ∈ X′′ ; ∃ a′ ∈ X′ : a′ ≤ a′′
}∣∣

| X′′ | (28)

The value of C
(

X′, X′′
)

equal to 1 shows that all solutions of X′′ were dominated by
or equal to solutions in X′. The value of C

(
X′, X′′

)
equal to 0 means the opposite situation

where none of the solutions in X′′ are dominated by or equal to solutions in X′.
Using the set coverage, an L27 Taguchi design [33] was introduced to test the five

factors with three levels (Low, Medium, High). Table 1 provides all the levels of tuning
parameters, and Tables A1 and A2 in Appendix B show the detailed results of the experi-
ment and the response table for means. Figure 5 provides the main effect plot for the means
of the tuning results. Based on these results, the considered values of the parameters are
shown in Table 2.
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Table 1. Tuning experiment of the five factors with three levels (NSGA-II).

NSGA-II Algorithm Parameters Low(1) Medium(2) High(3)

A Nplan 150 200 250
B Ngen 1000 1250 1500
C Pcrossover 0.6 0.7 0.8
D Pmutation 0.1 0.25 0.4
E Rmu 0.01 0.015 0.02

Table 2. Tuning results for the parameters of the algorithm.

NSGA-II
Nplan Ngen Pcrossover Pmutation Rmu

250 1500 0.8 0.4 0.02

5. Industrial Case Study

This section presents the full case study to illustrate the design process of the manu-
facturing system for the four parts (engine blocks). In order to provide the possibility of
future comparisons, the full data of the four parts used for optimization can be found in this
section and Appendices C–F. In this manufacturing system, there are four manufacturing
units producing four kinds of engine blocks (Part A, Part B, Part C, Part D), which are
shown in Figure 1. There are 49, 50, 57, and 58 different machining features with 84, 68,
109, and 96 different machining operations, respectively, for Part A, Part B, Part C, and
Part D. In order to design and optimize the four manufacturing units of the system, their
starting information was prepared according to the inputs listed in Section 3.2, which
included “production information”, “manufacturing information”, “station information”
and “relationship information”.

• Production information

This plant is expected to work on a two-shift per day basis (8 h per shift), 300 days
per year, so the annual working hours are 4.800. The cost of a single buffer capacity
is CNY 10.000. Table 3 provides the production requirements of the four units in the
manufacturing system for their target parts, including their total machining time and the
expected demand range determined by the demand forecast of the company (DMlb is the
demand lower bound, DMub is the demand upper bound).

Table 3. Production requirements of the units of the manufacturing system.

Unit Part Total Machining Time
[s]

Expected Demand Interval
[Parts/Year]

DMlb
[Parts/Hour]

DMub
[Parts/Hour]

I A 3512.14 35.000–60.000 7.29 12.50
II B 5243.87 27.000–42.000 5.63 8.75
III C 4786.12 28.000–45.000 5.83 9.38
IV D 10,335.63 14.000–20.000 2.92 4.17

• Manufacturing information

The detailed information of the general operation groups {OFG1 . . . OFG6}, datum
systems {FDS1, FDS2, FDS3}, and special features {SFG1, SFG2, SFG3} for the four parts
can be found in Appendix A, while the machining time of all the operations for the four
parts are set out in Appendix B.

• Station information

In station information, machine tools, fixtures, and their datum system are included.
Firstly, two kinds of 4-axis horizontal machining centers were considered for the four
units and their parameters are shown in Table A3. There were 8, 9, 9, and 11 possible
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station configurations, respectively, for Part A, Part B, Part C, and Part D. Their synthetic
representations are provided in Figure 6, and the detailed combination is shown in Table A4.
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• Relationship information

Feature–station matrix (row = feature group, column = station configuration), datum–
station matrix (row = datum feature, column = station configuration) and special feature–
station matrix (row = special feature, column = station configuration) are all built in Table A5,
which illustrates the relationship and constraints between the feature groups and possible
station configurations for the four parts.

6. Discussion

As we discussed in Section 2.3, referring to the industrial case study in [27], the simulta-
neous optimization of TLBP and BAP leads to a better overall solution (global optimization)
with respect to the sequential optimization of the two problems (local optimization). To
the best of our knowledge, reference [4] provides the only existing approach to the simul-
taneous optimization of the two problems. Therefore, we tried to compare this approach
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with the approach in [4] on the case study of four parts and the benefits of this approach
are discussed in this section.

Based on the starting information in Section 5, the proposed algorithm with its tuned
parameters was applied and compared with the approach in [4]. In order to ensure the
robustness of the comparison, 30-time runs of both algorithms on each of the four engine
blocks were considered. Therefore, 30× 4 = 120 optimal sets (Pareto fronts) were obtained
for each of the approaches.

Firstly, we compared these results at the level of optimal sets. Every optimal set from
one algorithm was compared with the 30 optimal sets from the other one based on the set
coverage function in Equation (28). Figure 7 reports the results.
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As shown in the figure, the optimal sets of the new approach showed a significantly
higher average value on their coverage over the ones from the original approach. Among
the four cases, the new approach provided a quite high average value of the coverage
on both Case A (78.71%) and Case C (83.27%), and a relatively high average value of the
coverage on Case B (59.06%) and Case D (62.94%). On the contrary, the optimal sets of the
original approach showed a very low average value on their coverage over the ones from
the new approach (Case A 14.05%; Case B 27.04%; Case C 9.33%; Case D 22.01%). Therefore,
the new algorithm presented in this paper showed great advantages on the quality level of
the solution sets.

