Spanwise forcing for drag reduction

Recent progresses at PoliMI: applications and understanding

Maurizio Quadrio, Politecnico di Milano

HITSZ, Oct 9 2023

A few words on another research topic

The flow in the human nose

- Highly multi-disciplinary topic
- Huge relevance, little research
- Large room for improvement

A primer on spanwise wall forcing for friction drag reduction

The streamwise-traveling waves

Quadrio, Ricco & Viotti, JFM 2009

The original idea: spanwise wall oscillation

$$w(x, y = 0, z, t) = A\sin(\omega t)$$

- Large reductions of turbulent friction
- ► Tiny net energy savings
- Unpractical

Purely temporal forcing The oscillating wall:

$$w = A \sin(\omega t)$$

Infinite phase speed

Purely spatial forcing The steady waves:

$$W = A \sin(\kappa X)$$

Zero phase speed

The traveling waves:

$$w = A \sin\left(\frac{\kappa x - \omega t}{\omega t}\right)$$

Finite phase speed $c = \omega/\kappa$

Results from DNS (plane channel)

How much power to generate the waves?

- ► Map of *P_{in}* is similar to map of *R*!
- ► S and G may get very high

Cylindrical pipe

- ► Friction is measured through pressure drop
- ► Spanwise wall velocity: wall movement
- Temporal variation: unsteady wall movement
- Spatial variation: the pipe is sliced into thin, independently-movable axial segments

Auteri et al PoF 2010

The concept

We have answers to several questions, but ...

► Performance

We have answers to several questions, but ...

- ► Performance
- Reynolds number

Quadrio & Gatti JFM16

- ► Performance
- ► Reynolds number
- Compressibility

Gattere et al. JFM submitted

We have answers to several questions, but ...

- ► Performance
- ► Reynolds number
- Compressibility
- Complex geometries

Banchetti et al JFM20

Performance

- Reynolds number
- Compressibility
- Complex geometries
- Working mechanism

- Several studies and reviews
- Statistics are either unchanged or consequence of drag reduction
- No convincing explanation for the drag reduction mechanism
- The mechanism should be known before searching for an actuator

Spanwise forcing on complex geometries

- Skin-friction drag reduction (DR) is often studied in simple geometries
- ► For a complex body, skin-friction DR should be extrapolated to total DR
- ► The standard answer is: in proportion!

Turbulent flow over a transonic airfoil

- ▶ Direct Numerical Simulation (up to 1.8 billions cells)
- ► Supercritical V2C airfoil

•
$$Re_{\infty} = 3 \times 10^5$$
, $M_{\infty} = 0.7$, $\alpha = 4^\circ$

- Control by spanwise forcing (steady StTW)
- Only a portion of the suction side is controlled

Two control layouts

For C1:

•
$$A_1 = 0.5, \omega = 11.3, \kappa_x = 161$$

• $x_{s,1} = 0.3c, x_{e,1} = 0.78c$

For C2:

•
$$A_2 = 0.68, \omega = 11.3, \kappa_x = 161$$

•
$$x_{s,2} = 0.2c$$
, $x_{e,2} = 0.78c$

The mean flow

M = 1 (Ref)M = 1 (C1)M = 1 (C2)

Instantaneous flow: near-wall fluctuations

Friction coefficient

16

Pressure coefficient

$$c_p = \frac{2(p_w - p_\infty)}{\rho_\infty U_\infty^2}$$

At the same incidence angle $\alpha = 4^{\circ}$

	Reference	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_ℓ	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	33.7	+13.5%	34.8	+17.2%

Approximately at the same C_ℓ

	Reference	С2	Δ_2	C2 (α = 3.45°)	Δ_2
C_ℓ	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	33.7	+13.5%	34.8	+17.2%

Assumptions:

- ► The wing is responsible for the entire lift and 1/3 of the non-lift-induced drag
- ΔC_{ℓ} and ΔC_d induced by control do not change along the wing span
- ΔC_{ℓ} and ΔC_{d} induced by control do not change with α , Re_{∞} and M_{∞}

