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Abstract— This paper presents a position-based visual-
servoing control approach for a robotic camera holder, aimed
at enhancing ergonomics and reducing mental stress during
brain surgery. The tracking system moves the robotic camera
holder by following a selected surgical instrument. Once the
instrument is detected, its position is sent to a position control
module, which moves the robot accordingly. To enhance system
performance, a hybrid module combining optical flow and a
particle filter is incorporated to predict the future position of
the surgical tool, effectively reducing overall system delays. The
proposed system was validated using a 7 Degree-of-Freedoms
(DoFs) robotic manipulator with an eye-in-hand stereo camera
configuration. Each module of the system was tested, and
experimental results demonstrate its capability to detect and
track the surgical tool with an average tracking error of
9.84 ± 0.08 mm for slow movement and 13.11 ± 0.39 mm for
fast motion.

I. INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) pose
significant challenges for neurosurgeons, impacting their
quality of life and career longevity [1]. These issues are
mainly caused by non-neutral positions during surgeries,
especially when using microscopes and focusing on oculars.
Exoscopes have been introduced as a solution, enabling
surgeons to maintain a neutral, upright spinal position for
better ergonomics [2]. However, manual repositioning in
existing models can interrupt surgery, leading to longer
operation times and reduced efficiency [3]. To further reduce
the surgeon’s workload, minimizing the need for direct
intervention in camera control (LoA 2 [4]) is desirable.

Various techniques have been explored for automatizing
the camera motion. Among these, the markerless instrument
tracking approach stands out as one of the most widely
used methods. It enables fast and precise reconstruction of
the surgical instrument’s 3D position, seamlessly integrating
into robotic control frameworks [5]. This approach has
been successfully implemented in multiple camera systems,
ensuring smooth and controlled movements [6], [7], [8].

This paper presents a robot-assisted autonomous exoscope
to reduce the workload of the surgeon during brain surgery.
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The paper is organized as follows. Section II describes
materials and methods of the proposed system. Section
III depicts the experimental setup. Experimental results are
illustrated and discussed in Section IV. Finally, conclusions
are reported in Section V.

II. MATERIALS AND METHODS

The proposed system is divided in three modules: a tool
detection module (Section II.A.) that can recognise a selected
surgical instrument, a hybrid tracking module that tracks and
predicts the future position of the target tool (Section II.B.),
and a visual-servoing controller responsible for zeroing the
error between the desired and actual pose of the robot
(Section II.C.). The overall system is illustrated in Fig. 1.

Fig. 1. Overall System: images acquired by the stereo camera are sent to a
CNN which detects the surgical tool. The 2D position of the tool is sent to
a tracking module, then a prediction module estimates the future position of
the tool in the image space. Finally, the 3D position of the tool is extracted
from the predicted position and is fed to a visual-servoing controller.

A. Tool Detection Module

A pre-trained CNN YoloV5 [9] was fine-tuned for target
detection. The CNN received downsampled images of size
640x640 from a stereo camera and provided the position of
the instrument’s tip through a bounding box. The center of
the bounding box in the right and left images, (XR, YR),
(XL, YL), denoted the position of the instrument in the
camera space.

B. Hybrid Tracking Module

To address the CNN’s low-speed performance in tool
detection, a hybrid tracking module was introduced. The
module consisted of two key components: the optical flow
tracking and a modified particle filter. By leveraging the
optical flow, we achieved efficient tool tracking between
consecutive frames. Additionally, the particle filter played a



crucial role in predicting the tool’s future position, effectively
reducing system delays.

The optical flow tracking module offered by OpenCV [10],
which exploits the Lukas-Kanade method with pyramids, was
chosen for this study. Optical flow refers to the pattern of
apparent motion of image objects between two consecutive
frames caused by the movement of object or camera. It
represents a 2D vector field where each vector denotes the
displacement of points from the first frame to the second.
Optical flow works on two assumptions:

1) The pixel intensities of an object do not change be-
tween consecutive frames.

2) Neighbouring pixels have similar motion.
In our case, the position of the instrument in the camera
space, (XR, YR), (XL, YL), was sent to the optical flow
together with eight surrounding points to lower the risk of
losing the tool position because of partial occlusions or small
changes of the pixel intensities. Moreover, pyramids were
employed to accommodate not only small movements of
the tracked points but also larger ones. Pyramids allow for
image scaling, enabling the system to perceive significant
movements as if they were smaller, contributing to improved
tracking performance. The tool position was thus detected
using the CNN on the first frame and then the optical
flow was used to track the tool’s position, (XRof

, YRof
),

(XLof
, YLof

), in the following, with exceptions made when
the optical flow lost the points to follow or appeared to be
tracking the wrong point in the image. The CNN was used
also every 15 seconds to confirm precise tracking of the
intended target.