To further investigate the solutions inside the optimal set and the robustness of the
algorithms, we performed an additional run on each of the four cases through both of
the algorithms. The obtained optimal sets of the two algorithms applied on Case A are
shown in Figure 8 (Figures A2–A4 show similar results for Case B, Case C, and Case D,
respectively). The horizontal and vertical axes of the figure represent the two objective
functions: production rate and total investment cost, whose units were parts per hour and
Million Yuan, respectively. Each single point represents a solution, where the red points are
generated by the new algorithm, while the blue ones are obtained by the original algorithm:
a point closer to the origin (left bottom) represents a better solution.
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As shown in the figure:

1. Solutions in the optimal sets were distributed in groups and could be clustered.
Clusters mainly differed with respect to the number and type of machine tools, while
the solutions inside a cluster mainly differed with respect to buffer capacity. Of course,
the allocation of the operations also influenced the results;

2. In the comparison, the overall solutions from the new approach were better than those
from the original approach in all four cases;

3. Considering the details of Case A, there were six clusters in the two optimal sets from
both of the algorithms. The first two clusters with a lower production rate from the
new algorithm showed slightly better solutions. Starting from the third cluster, the
difference between the solutions from the two optimal sets was significantly larger.
Considering the third clusters from both of the algorithms, the investment cost of the
two clusters was quite similar and around 3.000 Million Yuan, while the production
rates of solutions (around 9.9 parts/hour) from the new approach were relatively
higher than those from the original approach (around 9.5 parts/hour). Starting from
the fourth cluster, it is apparent that the solutions of the cluster from the original
approach were fully dominated by those of the corresponding cluster from new
approach. This behavior was similar in Case C (Figure A3);

4. Considering the situation of Case B (Figure A2) and Case D (Figure A4), the improve-
ment of the new algorithm with respect to the original one was less relevant.

To obtain a further understanding of these results, the optimal solutions of the addi-
tional run from both the approaches were clustered. The IP criterion with the investment
cost per part was introduced and was calculated as:

IP =
C

PR× TA(4800hours/year)× Pexp(1year)

Therefore, the best solution (leader) for each cluster would be with the smallest IP
value. The results of Case A are shown in Table 4 (new algorithm) and Table 5 (original
algorithm), while the results of Case B, Case C, and Case D are shown in Tables A6–A11 in
Appendix G. Moreover, an example of a detailed solution (the leader solution of cluster 5
in Table 4) is illustrated in Table A12.
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Table 4. Cluster analysis of the new approach (Case A).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 13 12.99 39.19 62.334 628.71
2 14 11.99 36.20 57.546 629.06
3 13 10.98 33.19 52.719 629.56
4 12 9.96 30.15 47.816 630.55
5 12 8.96 27.13 43.008 630.82
6 8 7.94 24.10 38.090 632.70

Table 5. Cluster analysis of the original approach [4] (Case A).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 7 10.67 42.48 51.207 829.58
2 15 10.56 40.24 50.687 793.90
3 14 9.92 34.84 47.598 731.96
4 11 9.57 30.10 45.928 655.38
5 8 8.95 27.16 42.953 632.33
6 8 7.96 24.20 38.226 633.07

As shown in these tables, the results of Case A obtained by the new approach showed
a much better spread of the production level (38.090, 43.008, 47.816, 52.719, 57.546, 62.334
parts per year) from the leading solution of the six clusters, and properly fulfilled the
required interval of Case A (35.000, 60.000). Moreover, the best solutions from the new
approach in Table 4 provided a quite similar and low investment cost per part IP (around
630 CNY/part), while those solutions from the original approach in Table 5 started from
633 CNY/part and gradually increased to 830 CNY/part. Apparently, the new approach
proposed in this paper showed a better performance in Case A. Similarly, a better perfor-
mance was obtained by this approach in Case C. The results from this approach provided
a better spread of the production level (31.660, 35.209, 38.692, 42.273, 45.761, 49.028 parts
per year) from the best solution of six clusters, meeting the required demand interval of
Case C [28.000, 45.000]. The best solutions from this approach in Table A8 gave the lower
investment cost per part IP (around 857 CNY/part), while the solutions from the original
approach in Table A9 started from 858 CNY/part and gradually grew to 983 CNY/part.
As for Case B and Case D, the two approaches showed a similar performance on the clusters
with a lower production rate, while the new approach showed a better performance on
the clusters with a higher production rate (especially the cluster with highest production
rate). In addition, as shown in the tables, the new approach always provided a quite stable
investment cost per part IP in all the four cases, which means that the new approach had a
better searching ability within the solution space.

Therefore, the proposed approach showed great advantages and provided much better
solutions in Case A and Case C, and also obtained better solutions in Case B and Case D.

In addition, to test the stability of both the algorithms, we ran 100 simulations for
each solution of the 120 optimal sets and considered the median value for each solution
as the reference point (namely PRmed). The percentage of deviation between the original
production rate PR0 and the reference point PRmed was calculated as PR0−PRmed

PRmed
. The results

of both the algorithms are shown in Figure A5. As shown in the figure, considering the 6934
solutions of the 120 optimal sets of the new approach, the median value of the deviation
percentage was 0.58%, which was lower than the 0.89% obtained considering the 5678
solutions of the 120 optimal sets of the original approach. Thereforethis shows that the final
solutions from the new approach were more stable than those from the original one.
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7. Conclusions

This paper presented a heuristic approach for simultaneously solving transfer line
balancing and buffer allocation problems considering the market demand uncertainty. We
proposed to solve the overall problem using a combination of heuristic-based algorithm
and NSGA-II. The new heuristic decoding principles enabled the industrial needs of the
demand uncertainty to be met, which fulfilled the feasibility and improved the quality of
each solution, thus achieving a better performance of the algorithm. During the decoding,
the heuristic principles also provided each solution with a penalty mechanism to support
the elimination of worse solutions. Based on this, we also proposed a pre-screening strategy
to eliminate obviously worse solutions from each generation, thus greatly reducing the
waste in computational time. Finally, we introduced and tested a simulation strategy to
enhance the stability of the estimation of the throughput.

An industrial case study in a multi-unit manufacturing system producing four engine
blocks was illustrated to both validate this approach and compare the novel approach with
the original one. The comparison of the results showed that the novel approach provided
significantly better results in Case A and Case C (with set coverage of 78.71% and 83.27%)
and better performance in Case B and Case D (with set coverage of 59.06% and 62.94%),
thus validating both the efficiency and effectiveness of this approach.

