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A few words on another research topic

The flow in the human nose

» Highly multi-disciplinary
topic A B

» Huge relevance, little
research

» Large room for
improvement




A primer on spanwise wall forcing for
friction drag reduction
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Quadrio, Ricco & Viotti, JFM 2009



The original idea: spanwise wall oscillation

’W(x,y =0,z,t) = Asin (wt) ‘
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The traveling waves: a natural extension

Purely temporal forcing Purely spatial forcing
The oscillating wall: The steady waves:

w = Asin (wt) w = Asin (kx)
Infinite phase speed Zero phase speed

A Combined space-time forcing
The traveling waves:

’ w = Asin (rx — wt) ‘

Finite phase speed ¢ = w/k



Results from DNS (plane channel)
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Quadrio et al JFM 2009



How much power to generate the waves?

» Map of P;, is similar to map of R!
» Sand G may get very high




Experimental verification

Cylindrical pipe
Friction is measured through pressure drop
Spanwise wall velocity: wall movement

Temporal variation: unsteady wall movement

vV v v vy

Spatial variation: the pipe is sliced into thin, independently-movable axial
segments

Auteri et al PoF 2010






We have answers to several questions, but ...

» Performance

o

Quadrio et al JFM09
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We have answers to several questions, but ...

» Performance

» Reynolds number

Quadrio & Gatti JFM16
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We have answers to several questions, but ...

» Performance
» Reynolds number

Gattere et al. JFM submitted

» Compressibility
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We have answers to several questions, but ...

» Performance
» Reynolds number
» Compressibility

» Complex geometries
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We have answers to several questions, but ...

» Several studies and reviews

> Performance > Statistics are either unchanged or
» Reynolds number consequence of drag reduction

» Compressibility » No convincing explanation for the
» Complex geometries drag reduction mechanism

» Working mechanism » The mechanism should be known

before searching for an actuator
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Spanwise forcing on complex
geometries



A simple question for the drag reduction community

» Skin-friction drag reduction (DR) is often studied in simple geometries
» For a complex body, skin-friction DR should be extrapolated to total DR

» The standard answer is: in proportion!
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Turbulent flow over a transonic airfoil

» Direct Numerical Simulation (up to 1.8 billions cells)
» Supercritical V2C airfoil

» Reo =3 x10°, My = 0.7, v = 4°

» Control by spanwise forcing (steady StTW)

» Only a portion of the suction side is controlled
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Two control layouts
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Instantaneous flow: near-wall fluctuations
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Friction coefficient
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Pressure coefficient

2(pw — Poo)
PooUde

Cp:




Aerodynamic forces

At the same incidence angle a = 4°

Reference C2 JAV)
Ce 0.740 0825 +113%
Cq 0.0247 0.0245  -0.8%
Caf 0.0082 0.0071 -13.4%
Ca,p 0.0165 0.0174 +55%

Ce/Cq 29.7 337  +135%




Aerodynamics forces

Approximately at the same C,

Reference C2 (v = 3.45°) A,
Cy 0.740 0.730 -1.3%
Cq 0.0247 0.0210 -15.0%
Cdf 0.0082 0.0074 -9.7%
Cdp 0.0165 0.0136 -17.6%
Ce/Cq 29.7 348 +17.2%



How does it scale to a full aircraft?
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How does it scale to a full aircraft?

Assumptions:
» The wing is responsible for the entire lift and 1/3 of the non-lift-induced drag

> AC, and AC, induced by control do not change along the wing span
» AC, and AC, induced by control do not change with «, Res, and My,

20



How does it scale to a full aircraft?

» DLR-F6 (Second AIAA CFD drag prediction workshop) B

» Data from https://aiaa-dpw.larc.nasa.gov 0.4

» Control C2 in flight conditions: M, = 0.75, © 02fh -
Reso = 3 x 10° O/ 1 1
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How does it scale to a full aircraft?

» DLR-F6 (Second AIAA CFD drag prediction workshop)
» Data from https://aiaa-dpw.larc.nasa.gov

» Control C2 in flight conditions: M, = 0.75,
Res, = 3 x 10°

Uncontrolled Controlled
CL 0.5 0.5
«@ 0.52° 0.0125°
Cp 0.0295 0.0272 @)
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How does it scale to a full aircraft?

» DLR-F6 (Second AIAA CFD drag prediction workshop)
» Data from https://aiaa-dpw.larc.nasa.gov

» Control C2 in flight conditions: M, = 0.75, o
Res, = 3 x 10°
Uncontrolled Controlled
C 0.5 0.5
«@ 0.52° 0.0125°
Co 0.0295 0.0272 S

ACp ~ 9.0%

actuation power = 1% of the overall power expenditure 2



Friction drag reduction is more than a goal

» The global aerodynamic performance of the wing is improved by locally
reducing skin friction over a portion of the suction side

» We measure AC, ~ 15% and ACp ~ 9% (but more is possible!)