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty} = 0.75$, $Re_{\infty} = 3 \times 10^{6}$

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty} = 0.75$, $Re_{\infty} = 3 \times 10^6$

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty} = 0.75$, $Re_{\infty} = 3 \times 10^6$

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272

 $\Delta C_D \approx 9.0\%$

actuation power \approx 1% of the overall power expenditure

- The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- We measure $\Delta C_d \approx 15\%$ and $\Delta C_D \approx 9\%$ (but more is possible!)
- Skin-friction drag reduction should be considered as a tool and not only as a goal

The working mechanism

Focus on spanwise wall oscillation

$$w(x, y = 0, z, t) = A \sin\left(\frac{2\pi}{T}t\right)$$

- ► An optimal oscillation period exists
- ► Its value is $T_{opt}^+ \approx 100$

The transversal Stokes layer

It is well described by the laminar solution:

$$W_{SL}(y,t) = A \exp\left(\frac{-y}{\delta}\right) \sin\left(\frac{2\pi}{T}t - \frac{y}{\delta}\right)$$

with

$$\delta(T) = \sqrt{\frac{\nu T}{\pi}}$$

- ► a wall-normal length scale (thickness of the Stokes layer)?
- ► a turbulence time scale (lifetime of wall structures)?
- ► a streamwise length scale (a convection distance)?
- ► a streamwise length scale (the length of low-speed streaks)?
- ► a spanwise length scale (the displacement of the moving wall)?
- none of the above?

In a DNS, an artificial Stokes layer can be prescribed: T and δ can be decoupled!

The profile $W_{SL}(y, t)$ is enforced, instead of computed

Channel flow DNS at $Re_{\tau} = 200$ Domain size $4\pi h \times 2\pi h$ $A^+ = 12$ is fixed ≈ 100 DNS are carried out by varying T and δ independently

- Channel flow DNS at $Re_{\tau} = 400$
- Domain size $4\pi h \times 2\pi h$
- $A^+ = 12$ is fixed
- pprox 100 DNS are carried out by varying T and δ independently

Drag reduction map at $Re_{\tau} = 400$

- The 'magic' value $T_{opt}^+ = 100$ carries no special meaning
- Potential for much larger drag reduction (!)
- ► Understanding spanwise forcing requires more work

- ► Research on spanwise forcing is pretty much alive
- ► Steady progress in understanding various effects
- ► If just actuators were available...
- ▶ Potential exists for passive devices

Chap.1: EDRFCM 2017, Rome

Asking the question

- Preliminary study (coarse RANS, wall functions, DR model)
- Suggests that pressure distribution is affected
- Resemblance with similar studies for riblets

EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli & M.Quadrio

Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

- Reliable modelling (DNS, DR accounted for directly)
- Still simple physics
- Confirmation that skin-friction DR may led to pressure DR too

EDRFCM 2019

Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, 896 A10.

Chap.3: EDRFCM 2022, Paris

Final answer, richer physics

- Reliable modelling (DNS, DR accounted for directly)
- Richer physics (compressible flow over a transonic wing with shock wave)
- Extrapolation to the entire airplane

EDRFCM 2022

Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.

Mean flow: downstream shift of the shock

At the same incidence angle $\alpha=4^\circ$

	Reference	C1	Δ_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

At the same incidence angle $\alpha=4^\circ$

	Reference	C1	Δ_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

Approximately at the same C_ℓ

	Reference	C1	Δ_1	С2	Δ_2	C2 ($lpha=$ 3.45°)	Δ_2
C_ℓ	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

- compressible NS solver for a calorically perfect gas: second-order FV method, with locally 3rd-order WENO numerical flux with Ducros sensor
- ▶ domain with spanwise width 0.1*c*, mesh radius 25*c*
- ▶ incoming laminar flow, periodic spanwise boundary conditions
- ▶ baseline mesh $4096 \times 512 \times 256$
- resolution after Zauner, De Tullio & Sandham (2019) (but at lower *Re*), then checked a posteriori to obey requirements set forth by Hosseini et al. 2016
- ▶ statistics accumulated for $40c/U_{\infty}$