There are several aspects that might be further researched in the future. 1© From the
problem point of view, future studies could consider an increased problem complexity to
be closer to a real industrial situation, which would mean taking some other neighboring
problems or more detailed information of the machining parameters or the machine tools
into consideration. 2© From the solution point of view, the concept of multi-fidelity to
evaluate BAP or other sub-problems might also be another relevant area for future research
studies, which may enhance the efficiency of the methods.

Moreover, there are some suggestions that may help the potential industrial application
in a similar situation. Simulations can provide much more information than the production
rate used in this paper; thus, more relevant indicators such as the idle time of machine tools
or the energy efficiency of the overall multi-unit manufacturing system could be introduced
as objectives to evaluate the final performance of the manufacturing system according to
the requirements of the decision makers.
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Appendix A

This appendix provides the detailed simulation results considered in Section 4.4.
Figure A1 includes summary reports for the percentage range of the three levels of the
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number of simulations (Sim_n) equal to 1, 3, and 5 times for each solution. A total of
60 randomly generated solutions with 10.000 replicas per level were tested and are pre-
sented in the figure.
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Appendix B

This appendix provides the detailed data in relation to the tuning of the parameters
of the proposed algorithm in Section 4.5. Table A1 describes the experiment results of L27
Taguchi of the proposed approach. Table A2 provides the response table for the means of
the experiment.

Table A1. Experiment results of L27 Taguchi.

Pair
Algorithm Parameters Response

A B C D E NSGA-II

1 1 1 1 1 1 0.1999
2 1 1 1 1 2 0.2093
3 1 1 1 1 3 0.2916
4 1 2 2 2 1 0.292
5 1 2 2 2 2 0.2282
6 1 2 2 2 3 0.5427
7 1 3 3 3 1 0.5104
8 1 3 3 3 2 0.5043
9 1 3 3 3 3 0.5473

10 2 1 2 3 1 0.3326
11 2 1 2 3 2 0.4669
12 2 1 2 3 3 0.343
13 2 2 3 1 1 0.4473
14 2 2 3 1 2 0.5425
15 2 2 3 1 3 0.3336
16 2 3 1 2 1 0.5696
17 2 3 1 2 2 0.5799
18 2 3 1 2 3 0.5799
19 3 1 3 2 1 0.5169
20 3 1 3 2 2 0.3894
21 3 1 3 2 3 0.5214
22 3 2 1 3 1 0.5586
23 3 2 1 3 2 0.533
24 3 2 1 3 3 0.691
25 3 3 2 1 1 0.5148
26 3 3 2 1 2 0.4847
27 3 3 2 1 3 0.5965

Table A2. NSGA-II response table for means.

Level A B C D E

1 0.3695 0.3635 0.4681 0.4023 0.4380
2 0.4662 0.4632 0.4224 0.4689 0.4376
3 0.5340 0.5430 0.4793 0.4986 0.4941

Delta 0.1645 0.1796 0.0569 0.0963 0.0565
Rank 2 1 4 3 5

Appendix C

This appendix provides the detailed information related to the station configuration
of the four parts in the case study. Table A3 provides the parameters of the two machine
tools considered in this paper, whose data were collected based on the previous production
lines from the company. Table A4 provides the possible station configurations that could
be used for all the four parts, whose combinations of machine type, datum system, part
orientatio n, and accessible surface are shown in the table.
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Table A3. Considered machine tool (MT) parameters.

MT MTTF [h] MTTR [h] Cost [Million CNY]

1 97.353 1.388 3.0
2 135.135 1.646 5.3

Table A4. Possible station configurations for the four parts.

Possible Station
Configuration 1 2 3 4 5 6 7 8 9 10 11

Part A

Machine
type 1 2 1 2 1 2 1 2

Datum
system F0 F1 F1 F1 F2 F2 F3 F3

Part Ori-
entation

Surface 6
down

Surface 3
down

Surface 6
down

Surface 6
down

Surface 5
down

Surface 5
down

Surface 3
down

Surface 3
down

Accessible
Surface 2, 3, 5 1, 2, 5 2, 3, 5 2, 3, 5 3, 4, 6 3, 4, 6 1, 6 1, 2, 5

Part B

Machine
type 1 1 1 1 2 2 2 2 2

Datum
system F0 F1 F2 F2 F0 F1 F2 F2 F3

Part Ori-
entation

Surface 6
down

Surface 3
down

Surface 5
down

Surface 2
down

Surface 6
down

Surface 3
down

Surface 5
down

Surface 2
down

Surface 3
down

Accessible
Surface 2, 3, 5 2, 5, 6 3, 4, 6 1, 3 2, 3, 5 2, 5, 6 3, 4, 6 1, 3 1, 2, 5, 6

Part C

Machine
type 1 1 1 1 2 2 2 2 2

Datum
system F0 F1 F2 F2 F0 F1 F2 F2 F3

Part Ori-
entation

Surface 6
down

Surface 3
down

Surface 5
down

Surface 3
down

Surface 6
down

Surface 3
down

Surface 5
down

Surface 3
down

Surface 2
down

Accessible
Surface 2, 3, 5 2, 5, 6 1, 4 3, 4, 6 2, 3, 5 2, 5, 6 1, 4 3, 4, 6 1, 2, 5

Part D

Machine
type 1 1 1 1 1 1 2 2 2 2 2

Datum
system F0 F1 F2 F3 F2 F2 F1 F2 F3 F2 F2

Part Ori-
entation

Surface 1
down

Surface 4
down

Surface 1
down

Surface 6
down

Surface 6
down

Surface 4
down

Surface 4
down

Surface 1
down

Surface 6
down

Surface 6
down

Surface 4
down

Accessible
Surface 3, 4 1, 2, 6 3, 5, 6 1, 2 2, 3, 4 2, 5, 6 1, 2, 6 3, 5, 6 1, 2 2, 3, 4 2, 5, 6

