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Spanwise forcing for drag reduction
Recent progresses at PoliMI:
applications and understanding

Maurizio Quadrio, Politecnico di Milano

HITSZ, Oct 9 2023
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A few words on another research topic
The flow in the human nose

I Highly multi-disciplinary
topic

I Huge relevance, little
research

I Large room for
improvement

2



A primer on spanwise wall forcing for
friction drag reduction



The streamwise-traveling waves
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Quadrio, Ricco & Viotti, JFM 2009
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The original idea: spanwise wall oscillation

w(x, y = 0, z, t) = A sin (ωt)

I Large reductions of
turbulent friction

I Tiny net energy savings
I Unpractical
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The traveling waves: a natural extension

Purely temporal forcing
The oscillating wall:

w = A sin (ωt)

Infinite phase speed

Purely spatial forcing
The steady waves:

w = A sin (κx)

Zero phase speed

Combined space-time forcing
The traveling waves:

w = A sin (κx − ωt)

Finite phase speed c = ω/κ
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Results from DNS (plane channel)
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How much power to generate the waves?

I Map of Pin is similar to map of R!
I S and G may get very high
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Experimental verification

I Cylindrical pipe
I Friction is measured through pressure drop
I Spanwise wall velocity: wall movement
I Temporal variation: unsteady wall movement
I Spatial variation: the pipe is sliced into thin, independently-movable axial
segments

Auteri et al PoF 2010
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The concept

9



We have answers to several questions, but …

I Performance

I Reynolds number
I Compressibility
I Complex geometries
I Working mechanism
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We have answers to several questions, but …

I Performance
I Reynolds number

I Compressibility
I Complex geometries
I Working mechanism

Quadrio & Gatti JFM16
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We have answers to several questions, but …

I Performance
I Reynolds number
I Compressibility

I Complex geometries
I Working mechanism

Gattere et al. JFM submitted
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We have answers to several questions, but …

I Performance
I Reynolds number
I Compressibility
I Complex geometries

I Working mechanism

Banchetti et al JFM20
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We have answers to several questions, but …

I Performance
I Reynolds number
I Compressibility
I Complex geometries
I Working mechanism

I Several studies and reviews
I Statistics are either unchanged or
consequence of drag reduction

I No convincing explanation for the
drag reduction mechanism

I The mechanism should be known
before searching for an actuator
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Spanwise forcing on complex
geometries



A simple question for the drag reduction community

I Skin-friction drag reduction (DR) is often studied in simple geometries
I For a complex body, skin-friction DR should be extrapolated to total DR
I The standard answer is: in proportion!
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Turbulent flow over a transonic airfoil

I Direct Numerical Simulation (up to 1.8 billions cells)
I Supercritical V2C airfoil
I Re∞ = 3× 105, M∞ = 0.7, α = 4◦
I Control by spanwise forcing (steady StTW)
I Only a portion of the suction side is controlled
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Two control layouts

For C1:
I A1 = 0.5, ω = 11.3, κx = 161
I xs,1 = 0.3c, xe,1 = 0.78c

For C2:
I A2 = 0.68, ω = 11.3, κx = 161
I xs,2 = 0.2c, xe,2 = 0.78c
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The mean flow

M = 1 (Ref)
M = 1 (C1)
M = 1 (C2) 14



Instantaneous flow: near-wall fluctuations
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Friction coefficient

cf =
2τw
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Pressure coefficient

cp =
2(pw − p∞)

ρ∞U2∞
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Aerodynamic forces

At the same incidence angle α = 4◦

Reference C2 ∆2 C2 (α = 3.45◦) ∆2

C` 0.740 0.825 +11.3% 0.730 -1.3%
Cd 0.0247 0.0245 -0.8% 0.0210 -15.0%
Cd,f 0.0082 0.0071 -13.4% 0.0074 -9.7%
Cd,p 0.0165 0.0174 +5.5% 0.0136 -17.6%
C`/Cd 29.7 33.7 +13.5% 34.8 +17.2%
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Aerodynamics forces

Approximately at the same C`

Reference C2 ∆2 C2 (α = 3.45◦) ∆2

C` 0.740 0.825 +11.3% 0.730 -1.3%
Cd 0.0247 0.0245 -0.8% 0.0210 -15.0%
Cd,f 0.0082 0.0071 -13.4% 0.0074 -9.7%
Cd,p 0.0165 0.0174 +5.5% 0.0136 -17.6%
C`/Cd 29.7 33.7 +13.5% 34.8 +17.2%
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How does it scale to a full aircraft?

Assumptions:

I The wing is responsible for the entire lift and 1/3 of the non-lift-induced drag
I ∆C` and ∆Cd induced by control do not change along the wing span
I ∆C` and ∆Cd induced by control do not change with α, Re∞ and M∞

20
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How does it scale to a full aircraft?

