Spanwise forcing for drag reduction

Recent progresses at PoliMI:
applications and understanding

Maurizio Quadrio, Politecnico di Milano

HITSZ, Oct 92023

A few words on another research topic

- Highly multi-disciplinary topic
- Huge relevance, little research
- Large room for improvement

A primer on spanwise wall forcing for friction drag reduction

The streamwise-traveling waves

Quadrio, Ricco \& Viotti, JFM 2009

The original idea: spanwise wall oscillation

$$
w(x, y=0, z, t)=A \sin (\omega t)
$$

- Large reductions of turbulent friction
- Tiny net energy savings
- Unpractical

The traveling waves: a natural extension

Purely temporal forcing The oscillating wall:

$$
w=A \sin (\omega t)
$$

Infinite phase speed

Purely spatial forcing The steady waves:

$$
w=A \sin (\kappa x)
$$

Zero phase speed

Combined space-time forcing
The traveling waves:

$$
w=A \sin (\kappa x-\omega t)
$$

Finite phase speed $c=\omega / \kappa$

Results from DNS (plane channel)

Quadrio et al JFM 2009

How much power to generate the waves?

- Map of $P_{\text {in }}$ is similar to map of R !
- S and G may get very high

Experimental verification

- Cylindrical pipe
- Friction is measured through pressure drop
- Spanwise wall velocity: wall movement
- Temporal variation: unsteady wall movement
- Spatial variation: the pipe is sliced into thin, independently-movable axial segments

The concept

We have answers to several questions, but ...

- Performance

Quadrio et al JFM09

We have answers to several questions, but ...

- Performance
- Reynolds number

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility
- Complex geometries

Banchetti et al JFM20

We have answers to several questions, but ...

- Several studies and reviews

Performance

- Reynolds number
- Compressibility
- Complex geometries
- Working mechanism
- Statistics are either unchanged or consequence of drag reduction
- No convincing explanation for the drag reduction mechanism
- The mechanism should be known before searching for an actuator

Spanwise forcing on complex

 geometries
A simple question for the drag reduction community

- Skin-friction drag reduction (DR) is often studied in simple geometries
- For a complex body, skin-friction DR should be extrapolated to total DR
- The standard answer is: in proportion!

Turbulent flow over a transonic airfoil

- Direct Numerical Simulation (up to 1.8 billions cells)
- Supercritical V2C airfoil
- $R e_{\infty}=3 \times 10^{5}, M_{\infty}=0.7, \alpha=4^{\circ}$
- Control by spanwise forcing (steady StTW)
- Only a portion of the suction side is controlled

Two control layouts

For C1:

- $A_{1}=0.5, \omega=11.3, \kappa_{x}=161$
- $x_{s, 1}=0.3 c, x_{e, 1}=0.78 c$

For C2:
 - $A_{2}=0.68, \omega=11.3, \kappa_{X}=161$
 - $x_{s, 2}=0.2 c, x_{e, 2}=0.78 c$

The mean flow

$$
\begin{aligned}
-M & =1(\text { Ref }) \\
-M & =1(\mathrm{C} 1) \\
-M & =1(\mathrm{C} 2)
\end{aligned}
$$

Instantaneous flow: near-wall fluctuations

— shock position

- x_{s} and x_{e}

Friction coefficient

$$
c_{f}=\frac{2 \tau_{w}}{\rho_{\infty} U_{\infty}^{2}}
$$

Pressure coefficient

$$
c_{p}=\frac{2\left(p_{w}-p_{\infty}\right)}{\rho_{\infty} U_{\infty}^{2}}
$$

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	C 2	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamics forces

Approximately at the same C_{ℓ}

	Reference	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	33.7	$+13.5 \%$	34.8	$+17.2 \%$

How does it scale to a full aircraft?

How does it scale to a full aircraft?