Appendix D

This appendix provides the detailed data in relation to the machining operations
needed to produce the four parts (Part A, Part B, Part C, and Part D) considered in this
paper. They include general operation groups (OFG), operation groups for datum system
(FDS), and special feature groups (SFG).
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Feature Group
of Part A

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG1

10103 100.1 100.2 0 0 0 0 −10103.1 −10103.2 0 0
10302 100.1 100.2 10302.1 0 10302.2 0 0 0 −10302.3 −10302.4
10412 100.1 100.2 10412.1 0 10412.2 0 0 0 0 −10412.3
10603 100.1 100.2 10603.1 0 0 0 0 0 0 0
10703 100.1 100.2 10703.1 0 0 0 0 0 0 0
10803 100.1 100.2 10803.1 0 0 0 0 0 0 0
10902 100.1 100.2 10902.1 0 0 0 0 0 0 0

OFG2

20305 200 0 20305.1 0 0 0 0 0 0 20305.2
20417 200 0 20417.1 0 0 0 0 0 0 20417.2
20501 200 0 0 0 20501.1 0 0 0 20501.2 0
20601 200 0 20601.1 0 0 0 0 0 0 0
20703 200 0 20703.1 0 0 0 0 0 0 0
20801 200 0 20801.1 0 0 0 0 0 0 0
20901 200 0 20901.1 0 0 0 0 0 20901.2 0
21001 200 0 21001.1 0 0 0 0 0 0 0
21101 0 0 21101.1 0 0 0 0 0 21101.2 0
21202 21202.1 0 0 0 0 0 0 0 0 0
20104 0 20104.1 0 0 0 20104.2 0 20104.3 0 0
20208 20208.1 0 0 0 0 0 0 0 0 0

OFG3

30402 0 300.2 30402.1 0 0 0 0 0 0 −30402.2
30502 0 0 30502.1 0 0 0 0 0 0 0
30706 0 300.2 30706.1 0 0 0 0 0 0 −30706.2
30901 0 0 30901.1 0 0 0 0 0 0 0
30604 306 0 30604.1 30604.2 0 0 0 0 0 30604.3
30802 308 0 30802.1 0 0 0 0 0 0 30802.2

OFG4
40302 400.1 400.2 40302.1 0 0 0 0 0 0 −40302.2
40407 400.1 400.2 40407.1 0 0 0 0 0 0 −40407.2

OFG5

50301 0 0 0 0 50301.1 0 0 0 0 0
50408 0 0 50408.1 0 0 0 0 0 0 50408.2
50507 0 0 50507.1 0 0 0 0 0 0 50507.2
50702 0 0 50702.1 0 0 0 0 0 50702.2 0
50801 0 0 50801.1 0 0 0 0 0 50801.2 0
50903 0 500.2 0 0 0 50903.1 50903.2 −50903.3 0 0

OFG6

60109 601 0 60109.1 0 60109.2 0 0 0 0 60109.3
60416 0 600.2 60416.1 0 0 0 0 0 0 −60416.2
60502 0 0 60502.1 0 0 0 0 0 0 0
60806 0 600.2 60806.1 0 0 0 0 0 −60806.2 0

FDS1 F1 600.1 0 60202.1 0 0 0 0 0 60202.2 0
FDS2 F2 500.1 0 50602.1 0 0 0 0 0 50602.2 0
FDS3 F3 300.1 0 30302.1 0 0 0 0 0 30302.2 0
SFG1 S1 0 0 0 1502 0 0 0 0 0 0
SFG2 S2 0 0 31001.1 0 0 0 0 0 0 0
SFG3 S3 0 0 60304.1 60304.2 0 0 0 0 0 0
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Feature group
of Part B

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG1

10104 100.1 100.2 0 0 0 0 10104.1 −10104.2 0 0
10202 100.1 100.2 10202.1 0 0 0 0 0 −10202.2 0
10316 100.1 100.2 10316.1 0 0 0 0 0 0 0
10402 100.1 100.2 10402.1 0 0 0 0 0 0 0
10506 100.1 100.2 0 10506.1 0 0 0 0 0 0
10604 100.1 100.2 10604.1 0 0 0 0 0 0 0
10701 100.1 100.2 10701.1 0 0 0 0 0 0 0
10801 100.1 100.2 10801.1 0 0 0 0 0 0 0

OFG2

20101 200.1 200.2 0 0 0 20101.1 20101.2 −20101.3 0 0
20201 200.1 200.2 0 0 0 0 20201.1 −20201.2 0 0
20301 200.1 200.2 20301.1 0 0 0 0 0 −20301.2 0
20601 200.1 200.2 20601.1 0 0 0 0 0 0 0
20701 200.1 200.2 20701.1 0 0 0 0 0 −20701.2 0
20801 200.1 200.2 20801.1 0 0 0 0 0 0 0
21117 200.1 200.2 21117.1 0 0 0 0 0 0 0
21202 200.1 200.2 21202.1 0 0 0 0 0 0 0
21301 200.1 200.2 21301.1 0 0 0 0 0 0 0
21504 200.1 200.2 21504.1 0 0 0 0 0 0 0
21601 200.1 200.2 21601.1 0 0 0 0 0 0 0
21701 200.1 200.2 21701.1 0 0 0 0 0 −21701.2 0

OFG3

30201 0 0 30201.1 0 0 0 0 0 0 0
30405 0 0 30405.1 0 0 0 0 0 0 0
30701 0 0 30701.1 0 0 0 0 0 0 0
30801 0 0 30801.1 0 0 0 0 0 0 0
30901 0 0 30901.1 0 0 0 0 0 0 0
31008 0 0 31008.1 0 0 0 0 0 0 0
31201 0 0 31201.1 0 0 0 0 0 0 0
31308 0 0 31308.1 0 0 0 0 0 0 0

OFG4

40102 400.1 0 40102.1 0 0 0 0 0 0 0
40205 400.1 0 40205.1 0 0 0 0 0 0 0
40510 400.1 0 40510.1 0 0 0 0 0 0 0
40701 400.1 0 40701.1 0 0 0 0 0 0 0