I DLR-F6 (Second AIAA CFD drag prediction workshop)
I Data from https://aiaa-dpw.larc.nasa.gov
I Control C2 in flight conditions: M∞ = 0.75,
Re∞ = 3× 106

Uncontrolled Controlled
CL 0.5 0.5
α 0.52◦ 0.0125◦

CD 0.0295 0.0272

∆CD ≈ 9.0%

actuation power ≈ 1% of the overall power expenditure
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Friction drag reduction is more than a goal

I The global aerodynamic performance of the wing is improved by locally
reducing skin friction over a portion of the suction side

I We measure ∆Cd ≈ 15% and ∆CD ≈ 9% (but more is possible!)
I Skin-friction drag reduction should be considered as a tool and not only as a
goal

22



The working mechanism



Focus on spanwise wall oscillation

w(x, y = 0, z, t) = A sin
(
2π
T
t
)
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I An optimal oscillation period exists
I Its value is T+opt ≈ 100
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The transversal Stokes layer

It is well described by the laminar solution:

WSL(y, t) = A exp
(
−y
δ

)
sin

(
2π
T
t − y

δ

)
with

δ(T) =
√

νT
π
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Possible interpretations of Topt

I a wall-normal length scale (thickness of the Stokes layer)?
I a turbulence time scale (lifetime of wall structures)?
I a streamwise length scale (a convection distance)?
I a streamwise length scale (the length of low-speed streaks)?
I a spanwise length scale (the displacement of the moving wall)?
I none of the above?
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A thought experiment

In a DNS, an artificial Stokes layer can be prescribed: T and δ can be decoupled!

The profile WSL(y, t) is enforced, instead of computed
True WSL: Artificial WSL: Check:

26



Parameter study of DR = DR(δ, T)

Channel flow DNS at Reτ = 200

Domain size 4πh× 2πh

A+ = 12 is fixed

≈ 100 DNS are carried out by varying T and δ independently
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Parameter study of DR = DR(δ, T)

Channel flow DNS at Reτ = 400

Domain size 4πh× 2πh

A+ = 12 is fixed

≈ 100 DNS are carried out by varying T and δ independently
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Drag reduction map at Reτ = 400
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Lesson learned

I The ‘magic’ value T+opt = 100 carries no special meaning
I Potential for much larger drag reduction (!)
I Understanding spanwise forcing requires more work
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Conclusions

I Research on spanwise forcing is pretty much alive
I Steady progress in understanding various effects
I If just actuators were available...
I Potential exists for passive devices
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Chap.1: EDRFCM 2017, Rome
Asking the question

I Preliminary study (coarse RANS, wall
functions, DR model)

I Suggests that pressure distribution
is affected

I Resemblance with similar studies
for riblets

EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli & M.Quadrio
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Chap.2: EDRFCM 2019, Bad Herrenhalb
First answer, simple physics

I Reliable modelling (DNS, DR
accounted for directly)

I Still simple physics
I Confirmation that skin-friction DR
may led to pressure DR too

EDRFCM 2019
Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, 896 A10.
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Chap.3: EDRFCM 2022, Paris
Final answer, richer physics

I Reliable modelling (DNS, DR
accounted for directly)

I Richer physics (compressible flow
over a transonic wing with shock
wave)

I Extrapolation to the entire airplane
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Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.
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Mean flow: downstream shift of the shock
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Aerodynamic forces

At the same incidence angle α = 4◦

Reference C1 ∆1 C2 ∆2 C2 (α = 3.45◦) ∆2

C` 0.740 0.751 +1.5% 0.825 +11.3% 0.730 -1.3%
Cd 0.0247 0.0236 -4.5% 0.0245 -0.8% 0.0210 -15.0%
Cd,f 0.0082 0.0076 -7.3% 0.0071 -13.4% 0.0074 -9.7%
Cd,p 0.0165 0.0161 -2.4% 0.0174 +5.5% 0.0136 -17.6%
C`/Cd 29.7 31.7 +6.8% 33.7 +13.5% 34.8 +17.2%
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Aerodynamic forces

Approximately at the same C`
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Computational details

I compressible NS solver for a calorically perfect gas: second-order FV method,
with locally 3rd-order WENO numerical flux with Ducros sensor

I domain with spanwise width 0.1c, mesh radius 25c
I incoming laminar flow, periodic spanwise boundary conditions
I baseline mesh 4096× 512× 256
I resolution after Zauner, De Tullio & Sandham (2019) (but at lower Re), then
checked a posteriori to obey requirements set forth by Hosseini et al. 2016

I statistics accumulated for 40c/U∞
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