A modified particle filter was introduced to get an esti-
mation of the future tool position in the image space, on
the basis of the previous position and of the speed and
orientation of motion. The particle filter is an algorithm that
recursively updates an estimate of the state and finds the
innovations driving a stochastic process given a sequence
of observations. It does so by a sequential Monte Carlo
method. Sequential Monte Carlo methods perform a similar
role to the Kalman filter in non-linear and/or non-Gaussian
environments. However, unlike the Kalman filter, the par-
ticle filter employs simulation methods to generate state
and innovation estimates. This allows the particle filter to
effectively handle complex and non-linear systems such as
the motion of a surgical instrument. Every time the tool
position, (XRof

, YRof
), (XLof

, YLof
), was computed, our

particle filter acted as follows:
1) The direction and the speed of the movement of the

tool were computed.
2) The heading of each particle was distributed normally

around the direction of the movement of the tool.
3) The future position of the particles was predicted

in both images. In particular, if the variation of the
direction of the tool was under a certain threshold, the
Runge–Kutta odometry was used:

XR,i = xt + vt · dt · cos
(
hi +

∆h · dt
2

)
(1)

YR,i = yt + vt · dt · sin
(
hi +

∆h · dt
2

)
(2)

where hi is the heading of the i−th particle, ∆h is the
difference of the heading of the tool at two consecutive
instants, dt is the prediction horizon, xt and yt are the
x and y coordinate of the tool respectively, coming
from the tracking module, vt is the estimated velocity
of the tool, and i is the number of the particle. When
the variation of the direction of the tool was above a
certain threshold the exact odometry was used:

XR,i = xt +
vt[sin (hi +∆h · dt)− sin (hi)]

∆h
(3)

YR,i = yt −
vt[cos (hi +∆h · dt)− cos (hi)]

∆h
(4)

For simplicity, we provided the equation for the right
frame; however, the same holds true for the left frame
as well.

4) The weighted average of the particles’ positions was
computed to determine the future position of the tool:

XRpart
=

∑N
i=1 weighti ·XR,i∑N

i=1 weighti
(5)

Y Rpart =

∑N
i=1 weighti · YR,i∑N

i=1 weighti
(6)

with N number of particles.
5) The weight of the particles was updated as follows:

weighti =
max (disti)− disti∑N

i=1 (max (disti)− disti)
(7)

where i indicates the i-th particle and disti takes into
account the Euclidean distance between the predicted
particle position and both the actual tool position and
a potential future position of the tool. This additional
term was intended to assign more weight to the direc-
tion of the motion being tracked.

The predicted positions in both images (XRpart
, Y Rpart

),
(XLpart , Y Lpart) were used to extract the 3D position of the
tool by triangulation that was then sent to the robot controller.

C. Robot Control Module
The 3D predicted position of the tool is sent to a visual

servoing controller. In this work, the motion taken into
account was the translation of the robot while the orientation
was kept fixed. The error was calculated from the desired
position of the camera in {B}, PB

Cdes
, and its actual position,

PB
C , where C indicates the camera reference frame and B

indicates the base reference frame as illustrated in Fig. 2.
The desired position of the camera could be obtained as:

PB
Cdes

= PB
tool ∗ (P

Cdes

tool )
−1

(8)

where PCdes

tool =
[
0 0 d 1

]
as the goal was to keep

the instrument near the center of the camera image with a
distance d. This error was then fed into a resolved-velocity
controller which assumes that the manipulator acts as an
ideal positioning device and that calculates the desired joint
velocities to move the robot.



Fig. 2. Transformation. PC
tool and P

Cdes
tool are the actual and desired

position of the tracked object in the camera space, respectively. PB
tool is

the position of the tool in the robot’s base reference frame.

III. EXPERIMENTAL SETUP

To simulate the exoscope system and validate the proposed
autonomous framework, a 7-DoFs redundant robotic manipu-
lator (LWR 4+ lightweight robot, KUKA, Germany) with an
eye-in-hand stereo camera configuration (JVC GS-TD1 Full
HD 3D Camcorder) were used. Moreover, a second 7-DoFs
redundant robotic manipulator (LBR IIWA lightweight robot,
KUKA, Germany) was considered to move the surgical tool
on a predefined 2D trajectory, as shown in Fig. 3. The choice
of a second robot was made to guarantee a high degree of
repeatability across the experiments.

A. Surgical Instrument Detection

The training dataset for the model comprised a total
of 5900 images. Among these, 4100 images were manu-
ally recorded and annotated, while the rest were extracted
from the 2017 EndoVis challenge [11]. The dataset was
split into approximately 90 % for training and 10 % for
validation testing. The detection accuracy was evaluated
using an Intersection over Union (IoU) threshold of ≥ 45
%, classifying predicted bounding boxes as true positives
(TP) if they overlapped the ground truth by at least 45 %,
otherwise as false positives (FP). The average precision (AP)
was calculated as the area under the precision-recall curve,
p(r): AP =

∫ 1

0
p(r)dr. Additionally, the detection time,

measuring the time taken to detect and estimate the position
of the target object, was considered.