OFG5

50504 0 0 50504.1 0 0 0 0 0 50504.2 0
50708 0 0 50708.1 0 0 0 0 0 0 0
50807 0 0 50807.1 0 0 0 0 0 0 0

OFG6

60210 602.1 0 60210.1 0 0 0 0 0 0 0
60318 0 600.2 60318.1 0 0 0 0 0 0 0
60403 0 600.2 60403.1 0 0 0 0 0 0 0
60605 0 600.2 60605.1 0 0 0 0 0 0 0
60702 0 0 60702.1 0 0 0 0 0 0 0
60904 0 0 60904.1 0 0 0 0 0 0 0
61004 610.1 0 61004.1 0 0 0 0 0 0 0
61108 0 0 0 0 61108.1 0 0 0 0 0
61205 0 0 0 61205.1 0 0 0 0 0 0
616 616.1 616.2 0 0 0 0 0 0 0 0

63000 630.1 0 0 0 0 0 0 0 0 0
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Feature group
of Part B

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

FDS1 F1 300.1 0 0 0 30104.1 0 0 0 30,104.2 0
FDS2 F2 500.1 0 50302.1 0 50302.2 0 0 0 50,302.3 0
FDS3 F3 600.1 0 60102.1 0 60102.2 0 0 0 60,102.3 0
SFG1 S1 0 0 30601 20501 0 0 0 0 0 0

Feature group
of Part C

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG1

10104 100.1 100.2 10104.1 0 10104.2 −10104.3 −10104.4 −10104.5 0 0
10202 100.1 100.2 10202.1 0 10202.2 0 10202.3 0 10202.4 10202.5
10403 100.1 100.2 10403.1 0 0 0 0 0 0 0
10501 100.1 100.2 0 10501.1 0 0 0 0 0 0
10616 100.1 100.2 10616.1 0 10616.2 0 0 0 0 10616.3
10704 100.1 100.2 10704.1 0 0 0 0 0 0 0
10802 100.1 100.2 10802.1 0 0 0 0 0 0 0

OFG2

20119 200.1 200.2 20119.1 0 0 0 0 0 0 20119.2
20201 200.1 200.2 20201.1 0 0 0 0 0 0 0
20301 200.1 200.2 20301.1 0 0 0 0 0 20301.2 0
20401 200.1 200.2 0 0 20401.1 0 20401.2 −20401.3 0 0
20501 200.1 200.2 20501.1 0 0 0 0 0 −20501.2 0
20701 200.1 200.2 0 0 −20701.1 0 −20701.2 0 0 0
20905 200.1 200.2 20905.1 0 0 0 0 0 0 0
21002 200.1 200.2 0 0 0 0 −21002.1 0 0 0
21105 200.1 200.2 21105.1 0 0 0 0 0 0 0
210 210.1 210.2 0 0 0 0 0 0 0 0

OFG3

30105 0 0 30105.1 0 0 0 0 0 0 30105.2
30202 0 0 30202.1 0 0 0 0 0 0 30202.2
30301 0 0 30301.1 0 0 0 0 0 0 30301.2
30406 0 0 30406.1 0 0 0 0 0 0 30406.2
30502 0 0 30502.1 0 0 0 0 0 0 30502.2
30601 0 0 30601.1 0 0 0 0 0 0 0
30901 0 0 30901.1 0 0 0 0 0 0 0
31001 0 0 31001.1 0 0 0 0 0 0 0
30705 307.1 0 30705.1 0 0 0 0 0 0 30705.2

OFG4

40102 401.1 0 40102.1 0 0 0 0 0 0 40102.2
40201 400.1 0 40201.1 0 0 0 0 0 0 0
40302 400.1 0 40302.1 0 40302.2 0 0 0 0 40302.3
40502 400.1 0 40502.1 0 0 0 0 0 0 40502.2
40610 400.1 0 40610.1 0 0 0 0 0 0 40610.2
40704 400.1 0 40704.1 0 0 0 0 0 0 40704.2
40802 400.1 0 40802.1 0 0 0 0 0 0 40802.2
40901 400.1 0 40901.1 0 0 0 0 0 0 40901.2
41001 410.1 0 41001.1 0 0 0 0 0 0 41001.2
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Feature group
of Part C

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG5

50108 0 500.2 50108.1 0 0 0 0 0 0 50108.2
50401 0 500.2 0 50401.1 0 0 −50401.2 0 0 0
50501 0 500.2 0 0 0 0 50501.1 −50501.2 0 0
50701 0 500.2 0 0 −50701.1 0 −50701.2 0 0 0
50601 0 0 50601.1 0 0 0 0 0 0 0

OFG6

60119 0 600.2 60119.1 0 0 0 0 0 0 60119.2
60204 0 600.2 60204.1 0 0 0 0 0 0 60204.2
60308 0 600.2 60308.1 0 0 0 0 0 −60308.2 0
60601 0 600.2 0 60601.1 0 0 0 0 0 0
60701 0 600.2 60701.1 0 0 0 0 0 0 0
61104 0 600.2 −61104.1 0 0 0 0 0 0 0
61204 0 600.2 −61204.1 0 0 0 0 0 0 0
61302 0 600.2 −61302.1 0 0 0 0 0 0 0
61401 0 600.2 −61401.1 0 0 0 0 0 0 0
61510 0 600.2 −61510.1 0 0 0 0 0 0 −61510.2
60808 0 0 60808.1 0 0 0 0 0 0 0
604 604.1 0 0 0 0 0 0 0 0 0

61004 610.1 0 −61004.1 0 0 0 0 0 0 −61004.2

FDS1 F1 300.1 0 0 0 30804.1 0 0 0 30804.2 0
FDS2 F2 500.1 0 50302.1 0 50302.2 0 0 0 50302.3 0
FDS3 F3 600.1 0 60502.1 0 60502.2 0 0 0 60502.3 0
SFG1 S1 0 0 10303.1 10303.2 0 0 0 0 0 0

Feature group
of Part D Feature Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG1