Assumptions:

- The wing is responsible for the entire lift and $1 / 3$ of the non-lift-induced drag
- ΔC_{ℓ} and ΔC_{d} induced by control do not change along the wing span
- ΔC_{ℓ} and ΔC_{d} induced by control do not change with $\alpha, R e_{\infty}$ and M_{∞}

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $R e_{\infty}=3 \times 10^{6}$

$\alpha\left[{ }^{\circ}\right]$

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$,

$$
R e_{\infty}=3 \times 10^{6}
$$

	Uncontrolled	Controlled
C_{L}	0.5	0.5
α	0.52°	0.0125°
C_{D}	0.0295	0.0272

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$,

$$
R e_{\infty}=3 \times 10^{6}
$$

	Uncontrolled	Controlled
C_{L}	0.5	0.5
α	0.52°	0.0125°
C_{D}	0.0295	0.0272

$\Delta C_{D} \approx 9.0 \%$

actuation power $\approx 1 \%$ of the overall power expenditure

Friction drag reduction is more than a goal

- The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- We measure $\Delta C_{d} \approx 15 \%$ and $\Delta C_{D} \approx 9 \%$ (but more is possible!)
- Skin-friction drag reduction should be considered as a tool and not only as a goal

The working mechanism

Focus on spanwise wall oscillation

$$
w(x, y=0, z, t)=A \sin \left(\frac{2 \pi}{T} t\right)
$$

- An optimal oscillation period exists
- Its value is $T_{\text {opt }}^{+} \approx 100$

The transversal Stokes layer

It is well described by the laminar solution:

$$
W_{S L}(y, t)=A \exp \left(\frac{-y}{\delta}\right) \sin \left(\frac{2 \pi}{T} t-\frac{y}{\delta}\right)
$$

with

$$
\delta(T)=\sqrt{\frac{\nu T}{\pi}}
$$

Possible interpretations of $T_{\text {opt }}$

- a wall-normal length scale (thickness of the Stokes layer)?
- a turbulence time scale (lifetime of wall structures)?
- a streamwise length scale (a convection distance)?
- a streamwise length scale (the length of low-speed streaks)?
- a spanwise length scale (the displacement of the moving wall)?
- none of the above?

A thought experiment

In a DNS, an artificial Stokes layer can be prescribed: T and δ can be decoupled!
The profile $W_{S L}(y, t)$ is enforced, instead of computed

True $W_{S L}$:

Artificial $W_{S L}$:

Check:

Parameter study of $D R=\operatorname{DR}(\delta, T)$

Channel flow DNS at $R e_{\tau}=200$
Domain size $4 \pi h \times 2 \pi h$
$A^{+}=12$ is fixed
≈ 100 DNS are carried out by varying T and δ independently

Parameter study of $D R=\operatorname{DR}(\delta, T)$

Channel flow DNS at $R e_{\tau}=400$
Domain size $4 \pi h \times 2 \pi h$
$A^{+}=12$ is fixed
≈ 100 DNS are carried out by varying T and δ independently

Drag reduction map at $R e_{\tau}=400$

Lesson learned

- The 'magic' value $T_{o p t}^{+}=100$ carries no special meaning
- Potential for much larger drag reduction (!)
- Understanding spanwise forcing requires more work

Conclusions

- Research on spanwise forcing is pretty much alive
- Steady progress in understanding various effects
- If just actuators were available...
- Potential exists for passive devices

Chap.1: EDRFCM 2017, Rome

- Preliminary study (coarse RANS, wall functions, DR model)
- Suggests that pressure distribution is affected
- Resemblance with similar studies for riblets

[^0]
Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

- Reliable modelling (DNS, DR accounted for directly)
- Still simple physics
- Confirmation that skin-friction DR
 may led to pressure DR too

Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, 896 A10.

Chap.3: EDRFCM 2022, Paris

EDRFCM 2022
Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.

Mean flow: downstream shift of the shock

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	$C 1$	Δ_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	$C 1$	Δ_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamic forces

Approximately at the same C_{ℓ}

	Reference	$C 1$	\triangle_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Computational details

- compressible NS solver for a calorically perfect gas: second-order FV method, with locally 3rd-order WENO numerical flux with Ducros sensor
- domain with spanwise width 0.1c, mesh radius 25 c
- incoming laminar flow, periodic spanwise boundary conditions
- baseline mesh $4096 \times 512 \times 256$
- resolution after Zauner, De Tullio \& Sandham (2019) (but at lower Re), then checked a posteriori to obey requirements set forth by Hosseini et al. 2016
- statistics accumulated for $40 c / U_{\infty}$

[^0]: EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli \& M.Quadrio