B. Surgical Instrument Tracking

The performance of the tracking and the control module
was investigated in relation to the target’s velocity, repre-
senting the surgical instrument’s movement. To validate the
effectiveness of the hybrid strategy (Hybr), a comparative
analysis was conducted involving three other approaches:
utilizing only the CNN (CNN), applying the particle filter
predictor to CNN inferences (PF), using optical flow for tool
tracking between consecutive frames (OF). The performance
indexes analyzed are the tracking error, defined as the
distance between the camera and the tool:

TE = ||PB
C − PB

tool|| [mm] (9)

and the center error defined as the distance between the tool
position in the image space and the center of the image
(Cx, Cy):

CE = ||Xt − Cx, Yt − Cy|| [mm] (10)

Fig. 3. Experimental setup from different points of view

The strategies were tested within two different velocity
scenarios to study the robustness of the system against
different conditions. The two velocities were chosen on the
basis of a study carried out with neurosurgeons about the
typical speeds reached during brain surgeries: the system
was thus been tested with the tool moving at about 2.5
cm/s (low speed) and about 4 cm/s (high speed). The camera
had to follow the tool that moved in the constant trajectory
described in Fig. 4.

Fig. 4. Trajectory travelled by the tool during the experiments

All the tests were repeated 5 times for each strategy and
for every scenario. The strategies that involved the particle
filter use 300 particles for each image (left and right) to
predict the future tool position.

During these tests, the robot controller was based on a
proportional gain equal to 1. After the evaluation of the op-
timal strategy, the robot controller was fine-tuned, resulting
in the selection of a proportional gain of 4. Following that,
the system was further tested using the updated parameter in
the same experimental setups.

IV. RESULTS & DISCUSSION

A. Surgical Instrument Detection Results

The experimental results demonstrate that the instrument
detection model achieves an average precision (AP) of 99.3
% for the selected confidence threshold. Furthermore, the
average detection time per frame is 0.066 ± 0.01 seconds,
resulting in a processing speed of 15 Hz.



B. Surgical Instrument Tracking Results

The mean and the standard deviation of the tracking error
and center error for all the strategies in the two different
scenario can be appreciated in Table I. Among the strategies,

TABLE I
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE INDEXES OF

THE DIFFERENT STRATEGIES

Tracking Error [mm] Center Error [mm]
Strat Low speed High speed Low speed High speed
CNN 24.07 ± 0.27 33.09 ± 0.43 36.32 ± 0.18 47.80 ± 0.20
PF 24.14 ± 0.17 32.89 ± 0.65 36.46 ± 0.10 43.97 ± 0.57
OF 23.82 ± 0.35 28.49 ± 0.95 35.24 ± 0.07 41.60 ± 0.48

Hybr 22.12 ± 0.15 27.06 ± 0.55 31.01 ± 0.11 35.35 ± 0.47

the Hybrid approach consistently demonstrates the lowest
tracking error in both the slow and fast scenarios. This
indicates that the Hybrid strategy is effective in accurately
tracking the surgical instrument’s movement compared to the
other strategies. Additionally, the Hybrid strategy displays
low standard deviations in both tracking and center errors,
showing its consistency and robustness in tracking and
centering of the surgical instrument across varying scenarios.

The evaluation of different performance metrics was ex-
amined through the Wilcox signed-rank test, with statistical
significance established at a threshold of p < 0.05. A statis-
tical difference was found in both tracking error and central
error among all strategies as shown in Fig 5. This reinforces
the observation that the hybrid strategy consistently delivers
superior performance, outperforming the alternatives.

Fig. 5. Tracking Error (above) and Center Error (below). (**, p-value
< 0.01)

Moreover, during the experimental phase an instability of
the strategies based on CNN (CNN and PF) was discovered:
when the tool moves at high speed, the detection fails, the

position estimated diverges and so does the camera. While
the Optical flow and the Hybrid strategies do not present
instabilities. After the tuning of the controller, the Hybrid
strategy presents the performance indexes reported in Table
II.

TABLE II
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE INDEXES OF

THE HYBRID STRATEGY WITH DIFFERENT PROPORTIONAL GAINS

Tracking Error [mm] Center Error [mm]
Gain Low speed High speed Low speed High speed

1 22.12 ± 0.15 27.06 ± 0.55 31.01 ± 0.11 35.35 ± 0.47
4 9.84 ± 0.08 13.11 ± 0.39 16.14 ± 0.14 20.80 ± 0.16

V. CONCLUSION

This study introduces a novel position-based visual-
servoing control approach for a robotic camera holder, with
the primary objective of enhancing ergonomics and alleviat-
ing mental demand during brain surgery. The integration of
a hybrid module, combining optical flow and a particle filter,
was introduced to further optimize system performance by
predicting future tool positions. Overall the tracking system
follows the motion of the surgical tool with a relatively low
tracking error. In future work, the system should be evaluated
in scenarios that better mimic the real world.
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