10102 0 110.2 10102.1 0 0 0 0 0 −10102.2 0
10210 100.1 100.2 10210.1 0 0 0 0 0 0 0
10308 0 110.2 10308.1 0 0 0 0 0 0 0
10402 0 110.2 10402.1 0 0 0 0 0 0 0
10604 0 0 10604.1 0 0 0 0 0 0 0
10907 0 0 0 10907.1 0 0 0 0 0 0
11201 100.1 100.2 0 0 0 0 0 0 11201.1 0
11308 0 0 0 0 0 0 11308.1 0 0 0
11504 0 110.2 0 0 0 0 0 0 11504.1 0

OFG2

20102 200.1 200.2 0 0 0 0 0 0 20102.1 0
20118 200.1 200.2 20118.1 0 0 0 0 0 0 0
20204 200.1 200.2 20204.1 0 20204.2 −20204.3 20204.4 20204.5 0 0
20301 200.1 200.2 20301.1 0 0 0 0 0 0 0
20404 200.1 200.2 20404.1 0 0 0 0 0 0 0
20506 0 0 20506.1 0 0 0 0 0 0 0
20601 0 0 20601.1 0 0 0 0 0 0 0
20701 0 0 20701.1 0 0 0 0 0 0 0
20801 0 0 20801.1 0 0 0 0 0 0 0
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Feature group
of Part D

Feature
Name

Face Hole

Semi-Finish
Milling Finish Milling Drilling Gun Drilling Core

Drilling Rough Boring Semi-Finish
Boring Finish Boring Reaming Tapping

OFG3

30311 301.1 301.2 −30311.1 0 0 0 0 0 0 0
30204 303.1 303.2 30204.1 0 0 0 0 0 0 0
30402 303.1 303.2 30402.1 0 0 0 0 0 0 0
30503 303.1 303.2 30503.1 0 30503.2 0 0 0 0 0
30601 303.1 303.2 30601.1 0 0 0 0 0 0 0
30702 303.1 303.2 30702.1 0 0 0 0 0 0 0
30801 302.1 0 30801.1 0 0 0 0 0 0 0

OFG4

40502 405.1 0 40502.1 0 0 0 0 0 0 0
40610 406.1 0 40610.1 0 0 0 0 0 0 0
40310 403.1 0 40310.1 0 0 0 0 0 0 0
40402 403.1 0 40402.1 0 0 0 0 0 0 0
40701 409.1 0 40701.1 0 0 0 0 0 0 0
40902 409.1 0 40902.1 0 0 0 0 0 0 0
41102 413.1 413.2 41102.1 0 0 0 0 0 0 0

OFG5

50101 500.1 500.2 50101.1 0 −50101.2 0 0 0 50101.3 50101.4
50201 500.1 500.2 50201.1 0 −50201.2 0 0 0 0 0
50302 500.1 500.2 50302.1 0 0 0 0 0 0 0
50401 500.1 500.2 50401.1 0 0 0 0 0 0 0
50501 500.1 500.2 50501.1 0 0 0 0 0 0 0
50619 500.1 500.2 50619.1 0 0 0 0 0 0 0
50704 500.1 500.2 50704.1 0 −50704.2 0 0 0 0 50704.3
50901 500.1 500.2 0 0 0 0 50901.1 −50901.2 0 0
51001 500.1 500.2 51001.1 0 51001.2 0 0 −51001.3 0 0

520 520.1 0 0 0 0 0 0 0 0 0
530 530.1 0 0 0 0 0 0 0 0 0
540 540.1 540.2 0 0 0 0 0 0 0 0
550 550.1 0 0 0 0 0 0 0 0 0

52001 0 0 52001.1 0 0 0 0 0 0 0

OFG6

60102 0 600.2 60102.1 0 −60102.2 0 0 0 0 0
60202 0 600.2 60202.1 0 −60202.2 0 0 0 0 0
60309 0 600.2 60309.1 0 0 0 0 0 0 0
60404 0 600.2 60404.1 0 0 0 0 0 0 0
60502 0 600.2 60502.1 0 0 0 0 0 0 0
60601 0 600.2 0 0 0 0 60,601.1 −60,601.2 0 0
60901 0 600.2 60901.1 0 0 0 0 0 0 0

FDS1 F1 401.1 0 40202.1 0 40202.2 0 0 0 40202.3 0
FDS2 F2 110.1 0 10502.1 0 10502.2 0 40102 0 10502.3 0
FDS3 F3 600.1 0 60802.1 0 60802.2 0 0 0 60802.3 0
SFG1 S1 0 0 30903 11403 0 0 0 0 0 0
SFG2 S2 0 0 40801 50801 0 0 0 0 0 0
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Appendix E

Table A5 provides the detailed data in relation to the Feature Group–Station Con-
figuration Matrix (FSM) for the four parts (Part A, Part B, Part C, and Part D) following
Section 3.4.1. The station configuration can be found in Table A4 of Appendix C, while the
information on the operation groups can be found in Appendix D.

Table A5. Feature Group–Station Configuration matrix of the four parts.

Station Configuration Number FSM-
PartA 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 FSM-PartD

General operation group

OFG1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 OFG1
OFG2 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 OFG2
OFG3 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 OFG3
OFG4 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 OFG4
OFG5 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 OFG5
OFG6 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 OFG6

Features for datum system
FDS1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 FDS1
FDS2 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 FDS2
FDS3 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 FDS3

Special feature group
SFG1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 SFG1
SFG2 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 SFG2
SFG3 0 0 0 0 1 1 0 0

Station configuration number FSM-
PartB 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 FSM-PartC

General operation group

OFG1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 OFG1
OFG2 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 OFG2
OFG3 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 OFG3
OFG4 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 OFG4
OFG5 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 OFG5
OFG6 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 OFG6

Features for datum system
FDS1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 FDS1
FDS2 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 FDS2
FDS3 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 FDS3

Special feature group SFG1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 SFG1

Appendix F

This appendix provides the machining time of all the operations needed to produce
the four engine blocks (Part A, Part B, Part C, Part D) considered in this paper.