» Skin-friction drag reduction should be considered as a tool and not only as a
goal

22



The working mechanism




Focus on spanwise wall oscillation

2
w(x,y = 0,z,t) = Asin <T7Tt>
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» An optimal oscillation period exists

> Its value is T, ~ 100
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The transversal Stokes layer

It is well described by the laminar solution:

40 ,
T+ =25
30 ¢
— . 2m
Wsi(y,t) = Aexp (()y> sin <Tt — ):)
20}
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vT 10
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Possible interpretations of T

vV v VvV VY

a wall-normal length scale (thickness of the Stokes layer)?

a turbulence time scale (lifetime of wall structures)?

a streamwise length scale (a convection distance)?

a streamwise length scale (the length of low-speed streaks)?

a spanwise length scale (the displacement of the moving wall)?

none of the above?
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A thought experiment

In a DNS, an artificial Stokes layer can be prescribed: T and § can be decoupled!

The profile Ws.(y, t) is enforced, instead of computed

True Ws;: Artificial Ws;: Check:
40 40 5
T+ =25 10 T
30 30 % = \:"‘\:\
30 e
=5 AN
20 S0p IVANIVANA N Za0-
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Parameter study of DR = DR(4,T)

Channel flow DNS at Re, = 200
Domain size 4wh x 27h
AT =12 s fixed

~ 100 DNS are carried out by varying T and § independently
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Parameter study of DR = DR(4,T)

Channel flow DNS at Re. = 400
Domain size 4wh x 27h
AT =12 s fixed

~ 100 DNS are carried out by varying T and § independently
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Drag reduction map at Re, = 400
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Lesson learned

» The ‘magic’ value T;pt =100 carries no special meaning
» Potential for much larger drag reduction (!)

» Understanding spanwise forcing requires more work
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Conclusions

» Research on spanwise forcing is pretty much alive
» Steady progress in understanding various effects
» If just actuators were available...

» Potential exists for passive devices
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Chap.: EDRFCM 2017, Rome

Asking the question

» Preliminary study (coarse RANS, wall
functions, DR model)

» Suggests that pressure distribution
is affected

» Resemblance with similar studies
for riblets

EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli & M.Quadrio
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Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

» Reliable modelling (DNS, DR
accounted for directly)

» Still simple physics

» Confirmation that skin-friction DR
may led to pressure DR too

EDRFCM 2019
Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, 896 A10.
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Chap.3: EDRFCM 2022, Paris

Final answer, richer physics

d(p)/ox

» Reliable modelling (DNS, DR I
accounted for directly) | B
» Richer physics (compressible flow — —| §
over a transonic wing with shock I N
wave) /—L 1
» Extrapolation to the entire airplane : N

0 0.1 0.2 0.3 0.4 0.5 0.6
r

EDRFCM 2022
Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.
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Mean flow: downstream shift of the shock
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Aerodynamic forces

At the same incidence angle a = 4°

Reference C1 N
Ce 0.740 0.751  +1.5%
Cq 0.0247 0.0236  -4.5%
Caf 0.0082 0.0076 -7.3%
Ca,p 0.0165 0.0161 -2.4%

Ce/Cq 29.7 31.7 +6.8%
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Aerodynamic forces

At the same incidence angle a = 4°

Reference C1 N C2 AV
Co 0.740 0.751 +15% 0.825 +11.3%
Cq 0.0247 0.0236  -45% 0.0245 -0.8%
Caf 0.0082 0.0076 -7.3% 0.0071 -13.4%
Ca,p 0.0165 0.0161 -2.4% 0.0174 +55%
Ce/Cq 29.7 317  +6.8%  33.7 +135%
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Aerodynamic forces

Approximately at the same Cy

Reference C2 (o = 3.45°) A,
Cy 0.740 0.730 -1.3%
Cy 0.0247 0.0210 -15.0%
Caf 0.0082 0.0074 -9.7%
Cdp 0.0165 0.0136 -17.6%
C/Cq | 297

34.8 +17.2%
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Computational details

» compressible NS solver for a calorically perfect gas: second-order FV method,
with locally 3rd-order WENO numerical flux with Ducros sensor

domain with spanwise width 0.1¢c, mesh radius 25c
incoming laminar flow, periodic spanwise boundary conditions
baseline mesh 4096 x 512 x 256

vV vyvyy

resolution after Zauner, De Tullio & Sandham (2019) (but at lower Re), then
checked a posteriori to obey requirements set forth by Hosseini et al. 2016

» statistics accumulated for 40¢/Uq
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