PART A Operation Time[s] Operation Time[s] Operation Time[s] Operation Time[s]

100.1 52.10 20501.2 10.58 306 20.19 50801.2 60.77
100.2 87.41 20601.1 8.95 30604.1 24.98 500.2 100.87

10103.1 37.30 20703.1 27.29 30604.2 66.14 50903.1 32.79
10103.2 203.09 20801.1 8.92 30604.3 47.63 50903.2 42.20
10302.1 14.86 20901.1 8.83 308 7.41 50903.3 62.36
10302.2 9.34 20901.2 11.39 30802.1 13.21 601 58.73
10302.3 17.90 21001.1 9.70 30802.2 23.35 600.2 96.03
10302.4 17.23 21101.1 8.63 400.1 54.67 60109.1 58.51
10412.1 59.74 21101.2 9.17 400.2 104.50 60109.2 25.33
10412.2 30.41 21202.1 68.83 40302.1 11.48 60109.3 67.06
10412.3 73.30 20104.1 104.21 40302.2 10.54 60416.1 49.09
10603.1 32.16 20104.2 29.55 40407.1 34.93 60416.2 34.39
10703.1 13.26 20104.3 80.13 40407.2 22.86 60502.1 24.55
10803.1 18.92 20208.1 145.53 50301.1 17.09 60806.1 38.05
10902.1 11.20 300.2 146.92 50408.1 31.30 60806.2 75.87

200 56.41 30402.1 10.80 50408.2 43.93 F1 83.58
20305.1 30.56 30402.2 10.82 50507.1 32.23 F2 80.58
20305.2 15.20 30502.1 24.25 50507.2 30.94 F3 102.15
20417.1 65.17 30706.1 26.16 50702.1 9.99 S1 30.70
20417.2 47.70 30706.2 19.69 50702.2 14.02 S2 6.96
20501.1 5.13 30901.1 12.90 50801.1 10.40 S3 68.11
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PART B Operation Time[s] Operation Time[s] Operation Time[s] Operation Time[s]

100.1 64.11 20201.1 139.59 30701.1 18.36 600.2 73.51
100.2 71.22 20201.2 184.05 30801.1 7.47 60318.1 103.32

10104.1 330.18 20301.1 14.75 30901.1 11.65 60403.1 36.07
10104.2 232.03 20301.2 9.52 31008.1 86.76 60605.1 34.02
10202.1 25.90 20601.1 7.92 31201.1 16.02 60702.1 28.31
10202.2 15.04 20701.1 15.37 31308.1 54.43 60904.1 40.52
10316.1 204.82 20701.2 9.66 400.1 38.27 610.1 75.55
10402.1 9.45 20801.1 17.99 40102.1 21.51 61004.1 15.59
10506.1 143.06 21117.1 94.56 40205.1 54.30 61108.1 235.77
10604.1 18.42 21202.1 15.14 40510.1 86.01 61205.1 68.38
10701.1 36.62 21301.1 14.32 40701.1 58.59 616.1 113.39
10801.1 8.04 21504.1 32.75 50504.1 37.85 616.2 99.32
200.1 49.01 21601.1 14.51 50504.2 24.81 630.10 112.20
200.2 173.67 21701.1 22.12 50708.1 52.79 F1 111.62

20101.1 61.96 21701.2 9.01 50807.1 53.88 F2 225.91
20101.2 84.05 30201.1 15.76 602.1 189.13 F3 106.65
20101.3 373.34 30405.1 204.13 60210.1 127.19 S1 102.67

Part C Operation Time[s] Operation Time[s] Operation Time[s] Operation Time[s]

100.1 65.72 20401.3 181.76 410.1 11.52 50601.1 8.06
100.2 42.59 20501.1 8.06 40102.1 11.60 600.2 69.13

10104.1 14.10 20501.2 17.40 40102.2 14.23 604.1 7.75
10104.2 113.08 20701.1 8.31 40201.1 9.61 610.1 38.58
10104.3 10.25 20701.2 9.29 40302.1 37.69 60119.1 84.85
10104.4 38.42 20905.1 60.75 40302.2 8.07 60119.2 58.78
10104.5 38.60 21002.1 27.75 40302.3 11.68 60204.1 19.25
10202.1 10.82 21105.1 33.28 40502.1 11.70 60204.2 12.81
10202.2 19.25 210.1 145.73 40502.2 12.24 60308.1 63.78
10202.3 16.75 210.2 75.05 40610.1 34.95 60308.2 186.53
10202.4 17.56 307.1 15.47 40610.2 39.36 60601.1 57.08
10202.5 14.22 30105.1 35.29 40704.1 19.29 60701.1 37.64
10403.1 19.87 30105.2 16.56 40704.2 18.05 61104.1 60.21
10501.1 45.18 30202.1 17.21 40802.1 11.20 61204.1 12.43
10616.1 86.36 30202.2 11.89 40802.2 6.87 61302.1 18.74
10616.2 96.85 30301.1 4.56 40901.1 8.29 61401.1 49.23
10616.3 72.59 30301.2 3.04 40901.2 3.42 61510.1 51.66
10704.1 17.06 30406.1 18.76 41001.1 10.95 61510.2 62.64
10802.1 10.93 30406.2 19.54 41001.2 16.99 60808.1 106.37
200.1 63.13 30502.1 13.37 500.2 86.53 61004.1 19.36
200.2 113.93 30502.2 7.10 50108.1 27.36 61004.2 22.47

20119.1 69.04 30601.1 14.91 50108.2 30.30 F1 164.35
20119.2 59.84 30705.1 72.04 50401.1 120.52 F2 81.66
20201.1 8.06 30705.2 28.98 50401.2 22.09 F3 94.82
20301.1 8.63 30901.1 9.92 50501.1 80.44 S1 58.59
20301.2 13.40 31001.1 12.36 50501.2 444.74
20401.1 53.68 401.1 54.26 50701.1 8.26
20401.2 78.06 400.1 71.51 50701.2 9.29

Part D Operation Time[s] Operation Time[s] Operation Time[s] Operation Time[s]

100.1 213.46 20506.1 66.70 40610.1 90.52 51001.2 6.73
100.2 431.18 20601.1 6.26 40310.1 91.54 51001.3 6.69
110.2 217.92 20701.1 28.79 40402.1 19.98 520.1 198.96

10102.1 24.48 20801.1 7.91 40701.1 15.96 530.1 63.43
10102.2 17.79 301.1 148.23 40902.1 20.07 540.1 327.70
10210.1 215.02 301.2 156.69 41102.1 18.72 540.2 462.78
10308.1 72.73 302.1 70.59 500.1 162.63 550.1 24.61
10402.1 128.42 303.1 148.24 500.2 162.63 52001.1 20.00
10604.1 30.43 303.2 156.69 50101.1 6.55 600.2 162.63
10907.1 177.08 30311.1 95.27 50101.2 7.01 60102.1 9.81
11201.1 16.56 30204.1 62.24 50101.3 3.67 60102.2 31.75
11308.1 308.79 30402.1 18.81 50101.4 15.31 60202.1 7.93
11504.1 23.49 30503.1 8.90 50201.1 5.54 60202.2 28.45
200.1 286.44 30503.2 23.45 50201.2 17.90 60309.1 118.22
200.2 130.71 30601.1 16.53 50302.1 55.79 60404.1 52.18

20102.1 29.77 30702.1 26.04 50401.1 15.56 60502.1 27.35
20118.1 295.51 30801.1 32.54 50501.1 14.53 60601.1 153.93
20204.1 740.81 405.1 42.12 50619.1 132.98 60601.2 74.07
20204.2 50.84 406.1 114.12 50704.1 28.81 60901.1 21.29
20204.3 676.80 403.1 14.38 50704.2 5.69 F1 254.23
20204.4 11.71 409.1 13.88 50704.3 23.02 F2 403.44
20204.5 679.24 413.1 8.20 50901.1 112.10 F3 262.56
20301.1 7.92 413.2 8.40 50901.2 228.90 S1 163.58
20404.1 20.73 40502.1 22.07 51001.1 6.61 S2 86.40
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Appendix G

This appendix provides the detailed comparison results discussed in Section 6.
Figures A2–A4 show the comparison between the proposed approach and the previous
approach at the level of optimal solution sets, respectively, corresponding to Cases B, C,
and D, while Tables A6–A11 provide the comparison results at the level of solution clusters.

Figure A5 shows the testing results on the stability of both the algorithms. Table A12
illustrates an example of the detailed leader solution of cluster 5 in Table 4 (Case A).
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Table A6. Cluster analysis of the new approach (Case B).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 15 8.04 36.18 38.602 937.26
2 12 7.26 33.16 34.836 951.89
3 13 6.66 30.25 31.952 946.73
4 13 6.02 27.18 28.917 939.92

Table A7. Cluster analysis of the original approach [4] (Case B).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 15 8.01 36.28 38.436 943.92
2 10 7.25 33.11 34.810 951.15
3 10 6.64 30.27 31.893 949.11
4 10 6.02 27.15 28.893 939.66

Table A8. Cluster analysis of the new approach (Case C).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 15 10.21 42.27 49.028 862.15
2 13 9.53 39.16 45.761 855.75
3 14 8.81 36.18 42.273 855.87
4 9 8.06 33.17 38.692 857.28
5 12 7.34 30.19 35.209 857.45
6 12 6.60 27.14 31.660 857.22

Table A9. Cluster analysis of the original approach [4] (Case C).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 10 9.31 43.95 44.680 983.67
2 6 9.05 41.51 43.431 955.77
3 16 8.74 36.26 41.942 864.52
4 20 8.03 33.26 38.524 863.36
5 11 7.34 30.20 35.222 857.42
6 11 6.60 27.17 31.671 857.87

Table A10. Cluster analysis of the new approach (Case D).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 14 3.72 33.15 17.833 1858.91
2 10 3.30 30.1 15.855 1898.43
3 11 2.90 27.05 13.926 1942.45

Table A11. Cluster analysis of the original approach [4] (Case D).

Cluster
Number

Members
in All

PR
[Part/h]

Ctotal
[M¥]

Production
[Part/y]

IP
[¥/Part]

1 9 3.64 33.08 17.458 1894.81
2 11 3.30 30.13 15.861 1899.63
3 8 2.91 27.12 13.970 1941.35
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Table A12. The detailed solution of the leader solution of Cluster 5 in Table 4 (Case A). Station
configuration was coded according to Table A4. The buffer capacity is the number of buffer positions
at the end of the considered station, so the last station has no buffer position. Operations reports the
sequence of allocated machining operations to the station.

Station Information Station 1 Station 2 Station 3

Station Configuration 1 5 7
Number of Machine Tools 4 3 2

Buffer Capacity 9 4 -
Total Machining Time [s] 1566.23 1169.90 775.98

Operations

200, 20901.1, 20417.1, 20417.2,
20801.1, 20104.1, 21202.1,
20601.1, 20703.1, 20104.2,
20305.1, 20501.1, 20901.2,
20104.3, 20305.2, 21101.1,
21001.1, 21101.2, 20208.1,
20501.2, 308, 306, 30604.1,
30604.2, 30802.1, 30402.1,
50507.1, 50702.1, 50801.1,
50903.1, 50301.1, 50507.2,

50903.2, 500.2, 50801.2,
50702.2, 50408.1, 50903.3,

50408.2, F2, F3

300.2, 30802.2, 30604.3,
30706.1, 30502.1, 30402.2,

30901.1, 30706.2, 400.1,
40407.1, 40302.1, 400.2,

40302.2, 40407.2, 601 60806.1,
60416.1, 600.2, 60502.1,

60109.1, 60416.2, 60109.2,
60806.2, F1, S2, S3

100.2, 10302.1, 10412.1,
10603.1, 10412.2, 10103.1,
10703.1, 10803.1, 10302.2,
10412.3, 10103.2, 10302.3,

10902.1, 10302.4, 60109.3, S1
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